Answers to 2024 JC2 Preliminary Examination Paper 4 (H2 Physics)

Suggested Solutions

No.	Solution						Remark				
1(b)	$x = \frac{15.0 + 15.0}{15.0} = 15.0 \text{ cm}$ [1]										
	$x = \frac{1}{2} = 15.0$ cm						- for correct measurements with units				
							- 1 d.p in cm				
							- X should be within range of 14.0 cm to 16.0 cm				
	Poriod	τ_{-}^{20}	0.8 + 20	7 1 04	~	[1]					
	i enou	/	2×20		5	(can be deduced from working)					
						- 1 or	- 1 or 2 d.p in timing				
						- repe	eat .		0		
						- <i>T</i> in	3 s.f. or 4	l s	s.f. depending on the d.p. of t_1 and t_2		
4(-)						<i>- t</i> ≥ 1	0.0 s	-			
1(C)			-	fan Ni		a al a al	$\pi 4 / - 4$		[1] - headings and units		
	x/cm	IN	oscilla	e for N		erioa T/o	<i>I⁴</i> /s⁴		- 6 sets of data		
			t /o	t /o		1/5					
		t ₁ /S t ₂ /S					┼───┤		Note: 207 is not accepted as time for 20 oscillations		
	11.0	25	24.2	24.1	0	.966	0.871				
	13.0	25	25.1	25.2		1.01	1.04		[1]		
	15.0	20	20.8	20.7		1.04	1.17		1.p. or raw data t > 10.0 s with repeated		
	17.0	20	21.4	21.6		1.08	1.36		measurement		
	19.0	20	22.1	22.2		1.11	1.52		[1]		
	21.0	20	22.9	22.8		1.14	1.69		- s.f. of processed data		
		- correct calculation, allow 1 slip									
									[1] Range of <i>x</i> to be at least 10.0 cm		
									Don't accept $x = 0$ cm and $x > 26$ cm.		
									These will not be considered one set		
	Note: N	/arke i	may ha	deducted	for	poor p	resentatio	n	of data.		
			nuy bu			Poor b	·	211			
	•	No tab	ole (inclu	iding bord	der	must b	e drawn)				
		Poor r	iines no	tion of da	sinų ita i	y ruier n table	(e.a. Sho	<u>م</u>	working in table)		
	-	1 001 p					(0.g. 0110		working in table)		
1(d)	Refer to	o attac	hed gra	ph.		[1] axe	s: units, s	ca	ale (1:1, 1:2 or 1:5 only)		
						[1] plot [1] has	ted points t fit ling	sa	accurate to halt of smallest division		
						[1] 000					
	MC:	For s	cale, st	udents sh	oul	d use 1	1:1, 1:2 or	1	:5 scale. In most cases, the data		
		obtai	ned wo of to hal	uid be abl f the smal	e to llesi) accon t divisio	nmodate i on	the	e use of these scales which are easy		
			Stude	ents are a	llov	ved to i	plot their o	gra	aph in landscape should they find that		
	portrait does not allow for these scales. In general, the use of these										

	scales would also save students some marks for the plotted points mark and the gradient calculations.						
1(d)	Given $T^4 = Px + Q$ Graph of T^4 vs x is plotted, where P is the gradient and Q is the y-intercept. Gradient= $\frac{1.67 - 0.89}{20.8 - 11.4} = 0.0830$ $P = 0.0830 \text{ s}^4 \text{ cm}^{-1}$ Substitute (20.8,1.67) into the equation, 1.67 = (0.0830)(20.8) + Q $Q = -0.0564 \text{ s}^4$	 [1] linearization (statement) [1] Big triangle substitution of gradient coordinates accurate to half of smallest division. <i>P</i> calculated correctly with units [1] <i>Q</i> calculated correctly with units 					

[Total: 12]

No.	Solution					Remarks			
2(a)(i)	$w = \frac{1.9 + 1.9}{1.9 + 1.9}$) - = 1.9 mm	[1]	[1]					
	2		- Repeat	ed <i>w</i> , <i>t</i> & <i>L</i>	-0				
	$t = \frac{1.9 + 1.9}{2}$	- Record	Recorded <i>w</i> and <i>t</i> to the nearest 0.01 mm with unit						
	, 7.5 +7.	5 7 5 0 5	- Value c	of w and t v	vith	in the range 1.50 to 2.50 mm			
	$L_0 = -2$	-=7.5 Cm	en the	earest mm with unit					
2(a)(ii)	Volume V =	(1.9×10 ⁻³)(1. 5 4 × 10 ⁻⁷ m ²	9×10⁻³)(2 ×7 ₃	′.5×10 ⁻ 2)	[1] Correct calculation of V within			
	-	J. 4 ~ 10 m			ra	ange of 3.1 x 10 ⁻⁷ m ³ to			
					1	.12 x 10 ⁻⁶ m³			
					-	Recorded to correct no. of s.f.			
2(b)(i)	. 8.8+8.8	}			а	[1]			
	$L = \frac{1}{2}$	-=8.8 cm				- Correct calculation of e			
	Extension e	= 8.8 – 7.5 =	1.3 cm = 0	.013 m		- Recorded e to correct no.			
	Force F = 10)0×10 ^{−3} × 9.8	1 = 0.981 N	J		0f 0.p. - E = 0.981 N (2 or 3 s f)			
						= 1 = 0.001 N (2.010.3.1.)			
	- repeat measurement for L								
2(b)(ii)					_	[4]			
	<i>m</i> /kg	<i>L</i> /m	<i>e</i> /m	<i>F</i> /N		- headings and units			
	0.000	0.075	0.000	0.000		- at least 5 sets of data			
	0.100	0.088	0.013	0.981		(excluding 0)			
	0.200	0.116	0.041	1.96		Do not accept masses such			
	0.300	0.165	0.090	2.94		as 150g, 250g, 350g as no			
	0.400	0.212	0.137	3.92					
	0.500	0.261	0.186	4.91		[1]			
						- <i>m</i> in 3 d.p			
						[1]			
						- correct calculation, allow 1			
						slip - s f of processed data			
	MC: Can	didates tend	to forget t	hat "0" is	als	o considered a data point/set			
	app	ropriate preci	ision.		π	Should be recorded to the			
0 (b)(!!!)	Defente -"		[4]						
2(b)(III)	Refer to atta	cned graph.	ן 1] - plotted ם	oints accu	rate	e to half of smallest division			
	- best fit curve / line								
			- No marks awarded if best fit curve / line does not						
	pass through origin								

No.	Solution						Remarks
3(a)	$D_{\rm Y} = \frac{4.5 + 4.5}{2} = 4.5 \ {\rm cm}$				[1] - correct measurement for D_Y . Accept 4.0 cm to 5.5 cm - repeat		
	Diameter $d_{\rm Y} = \frac{0.30 + 0.30}{2} = 0.30$ mm				[1] - correct measurement for <i>d</i> _{Y.} Accept 0.22 mm to 0.35 mm - repeat		
3(b)(i)	There are 13 turns on cardboard tube Y. $L_{Y} = 13 \times D_{Y} \times \pi + 2(5)$ $= 13 \times 4.5 \times \pi + 2(5)$ $= 194 \text{ cm}$				 [1] Estimated <i>Ly</i> using circumference × no of turns [1] Added length of tail ends and value of <i>Ly</i> within the range 180 to 220 cm recorded to correct s.f. 		
3(b)(ii)	$L_{Y} = 13\pi D_{Y} + 2L_{tail}$ $\Delta L_{Y} = 13\pi \Delta D_{Y} + 2\Delta L_{tail}$ $\frac{\Delta L_{Y}}{L_{Y}} = \frac{13\pi \Delta D_{Y} + 2\Delta L_{tail}}{L_{Y}}$ $\frac{\Delta L_{Y}}{L_{Y}} \times 100\% = \frac{13\pi (0.2) + 2(0.2)}{194} \times 100\% = 4.4\%$ [1] for correct percentage uncertainty (1 or 2 s.f.)						[1] for correct percentage uncertainty (1 or 2 s.f.)
3(c)	$R = 15 \Omega$ $I = 140.6 \times 10^{-3} \text{ A}$				as 15 Ω ο 0.1 x 10 ⁻³ or 0.0001 A within the range of 0.1350 to 0.1550 A		
3(d)					[1]	
	R/Ω	I/A	IR/V			nea 5 se	aings and units
	15	0.1406	2.1				
	18	0.1329	2.4		- (] d.p,	units of raw data
	22	0.1227	2.7			, <i>i</i>	
	27	0.1148	3.1		- (] corr	ect calculation
	33	0.1128	3.7		- :	s.f c	of processed data

3(e)	Gradient= $\frac{3.4}{30}$ G = 0.0857 A	$\frac{-2.2}{-16} = 0.0857$	[1]points plotted correctlybest fit line drawn			
	Substitute (3) 3.4 = (0.0857) H = 0.829 V	0,3.4) into the e)(30)+ <i>H</i>	 [1] value of G of (with or with or with or with or with or with or with or a correctly in 2 	calculated correctly out unit) Y calculated or 3 sig. fig		
	$X_{\rm Y} = \frac{H}{G} = \frac{0.8}{0.0}$	$\frac{329}{857} = 9.67 \ \Omega$				
3(f)(i)	$D_{\rm Z} = \frac{4.5 + 4.5}{2}$ Diameter $d_{\rm Z} =$ (0.14 to 0.25 r	$\frac{6}{2} = 4.5 \text{ cm}$ $\frac{0.20 + 0.20}{2} = 0$ mm)	 [1] - correct measurement for D_z - Accept 4.0 cm to 5.0 cm - (repeat) - correct measurement for d_z - Accept 0.15 mm to 0.25 mm - (repeat) 			
	$L_{\rm Z}=\frac{3L_{\rm Y}}{4}=\frac{3(2)}{4}$	194) 4 = 146 cm		- correct calculation for L_z		
3(f)(ii)				_	[4]	
	R /Ω	I/A	IR/V	_	[1]	
	15	0.1258	1.9	_	- headings and	
	18	0.1165	2.1	_	units	
	22	0.1079	2.4	_	- 5 sets of data	
	27	0.1001	2.7	_	- d.p, units of raw	
	33	0.0972	3.2		data	
	Gradient= $\frac{3.0}{31.}$ G = 0.0700 A	- s.f of processed data				
	Substitute (3					
	3.05 = (0.070	0)(31.5)+ <i>H</i>	. ,			
	H = 0.845 V					
	$X_{\rm Z} = \frac{H}{G} = \frac{0.8}{0.0}$	[1] value for X _Z calculated correctly				

Answers and Marker's Comments to 2024 DHS Preliminary Examination Paper 4 - Planning

CKW	MC:							
•	Minor variation in diameter of a <i>thin</i> rod will not have significant effect on the fundamental frequency of (a stationary sound wave) in the thin rod. The phrasing the question is similar to Q5 from the <u>9702/52 paper of the February/March 2024</u> session.	g of						
•	• Many candidates proposed employing a hammer to impart an impulse to a rod, thereby initiating oscillatory motion either through the mechanism of dropping the hammer or manually striking the rod's end. However, there was a prevalent oversight in addressing the requisite consistency of this method, particularly in terms of delivering a constant impulse. Discussions lacked depth in articulating strategies to ensure that the hammer strikes the same part of the rod with the same force, time duration and angle in each trial. Moreover, candidates neglected to consider dynamics, such as the hammer's centre of gravity being near its metal end, which could cause it to rotate if dropped from a height in the presence of air resistance. There are alternative methods, as suggested in the Mark Scheme, to cause a rod to oscillate at its fundamental frequency without relying on a hammer or manual striking.							
•	• Mechanical or robotic arms are typically expensive and may not be readily available in all laboratory settings. This makes them impractical for experiments where simpler, more cost-effective methods can achieve similar results.							
Metho	ods of data collection							
Reaso	oned method to determine							
•	frequency from c.r.o, e.g.							
	T = time-base x (horizontal) length (of one periodic waveform) and $f = 1/T\circ Use theory to verify that the frequency is fundamental e.g.$	C1						
	$f_{\text{type A}} = \frac{V_{\text{sound in metal}}}{2L} \approx f_{\text{expt}}$	C2						
•	Density of rod ρ , e.g. $\rho = \frac{4m}{\pi d^2 L} \left[\text{Not just } \rho = \frac{m}{V} \right]$	C3						
Metho	d to measure							
•	L, e.g. use a metre rule							
•	diameter (<i>d</i>) of <i>thin</i> rod e.g. use a micrometer / calipers	C4						
СКМ	MC:							
• $v_{\text{sound in metal}}$ is dependent on the density of the rod. The speed of sound in air is ~330 m s ⁻¹ while the speed of sound in aluminium is ~5000 m s ⁻¹ . Some candidates quote the speed of sound as 3 x 10 ⁸ m s ⁻¹ , confusing it with the speed of electromagnetic radiation in a vacuum.								
	• Some candidates suggested using a measuring cylinder to determine the volume of the metal rod. Measuring cylinders are generally wide and shallow, designed for precise volume measurements of liquids. The range of lengths of the rod required for this experiment is such that the longer rods (up to 1 m and above) cannot be fully submerged in a standard measuring cylinder.							

 Although a Fourier Transform can be utilized to analyze a generated sound way determine its frequency components, as suggested by a candidate, the spec software, hardware, and techniques required for such analysis extend beyond to syllabus. Candidates are advised to refrain from citing advanced experimental me without providing sufficient elaboration or justification for their necessity. 	ve and ialized the H2 ethods			
Method of Analysis				
$f = k \rho^{x} L^{y}$				
$\lg f = \lg k + x \lg \rho + y \lg L$ [Full linearisation required]				
Experiment ONE (IV: L, CV: ρ) (Use rods of same density but different lengths):				
Plot a graph of lg f against lg L (or equivalent), gradient is y and vertical intercept is				
$\lg(k\rho^x)$	A1			
Experiment TWO (IV: ρ , CV: L) (Use rods of same length but different densities):				
Plot a graph of lg f against lg ρ (or equivalent), gradient is x and vertical intercept is				
$lg(kL^{y})$	A2			
2 experiments, 1 for each independent variable, with clearly described procedures	A3			
Additional details for accuracy				
Repeat measurements of diameter along the length of rod / around the rod and				
average diameter	P1			
Perform experiment in	D 2			
 a quiet room to reduce background hoise an anechoic chamber to prevent distortion of signals received by c.r.o. due to 	FZ			
reverberation	P2S			
Reasoned method to obtain measurable signal from the microphone, e.g.				
• use a cone to increase the intensity of sound detected by the microphone				
 Increase the amplitude of oscillation of the rod by increasing the impulse of the hammer 	P3			
Method to reduce uncertainties e.g.				
 use large values of L to reduce (percentage) uncertainty in L 	P4			
adjust time-base to display one complete periodic waveform	P5			
Conduct a preliminary trial to determine the appropriate range of ρ and L that will				
20 kHz.	P6			
Use a hacksaw to cut the rods of different density to the same length measured by	D7			
e.g. a metre rule.	Ρ/			
Use a thermostat to maintain room temperature so that the sound of sound in air and in the metal rod is constant.	P8			
To precisely determine the (horizontal) length of one periodic waveform on a c.r.o., utilize a high-speed camera to record the CRO's screen and analysing the footage frame-by-frame since the sound wave produced by an oscillating rod in air is transient and damped.				

CKW MC:

- A similar question has appeared in <u>IYPT 2010 problem 13</u>
- There are **22** available marking points, each with specific criteria for awarding credit.
- A notable observation was that many candidates included a section for safety precautions that were not credited for this question.
- Many candidates did not adhere to the prescribed template or effectively utilize information about apparatus, such as the CRO, as found in the DHS notes on planning, when constructing their answers for Question 4.

In summary, identifying and analysing the keywords in the question is crucial for candidates to develop a relevant planning report that aligns with the required objectives of the experiment "to verify the relationship ($f = k \rho^x L^y$) and determine the values of x and y (and not *k*)".

Other key phrases such as

- "a thin cylindrical metal rod,"
- "struck with a hammer" (indicating the method to induce vibrations),
- "clamped at its middle,"
- "stationary sound wave,"
- "fundamental frequency of the rod" and
- "accuracy of the experiment" only

provide essential context and areas of focus.