2023 A Levels H2 Physics 9749/02 Paper 3 suggested solutions

1a	$x = \frac{L^3 g M}{2}$
	$4wt^3E$
	units of $x = 11$
	units of E = $\left[\frac{Force}{area}\right] = \frac{kg m s}{m^2}$
	units of $\frac{L^3 g M}{4wt^3 E} = \frac{m^3 \times m \ s^{-2} \times kg}{m \times m^3 \times \frac{kg \ m \ s^{-2}}{m^2}}$
	$=\frac{m^4 \times s^{-2} \times kg}{m^4 \times kg m^{-1} s^{-2}}=m$
	Since the unit of x is the same as unit of $\frac{L^3 g M}{4 w t^3 E}$,
	the equation is homogenous.
1b	$E = \frac{L^3 gM}{4wt^3 x}$ = $\frac{0.800 \times 9.81 \times \frac{300}{1000}}{4 \times \frac{2.10}{100} \times (\frac{4.56}{1000})^3 \times \frac{1.00}{100}}$ = 1.8918 × 10 ¹⁰ Pa
	$\frac{\Delta E}{E} = 3\frac{\Delta L}{L} + \frac{\Delta M}{M} + \frac{\Delta w}{w} + 3\frac{\Delta t}{t} + \frac{\Delta x}{x}$ $= 3\left(\frac{0.005}{0.800}\right) + \frac{2}{300} + \frac{0.02}{2.10} + 3\left(\frac{0.01}{4.56}\right) + \frac{0.01}{1.00}$ $= 0.0515$ % uncertainty = 0.0515 × 100% = 5.2%
	$E = 1.89 \times 10^{10} \text{ Pa} \pm 5.2\%$
	*Note: Value of E should be 3 s.f. since all the variables are 3 s.f. in the question.
2ai	$v^2 = u^2 + 2as$
	$v^2 = (5.0)^2 + 2(-9.81)(-1.5)$
	$v = 7.4 \text{ m s}^{-1}$

3cii	electrons in tungsten wire move in random directions at high speed (due to temperature) while the drift velocity of the electrons is the average velocity in the direction of the net flow of
	the electrons along the wire (which is typically very slow)
4.0	so the drift velocity will be less, in fact, much less than the mean speed of the electrons
4a	I ne magnetic flux density of a magnetic field is the force per unit length, per unit current, on a long straight conductor placed at right angles to the magnetic field
4b	Since the reading on the balance decreases, there is a magnetic force on by the wire on the
	magnet, upwards.
	Hence, by Newton's third law, there is a magnetic force of equal magnitude by the magnet on the wire, downwards.
	Since the force on the wire is downwards, and the magnetic field is from north to south pole, by Fleming's Left Hand Rule the current in the wire is from X to Y.
4ci	Average reading of the mass is when the current is off = $\frac{202.17 + 201.62}{2} = 201.895$ g
	Thus the change in the reading due to the force by the wire = $202.17 - 201.895 = 0.275$ g
	The magnetic force of the wire on the magnet = $0.295 \times 10^{-3} \times 9.81 = 2.70 \times 10^{-3}$ N
	The magnetic flux density: $B = \frac{F}{I \times L} = \frac{2.70 \times 10^{-3}}{1.6 \times 0.12} = 0.0141 \text{ T}$
4cii	Since the force on the magnet is given by $F = BIL$ it is independent of the resistivity of the material. As long as the current remains the same, the force on the magnet is the same and the reading is the same as in (b)(ii).
5a	The gravitational potential at a point is the work done per unit mass by an external force in bringing a small test mass from infinity to that point without a change in kinetic energy.
5b	By conservation of energy, the initial total energy of the projectile at surface of planet = final total energy of the projectile at infinity (where it no longer experiences the gravitational field of the planet and hence will not return)
	Since the projectile is launched with v (minimum speed), the kinetic energy of the mass at infinity is zero, $E_{\kappa} = 0$ (which means that <i>it stops once it reaches infinity</i>).
	Since the gravitational potential energy at infinity = 0, the total energy of the mass at infinity = $E_{Pf} + E_{Kf} = 0 + 0$
	Assuming no resistive forces act on mass <i>m</i> ,
	Total energy of the mass at surface of planet = Total energy of the mass at infinity $-\frac{GMm}{r} + \frac{1}{2}mv^{2} = 0$ where m is the mass of the projectile.
	$V = \sqrt{\frac{2GW}{r}}$
	Note: total energy is zero at all times for the projectile.

5ci and 5cii	energy /10 ^e J
	6
	4
	2
	$0 \frac{1}{R} \frac{1}{2R} \frac{1}{3R} \frac{1}{4R} $
	-2 P
	-4
	-6
	-8
	Important to draw the curves properly (can bring curved ruler to theory paper) Important to label the graphs K and P
6ai	Since the mean kinetic energy of a gas molecule is proportional to the gas' thermodynamic temperature, the values of the mean kinetic energy of the gas molecule in both containers are the same as the gases are at the same temperature. Therefore, the ratio is 1.0.
6aii	$pV = NkT \Longrightarrow N = \frac{pV}{kT}$
	Substituting and given that p , k and T are constants,
	$\frac{N_A}{N_B} = \frac{V_A}{V_B} = \frac{V}{4V}$
	Therefore, ratio is 0.25.
6aiii	$\frac{1}{2}m < c^2 > = \frac{3}{2}kT \Longrightarrow c_{ms} = \sqrt{\langle c^2 \rangle} = \sqrt{\frac{3kT}{m}}$
	Substituting and given that <i>k</i> and <i>T</i> are constants, $C_{msA} = \sqrt{m_B} = \sqrt{2m}$
	$\overline{C_{msB}} = \overline{\sqrt{m_A}} = \overline{\sqrt{m}}$
	Therefore, ratio is 1.4 (2 s.f.).

+

From (a)(iii), $C_{rms A} = 1.4142 C_{rms B} = 1329.36 \text{ m s}^{-1}$
$1 \mathbf{M} < \mathbf{e}^2 > 3 \mathbf{k} \mathbf{T}$
$\frac{1}{2} N_R < C > = \frac{1}{2} K I$
$\frac{1}{2}(0.0040)(1329.30) = \frac{1}{2}(8.31)7$
T = 200 K (2 s.i.)
Note: $\frac{1}{2}m < c^2 > = \frac{3}{2}kT$ is for one molecule.
Be aware of how molar mass, number of molecules, total mass of the gas in container and
mass of one molecule are related to one another.
The electric field strength at a point is the electric force per unit positive charge acting on a small
stationary charge placed at that point.
8 field lines to be drawn, with correct direction (pointing towards the sphere). The spacing between the lines must be equally spaced around the sphere and must be perpendicular to surface.
$E = -\frac{dV}{dr}$ The electric field strength at a point is numerically equal to the potential gradient at that point hence E = 130 V m ⁻¹ . $130 = \frac{Q}{4\pi\varepsilon_o r^2}$ $130 = \frac{Q}{4\pi(8.85 \times 10^{-12}) \left(\frac{15+40}{100}\right)^2}$ $Q = 4.4 \times 10^{-9} C$
k = F = 4.0 = 20 N m ⁻¹
$x = \frac{1}{x} = \frac{1}{0.20} = 20 \text{ N m}^2$
energy stored $=\frac{1}{2}Fx = \frac{1}{2} \times 3.0 \times 0.15 = 0.225$ or 0.23 J
Note: the extension is 0.15 m and not 0.20 m
total GPE transferred = mgh = $3.0 \times 0.15 = 0.45$ J
I he difference is due to work done by external forces in reducing the kinetic energy of the
or
The difference is due to work done in lowering the object without a change in kinetic energy.

8e	5
	x/cm
	4
	3
	2
	$\circ \frac{t}{t}$
	-4
	Fig. 8.4
	note:
	 amplitude of the first peak will be lesser than 3.2 cm amplitude of subsequent peaks decreases (exponentially with time)
	period remains the same
8fi	The tension is the same, so extension of each spring is the same, so the total extension of the combination is twice the extension of the single original spring.
8fii	The effective force constant of the combination is half since the total extension is twice for the
	same tension. $\frac{1}{k}$
	$\omega = \sqrt{\frac{\kappa}{m}}$, so the angular frequency ω of the oscillations will be $\frac{1}{\sqrt{2}}$ times the original angular
	frequency, so the new period will be $\sqrt{2}$ or 1.4 times the original period
9a(i)	Mass defect = mass of reactants – mass of products
	$= m_{Am} - m_{Np} - m_{He} = (400.19774 - 393.54304 - 6.64466) \times 10^{-27}$
	$= 0.01004 \times 10^{-27} \text{ kg}$
	Energy released = $0.01004 \times 10^{-27} \times (3.0 \times 10^8)^2$
	= 9.0×10 ¹⁴ J

