Lesson 9b

continuation of CLT
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Try It 1000 Times
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Mean of sample Means = 16.3 Suppose we want a
Standard deviation of sample means = 0.94 tighter bound?



Getting a Tighter Bound

*Will drawing more samples help?
o Let’s try increasing from 1000 to 2000
> Standard deviation goes from 0.943 to 0.946

*"How about larger samples?
o Let’s try increasing sample size from 100 to 200

> Standard deviation goes from 0.943 to 0.662



Larger Samples Seem to Be Better

*Going from a sample size of 50 to 600 reduced the
confidence interval from about 1.2C to about 0.34C.

*But we are now looking at 600*100 = 600k examples
> What has sampling bought us?

> Absolutely Nothing!
> Entire population contained ~422k samples



What Can We Conclude from 1 Sample?

*More than you might think

*Thanks to the Central Limit
Theorem



Recall Central Limit Theorem

*Given a sufficiently large sample:

°1) The means of the samples in a set of samples (the
sample means) will be approximately normally
distributed,

°2) This normal distribution will have a mean close to the
mean the population, and

°3) The variance of the sample means will be close to the
variance of the population divided by the sample size.

*Time to use the 3 feature

*Compute standard error of the mean (SEM or SE)



Standard Error of the Mean

SE ="

Jn

def sem(popSD, sampleSize):
return popSD/sampleSi1ze**0.5



Testing the SEM

sampleSizes = (25, 50, 100, 200, 300, 400, 500, 600)
numTrials = 50
population = getHighs()
popSD = numpy.std(population)
sems = []
sampleSDs = []
for size in sampleSizes:
sems.append(sem(popSD, size))
means = []
for t in range(numTrials):
sample = random.sample(population, size)
means.append(sum(sample)/len(sample))
sampleSDs.append(numpy.std(means))
pylab.plot(sampleSizes, sampleSDs,

Tabel = 'Std of ' + str(numTrials) + ' means')
pylab.plot(sampleSizes, sems, 'r--', label = 'SEM')
pylab.xlabel ('Sample Size')
pylab.ylabel('Std and SEM')
pylab.title('SD for ' + str(numTrials) + ' Means and SEM')

pylab.legend()




Standard Error of the Mean
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Sample SD vs. Population SD

Sample SD vs Population SD, Temperatures
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The Point

*Once sample reaches a reasonable size, sample

standard deviation is a pretty good approximation to
population standard deviation

"True only for this example?
o Distribution of population?
o Size of population?
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Looking at Distributions

def plotDistributions():
uniform, normal, exp = [1, [1, [I]
for 1 in range(100000):
uniform.append(random.random())
normal.append(random.gauss(0, 1))
exp.append(random.expovariate(0.5))

makeHist(uniform, 'Uniform', 'Value', 'Frequency')
pylab.figure()
makeHist(normal, 'Gaussian', 'Value', 'Frequency')

pylab.figure()
makeHist(exp, 'Exponential', 'Value', 'Frequency')
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Does Distribution Matter?

% Difference in SD

Sample SD vs Population SD
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Does Population Size Matter?

Sample SD vs Population SD, Uniform
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To Estimate Mean from a Single Sample

=1) Choose sample size based on estimate of skew in
population

*2) Chose a random sample from the population

*3) Compute the mean and standard deviation of that
sample

=4) Use the standard deviation of that sample to
estimate the SE

*5) Use the estimated SE to generate confidence
intervals around the sample mean

Works great when we choose independent random samples.

Not always so easy to do, as political pollsters keep learning.



Are 200 Samples Enough?

numBad = 0
for t in range(numTrials):
sample = random.sample(temps, sampleSize)
sampleMean = sum(sample)/sampleSize
se = numpy.std(sample)/sampleSize**0.5
if abs(popMean - sampleMean) > 1.96%*se:
numBad += 1

print('Fraction outside 95% confidence interval ='
numBad/numTrials)

7

Fraction outside 95% confidence interval = 0.0511



