

EUNOIA JUNIOR COLLEGE JC1 Promotional Examination 2021 General Certificate of Education Advanced Level

Higher 2

PHYSICS

9749

MARK SCHEME

Sep/Oct 2021

Paper 1 Multiple Choice

Question	Key	Question	Key	Question	Key
1	В	6	Α	11	С
2	В	7	Α	12	В
3	D	8	Α	13	D
4	С	9	D	14	D
5	С	10	Α	15	В

16	В	21	Α	26	С
17	Α	22	Α	27	С
18	D	23	С	28	Α
19	D	24	С	29	В
20	С	25	С	30	D

1 Rubik's cube is approximately (5 cm)³. # of cubes

$$\approx \left(\frac{18}{0.05}\right) \times \left(\frac{9.5}{0.05}\right) \times \left(\frac{4}{0.05}\right)$$
$$\approx 10^{6}$$

2 $\frac{a\lambda}{2\pi} + \frac{2\pi b}{\rho\lambda}$ have same units as v^2

units of
$$\frac{a\lambda}{2\pi}$$
 = units of $\frac{2\pi b}{\rho\lambda}$ = m² s⁻²

units of
$$a = \frac{m^2 s^{-2}}{\text{units of } \lambda} = \frac{m^2 s^{-2}}{m}$$

= $m s^{-2}$

units of
$$b = \frac{m^2 s^{-2}}{\text{units of } \frac{1}{\rho \lambda}} = \frac{m^2 s^{-2}}{\left[\left(\text{kg m}^{-3} \right) \left(\text{m} \right) \right]^{-1}}$$

= kg s⁻²

3
$$\rho = \frac{m}{\text{volume}} = \frac{m}{\frac{4}{3}\pi r^3} = \frac{m}{\frac{4}{3}\pi \left(\frac{d}{2}\right)^3} = \frac{6m}{\pi d^3}$$

$$\rho = \frac{6(12.6)}{\pi 1.85^3} = 3.8006 \text{ g cm}^{-3}$$

$$\frac{\Delta \rho}{\rho} = \frac{\Delta m}{m} + 3\frac{\Delta d}{d}$$
$$\Delta \rho = \rho \left(\frac{\Delta m}{m} + 3\frac{\Delta d}{d}\right)$$

$$= (3.8006) \left(\frac{0.1}{12.6} + 3 \frac{0.01}{1.85} \right)$$

$$\approx 0.1 \text{ g cm}^{-3}$$

$$\rho = 3.8 \pm 0.1 \,\mathrm{g \ cm^{-3}}$$
 (round UP)

4 displacement increases with time: j velocity increases until v_{terminal}: h acceleration decrease to zero: k

5 disregarding wall, at max height, zero vertical velocity:

$$v^2 = u^2 + 2as$$
 $0 = (u \sin \theta)^2 - 2gs_{max}$
 $s_{max} = \frac{(10 \sin 30^\circ)^2}{2(9.81)} \approx 5.1 \text{ m}$

time to reach 5.1 m vertical displacement:

$$v = u + at$$

$$t = \frac{v_y - u_y}{g} = \frac{0 - u \sin 30^\circ}{-9.81}$$

$$\approx 0.51 \text{ s}$$

time to reach wall:

$$s_x = v_x t$$

$$t = \frac{s_x}{v_x} = \frac{3.5}{10 \cos 30^\circ}$$

$$\approx 0.40 \text{ s}$$

so ball will hit wall before reaching max possible displacement:

$$s_y = u_y t + \frac{1}{2} a t^2$$

$$= (u \sin \theta) \left(\frac{s_x}{v_x} \right) + \frac{1}{2} g \left(\frac{s_x}{v_x} \right)^2$$

$$= 1.2 \text{ m}$$

6 Rod horizontal so same tension in stings

P and Q displace same volume of fluid V $U = \rho Vg$ so denser liquid gives more upthrust

for either objects:

$$T \downarrow U \\ W \qquad m = \frac{W}{g} = \frac{T + U}{g}$$

object in less-dense liquid has less mass

first 3 s no drag so constant $a = 9.81 \text{ m s}^{-2}$ 7 eliminate options B and C

parachute causes a sudden and large upward force (different direction) so net force/acceleration changes direction

total force downramp = $2mg \sin \theta$ max possible friction = mg

9 Inelastic collision so KE not conserved. eliminate B

> Isolated system so total system momentum conserved eliminate A and C

verify option D:

by PCLM
$$mu + 0 = 2mv$$

$$v = \frac{1}{2}u$$

KE of either mass after collision

$$\frac{1}{2}mv^2 = \frac{1}{2}m\left(\frac{u}{2}\right)^2$$
$$= \frac{1}{4}\left(\frac{1}{2}mu^2\right) = \frac{E}{4}$$

10

$$\begin{split} m_{\text{heli}} & a = F_{\text{lift}} - W \\ & = \frac{m_{\text{air}}}{t} \Delta v - m_{\text{heli}} g \\ m_{\text{heli}} \left(a + g \right) = \left(\frac{m_{\text{air}}}{t} \right) \Delta v \\ m_{\text{heli}} & = \frac{\left(\frac{m_{\text{air}}}{t} \right) \Delta v}{a + g} = \frac{\left(2500 \right) \left(15 \right)}{12.5 + 9.81} \\ & = 1680 \text{ kg} \end{split}$$

gradient of speed-time graph should give constant acceleration thus force

12 by PCLM,

$$0 = m_{\text{cannon}} v_{\text{recoil}} + m_{\text{ball}} v_{\text{ball}}$$

$$|m_{\text{cannon}} v_{\text{recoil}}| = |m_{\text{ball}} v_{\text{ball}}|$$

$$v_{\text{ball}} = \frac{m_{\text{cannon}}}{m_{\text{ball}}} v_{\text{recoil}}$$

$$= \frac{1000}{10} (5)$$

$$= 500 \text{ m s}^{-1}$$

13

by N3L, $N_{\text{on man}} = -N_{\text{on floor}}$ so eliminate C

A, B) not true, from free body diagram magnitude is less than weight

- **14** A) work is done by gravity on the girl as she falls
 - B) tyres are rolling (since no skid), hence work done is done by friction on tyres.
 - work is done by the electric field of the plate against on the electron
- efficiency is useful power / total power expenditure

16
$$v = r\omega$$
 so $\omega = \frac{v}{r}$

17 vector sum of normal force N and friction f provides centripetal force

horizontally:

$$f \cos \theta + N_x = \frac{mv^2}{r}$$

$$f \cos \theta + N \sin \theta = \frac{mv^2}{r}$$

$$N \sin \theta = \frac{mv^2}{r} - f \cos \theta$$
 (1)

vertically $N \cos \theta = W + f \sin \theta$ ____(2)

$$\frac{(1)}{(2)} \sin \tan \theta = \frac{\frac{mv^2}{r} - f \cos \theta}{W + f \sin \theta}$$

$$= \frac{\frac{mv^2}{r} - f \cos \theta}{mg + f \sin \theta}$$

$$\tan(30^\circ) = \frac{1000 \left(\frac{90000}{3600}\right)^2 - f \cos(30^\circ)}{1000(9.81) + f \sin(30^\circ)}$$

$$f = 508 \text{ N}$$

18 gravitational force provides centripetal force

$$\frac{GMS}{R^{2}} = MR\omega^{2}$$

$$GS = R^{3} \left(\frac{2\pi}{T}\right)^{2}$$

$$T^{2} = \left(\frac{4\pi^{2}}{G}\right) \left(\frac{R^{3}}{S}\right)$$

19 negative gradient of energy-distance graph gives force ON object; hence gradient of energy-distance graph gives force ON planet. 20

$$\phi_{P} = -\frac{GM}{r} = -400 \times 10^{3} \text{ J kg}^{-1}$$

$$\phi_{Q} = -\frac{GM}{2r} = \frac{1}{2} \phi_{P}$$

$$\begin{split} m\Delta\phi &= m\big(\phi_{\text{final}} - \phi_{\text{final}}\big) \\ &= m\big(\phi_{\text{P}} - \phi_{\text{Q}}\big) = m\bigg(\phi_{\text{P}} - \frac{1}{2}\phi_{\text{P}}\bigg) \\ &= \frac{m\phi_{\text{P}}}{2} = \frac{200\big(-400\times10^3\big)}{2} \\ &= -40\times10^6\,\text{J kg}^{-1} \end{split}$$

21 gravitational force provides centripetal force

$$\frac{GM_{E} \cancel{m_s}}{r^2} = \cancel{m_s} r \omega^2$$

$$r = \sqrt[3]{\frac{GM_{E}}{\omega^2}}$$

$$v = r\omega = \sqrt[3]{\frac{GM_{E}}{\omega^2}} (\omega)$$

$$= \sqrt[3]{GM_{E}\omega} = \sqrt[3]{GM_{E}\frac{2\pi}{T}}$$

$$= \sqrt[3]{\frac{(6.67 \times 10^{-11})(6 \times 10^{24})(2\pi)}{24 \times 60 \times 60}}$$

$$= 3080 \text{ m s}^{-1}$$

22

$$x = x_0 \sin(\omega t)$$

$$= (0.12) \sin\left(\frac{2\pi}{T} \times \frac{T}{8}\right)$$

$$= 0.085 \text{ m}$$

23 period is 0.50 s

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{0.50}$$

= 12.6 rad s⁻¹

24 X and Y separated by distance of 1.5λ

$$\frac{\Delta\phi}{2\pi} = \frac{\Delta s}{\lambda}$$

$$\Delta\phi = 2\pi \left(\frac{\Delta s}{\lambda}\right)$$

$$= 2\pi (1.5) = 3\pi = (3 \times 180)^{\circ}$$

25 Each double slit generates a single slit diffraction pattern

26
$$\lambda = \frac{v}{f} = \frac{350}{50} = 7.0 \text{ m}$$

(compression to compression: 1 λ)
RS = 4 λ = 28 m

- 27 All particles in an inter-nodal segment are in-phase with each other, and are in antiphase with particles in adjacent inter-nodal segment.
- 28 flight path of UAV is like a screen to twosource interference pattern. Screen distance is much larger than source separation so

$$x = \frac{\lambda D}{a} = \frac{(3.0 \times 10^{-2})(2000)}{15} = 4.0 \text{ m}$$

maxima's are every 4.0 m apart. since UAV flies are constant speed:

$$v = \frac{x}{T}$$

$$T = \frac{x}{v} = \frac{4.0}{90} = 0.044 \text{ s}$$

29

$$\frac{s}{r} = \theta \approx \frac{\lambda}{b}$$
$$s \approx \frac{r\lambda}{b}$$

min distance so shortest wavelength

$$s \approx \frac{\left(10 \times 10^{3}\right) \left(400 \times 10^{-9}\right)}{2.0 \times 10^{-3}} = 2.0 \text{ m}$$

30
$$d \sin \theta = n\lambda$$

 $d \sin(30^\circ) = \lambda = 0.50d$

$$x = \frac{\lambda D}{a} = \frac{(0.50 \text{ M})D}{500 \text{ M}}$$
$$= \frac{0.50(1.5)}{500} = 0.0015 \text{ m}$$