Anderson Serangoon Junior College 2023 H2 Physics Promo P2 Mark Scheme

Paper 2 (80 marks)

E – Easy, A – Average, D – Difficult

ECF	Error carried forward	SF	Significant figures error	MO	No A marks awarded
AE	Arithmetic error	BOD	Benefit of doubt	^	More is needed in answer
POT	Power of ten error	CON	Contradictory response	ХР	Wrong physics
TE	Transcription error	IR	Irrelevant (part) response		

Table of Specifications (Paper 2)

Question	1	2	3	4	5	6	7	8	9	Total	%
Easy	2	1	2	0	2	4	0	1	3	15	18.75
Average	5	5	5	10	5	6	5	7	5	53	66.25
Difficult	3	2	2	2	3	0	0	0	0	12	15.00
Marks	10	8	9	12	10	10	5	8	8	80	100.0

1a	Work done (against frictional force) =loss in GPE – gain in KE	Α	
	$52 \times (distance moved) = 330 \times (4.0 - 1.1) - 540$ distance moved = 8.019 = 8.0 m		C1 A1
	<u>Examiner's comments:</u> Most students get this correct. Some students applied Conservation of Energy wrongly, e.g loss in GPE = gain in KE + <u>friction</u> + work done. Students should also note that there is gain in GPE when the child moves from the lowest point to Y and the loss in GPE is $mg(4.0 - 1.1)$.		
1bi	$E_{k} = \frac{1}{2}mv^{2}$ $540 = \frac{1}{2} \times (330/9.81) \times v^{2}$ $v = 5.67 = 5.7 \text{ m s}^{-1}$	E	A1
	<u>Examiner's comments:</u> Generally well done except some students made careless mistakes in substitution, using wrong value (330) for m.		
1bii	Speed at point Z = horizontal component of velocity at point Y = $5.67 \times \cos 41^\circ = 4.279$ = 4.3 m s^{-1}	A	M1 A0
	Examiner's comments: Some students did not show pre-rounded value of 4.279 m s ⁻¹ .		
1biii	At point P,	D	
	$\tan 48^{\circ} = \frac{v_y}{4.3}$ v _y = 4.776 m s ⁻¹ = 4.78 m s ⁻¹		C1
	Taking downwards as positive, $v_y^2 = u_y^2 + 2a_ys_y$ $(4.78)^2 = (-5.67sin41^o)^2 + 2 \times 9.81 \times s_y$		C1
	s _y = 0.459 = 0.46 m		A1

	Examiner's comments: Most students found this question challenging. Many students using $v^2 = u^2 + 2as$ and substituted the incorrect initial and final velocities (swopped speed and vertical velocity). Students failed to apply the common approach to solving projectile motion problem (considering the motion separately in x and y directions and show clear workings using symbols and subscripts). Some students applied Conservation of Energy but calculated the height wrongly (either from Y to Z or from Z to P).		
1biv		Α	
	kinetic energy		
	0		
	0 h height		
	Line with a negative gradient starting from a non-zero value kinetic energy when the vertical height is zero, and the straight line ends at a non-zero value of kinetic energy when the vertical height is h.		A1
	<u>Examiner's comments:</u> This part was poorly done. Many students failed to note that loss in $KE =$ gain in GPE, and gain GPE is proportional to height, hence the graph is a straight line.		
1c	With a large splash, a large part of the kinetic energy of the child is transferred to the	D	M1
	kinetic energy of the splashed water, as well as sound energy. This leaves the child with a small kinetic energy to do work against the pool water's resistive force when he		M1
	enters the pool. Hence, the child will be slowed down in a shorter distance when it		
	enters the pool with a large splash.		AU
	<u>Examiner's comments:</u> This part was poorly done. Some students mentioned that large splash causes larger resistive forces from water. The majority who mentioned energy did not refer to the energy forms that were involved in the two cases. There were many vague descriptions that more energy was been lost by the child when it made a splash, did not mention the KE of the child to the KE or GPE of the water. Many students did not mention when the child enters the pool, work is done against water's resistive force.		
2ai	Total initial momentum = $mu_A + mu_B = m (500 + 0) = 500m$	Е	A1
	<u>Examiner's comments:</u> This part was well done by most candidates. However, some candidates were penalized when they used terms such as m_A (instead of using m)		
2aii1	$mv_A \cos 60^\circ + mv_B \cos 30^\circ = mv_A (0.50) + mv_B (0.87)$	Α	A1
	<u>Examiner's comments:</u> This part was well done by most candidates. However, some candidates were penalized when they did not include the mass in their expression.		

2a	ii2 (Taking upwards as positive) $mv_A \sin 60^\circ - mv_B \sin 30^\circ = mv_A (0.87) - mv_B (0.50)$	Α	A1
	(Taking downwards as positive) $mv_{\rm B} \sin 30^\circ - mv_{\rm A} \sin 60^\circ = mv_{\rm B} (0.50) - mv_{\rm A} (0.87)$		
	$mv_{\rm A} \sin 60^\circ + mv_{\rm B} \sin 30^\circ = mv_{\rm A} (0.87) + mv_{\rm B} (0.50)$		
	<u>Examiner's comments:</u> This part was well done by most candidates. However, some candidates were penalized when they did not include the mass in their expression.		
2a	iii By Conservation of Linear Momentum,	D	
	$500m = mv_{A} (0.50) + mv_{B} (0.87)$ $500 = v_{A} (0.50) + v_{B} (0.87)$		M1
	and $0 = mv_A (0.87) - mv_B (0.50)$ $v_A (0.87) = v_B (0.50)$		M1
	Solving the two equations for v_A ,		
	$v_{\rm A} = 250 \text{ m s}^{-1}$		A0
	<u>Examiner's comments:</u> This part was poorly done as many candidates did not know how to make use of the momentums in the 2 directions. Common mistakes include equating 500m to the sum of the final momentums in the x and y directions. Candidates should realize that vectors in different directions cannot be added up without considering their directions.		
2b	$\Delta v = v_f - v_i = v_f + (-v_i)$	Α	
2b	$\Delta v = v_{f} - v_{i} = v_{f} + (-v_{i})$ $-v_{i}$ $\delta v = 0$ $\Delta v = 0$ V_{f}	A	M1
2b	$\Delta v = v_{f} - v_{i} = v_{f} + (-v_{i})$ $-v_{i}$ $\Delta v = \frac{60^{\circ}}{\sqrt{v_{f}^{2} + v_{i}^{2} - 2v_{f}v_{i}\cos 60^{\circ}}}$	A	M1
2b	$\Delta v = v_{f} - v_{i} = v_{f} + (-v_{i})$ $-\frac{-v_{i}}{\Delta v - \theta - v_{f}}$ $\Delta v = \sqrt{v_{f}^{2} + v_{i}^{2} - 2v_{f}v_{i}\cos 60^{\circ}}$ $\Delta v = \sqrt{250^{2} + 500^{2} - 2(250)(500)\cos 60^{\circ}} = 433 \approx 430 \text{ m s} - 1$	A	M1 A1
2b	$\Delta v = v_{f} - v_{i} = v_{f} + (-v_{i})$ $-v_{i}$ $\Delta v = \sqrt{v_{f}^{2} + v_{i}^{2} - 2v_{f}v_{i} \cos 60^{\circ}}$ $\Delta v = \sqrt{250^{2} + 500^{2} - 2(250)(500) \cos 60^{\circ}} = 433 \approx 430 \text{ m s} - 1$ $v_{i} = \sqrt{v_{f}^{2} + \Delta v^{2} - 2v_{f}\Delta v \cos \theta}$ $500 = \sqrt{250^{2} + 433^{2} - 2(250)(433) \cos \theta}$ $\theta = 90^{\circ}$	A	M1 A1
2b	$\Delta v = v_{1} - v_{1} = v_{1} + (-v_{1})$ $\frac{-v_{i}}{\Delta v = \sqrt{v_{r}^{2} + v_{i}^{2} - 2v_{r}v_{i} \cos 60^{\circ}}}{\Delta v = \sqrt{250^{2} + 500^{2} - 2(250)(500) \cos 60^{\circ}}} = 433 \approx 430 \text{ m s} - 1$ $v_{i} = \sqrt{v_{r}^{2} + \Delta v^{2} - 2v_{r}\Delta v \cos \theta}$ $500 = \sqrt{250^{2} + 433^{2} - 2(250)(433) \cos \theta}$ $\theta = 90^{\circ}$ Or use sine rule $\frac{\sin \theta}{500} = \frac{\sin 60^{\circ}}{430}$ $\theta = 90^{\circ}$	A	M1 A1

	<u>Examiner's comments:</u> Despite being tested on the same concept on other occasions, many candidates are still unsure of how to determine the change in vectors (when the vectors are in different directions). Also, candidates should note that they should not include the negative sign when applying the cosine rule. Others were penalized when they made assumptions in their working (e.g. assuming that the vector triangle is a right-angled triangle without proving it). Candidates should draw clear and well-labelled vector diagrams. Similar to the earlier part, candidates should realize that vectors in different directions cannot be added up/subtracted without considering their directions.		
3a	Moment = 0.30 x 0.29 cos 40° = 0.067 N	E	C1 A1
	<u>Examiner's comments:</u> Generally well done. Students who are unable to get full credit usually had difficulties manipulating the angles and resolving vectors properly despite it being a rather straightforward scenario. They are encouraged to revise and practice how to resolve vectors correctly as this is a critical skill in the study of Physics. A small number of students did not get full credit due to rounding error. E1 – resolve perpendicular distance wrongly, i.e. using 0.29 sin 40° E2 - resolve weight wrongly, e.g. $F = mg / sin 50^{\circ}$ E3 – manipulated angles wrongly, e.g. sum of angles = 100° for right angle		
3bi	Volume of sphere = $\frac{4}{3} \times \pi \times (0.0480)^3$	Α	
	Upthrust = $\rho g V = 1000 \times 9.81 \times \frac{4}{3} \times \pi \times (0.0480)^3 \times 0.26 = 1.1816$		M1
	≈ 1.18 N		A0
	<u>Examiner's comments:</u> Generally well done. Students need to show all steps clearly, especially substitutions and pre-rounded value to score full credit. E1 – did not show pre-rounded value of 1.186 N E2 – wrong formula for volume of sphere		
3bii	Taking moments about P, Sum of clockwise moment = sum of anticlockwise moment	Α	
	$1.18 \times 0.29 = 0.30 \times 0.29 + F \times 0.017$		C1
	F = 15 N		A1
	Examiner's comments: Even though the question asks for force on the spring by the rod, students need to consider the free-body diagram of the rod-sphere system (and not the spring!) when applying Principle of Moment about point P. This implies that the force F in their equation should give rise to an anti-clockwise moment about point P. Students who equate this moment due to F as clockwise moment will gain no credit due to wrong Physics. Many students overlooked the anti-clockwise moment due to weight of sphere or the clockwise moment due to upthrust. It is heartening to see some students doing complete analysis to include Newton's 3 rd Law, showing excellent understanding of the forces. E1 – multiply or divide 0.30 N by 9.81 m s ⁻¹ E2 – did not include moment due to upthrust or weight E3 – equating moment due to F as clockwise moment		

2hiii	From Fig. 3.3 when $E = 15 \text{ N}$ $x = 7.1 \text{ mm}$	۸	
3011	From Fig. 5.5, when $F = 15$ N, $x = 7.1$ mm	~	
	EPE stored = area under graph = $\frac{1}{2} \times 15 \times 7.1 \times 10^{-3}$		C1
	= 0.053 J		A1
	<u>Examiner's comments:</u> Many students, including those who correctly calculated the force F in previous part, used the wrong value for compression in their calculation of EPE stored, and ended up with the wrong area under the graph. This suggests that they do not have a complete understanding of the equilibrium position in Fig. 3.2. Many carelessly overlooked the unit for compression, ending up with power of ten error, hence not gaining full credit.		
3с	Work done by upthrust is the sum of the gain in gravitational potential energy of the sphere and elastic potential energy of the spring	D	M1
	hence not equal.		A 1
	<u>Examiner's comments:</u> This part proved difficult for many students who could not identify the correct energy conversion in the system from the position in Fig. 3.1 to Fig. 3.2. While some identified the change in position of the sphere (which leads to its gain in gravitational potential energy), explanations are usually lengthy yet lacking in terms of supporting using Physics concepts. Students should use work / energy to explain rather than analyzing the forces involved. Some attempted to calculate the work done by upthrust without realizing that upthrust is not constant in this case. E1 – calculate work done by upthrust and compare with 3biii. Incorrect because upthrust is not constant at 1.18 N. E2 – included change in kinetic energy in explanation. While the sphere had KE during its movement from initial to final position, it eventually slowed down, lost the same amount of KE and settled with zero KE in Fig. 3.2, i.e. not moving. Hence final KE = initial KE = zero.		
4ai	(Since ball travels in a horizontal plane, there is zero net force in the vertical direction) $W = R \sin \theta$ (equation 1)	Α	M1
	$F = R \cos \theta$ (equation 2) Equation 1 divided by equation 2, $W = F \tan \theta$ <u>Examiner's comments:</u> Some candidates did not realise that $R \cos \theta$ provides centripetal force F . Some candidates did not resolve R into perpendicular components in their derivation and hence did not receive any credit.		M1 A0
4aii	<u>Provides</u> the centripetal force <u>Examiner's comments:</u> This part was well done.	Α	B1
4aiii	$F = \frac{mv^2}{r} \text{ and } W = mg$ From $W = F \tan \theta$, $mg = \frac{mv^2}{r} \tan \theta$	A	C1

	$v = \sqrt{\frac{rg}{\tan \theta}}$		
	$V = \sqrt{\frac{(14 \times 10^{-2})(9.81)}{(14 \times 10^{-2})(9.81)}}$		C1
	$\int \tan 28^\circ = 1.61$		
	$= 1.6 \text{ m s}^{-1}$		A1
	<u>Examiner's comments:</u> Some candidates did not convert the radius in cm into m (POT – power of ten error).		
4aiv	The resultant force is perpendicular to the velocity.	D	B1
	<i>Either</i> <u>No work is done by the force</u> , and hence there is no change in kinetic energy. <i>Or</i> Acceleration is perpendicular to velocity, causing velocity to change direction but not		B1
	magnitude, and since KE is $\frac{1}{2}$ mv ² , KE is unchanged.		
	<u>Examiner's comments:</u> Many candidates did not explain the resultant force is perpendicular to the velocity. Some candidates explained that "the velocity does not change" or "the velocity is constant" which is an incorrect concept because the direction of velocity changes.		
4bi	By Conservation of Energy, Total initial energy at X = Total (final) energy at Y	Α	
	$\frac{1}{2}mu^{2} = \frac{1}{2}mv^{2} + mgh$ $\frac{1}{2}u^{2} = \frac{1}{2}v^{2} + gh$ $\frac{1}{2}(3.7)^{2} = \frac{1}{2}v^{2} + (9.81)(0.40)$		C1
	$v = 2.42 \text{ m s}^{-1}$		
	Using Newton's Second Law, When the ball just remain in contact with the track, normal contact force by track on ball = 0 N .		
	$mg = \frac{mv^2}{r} \Rightarrow v_{\min} = \sqrt{rg} = 1.4 \text{ m s}^{-1}$		C1
	Actual speed of ball at Y is larger than minimum speed to complete the vertical circle without falling off the track, so ball is in contact with track.		A1
	<u>Examiner's comments:</u> This part was not well done. Many candidates used the given velocity at X to determine the normal contact force at Y, which is incorrect, because the velocity at Y is not the same as the velocity at X. Some candidates thought that the radius of the circle was 0.40 m, it should be 0.20 m.		

4bii	Acceleration / velocity at Y / minimum speed to keep the ball in contact with the loop at Y is independent of mass, so makes no difference.	Α	B1
	<u>Examiner's comments:</u> Some candidates explained that "it is independent of mass" or "the equation is independent of mass" without explaining clearly what "it" or "the equation" is.		
5a	Gravitational field is a <u>region of space</u> where a <u>mass</u> experiences a force. The <u>direction of the field is the direction of the force</u> on the mass.	E	B1 B1
	<u>Examiner's comments:</u> In this question, the words "gravitational field" are both in italics, therefore students must not reuse the word "field" as part of the explanation. Proper phrasing of the answer is necessary to gain full credit here.		
	E1 use object/ body/ particle instead of mass		
5b	Since <u>gravitational forces are attractive</u> and gravitational <u>potential</u> is taken to be <u>zero at</u> <u>infinity</u> ,	Α	B1
	the <u>work done by the external agent</u> on the point mass moving it <u>from infinity</u> to the point in the field <u>is negative</u> .		B1
	Thus, gravitational potential is negative.		AU
	This part was quite poorly done by students and many misconceptions were surfaced from the answers written. Some students are confused about the various terms (gravitational force, gravitational field, gravitational potential and gravitational potential energy) and used them interchangeably. Quite a significant number thought that gravitational potential is a vector or stated that "potential is opposite in direction to field/force" which gives the impression that gravitational potential has direction.		
5ci	φ / 10 ⁵ J kg ⁻¹	Α	
	$0 + \frac{1}{0} + $		
	(2.5, -3.8) = -4		
	Since $g = -\frac{d\phi}{dx}$, the negative of the gradient of tangent to $\phi - x$ graph at a particular x gives the gravitational field strength.		

	-		
	At $x = 6.75 \times 10^{6}$ m, $[0 - (-3.8)] \times 10^{5}$		M1
	gradient = $\frac{1}{(14-2.5)\times 10^6}$		
	- 0.0330433		
	Hence, $g = -0.0330435$ where the "-" sign here represents the direction of g , that is, in the negative x direction / towards the centre of the planet.		
	magnitude of gravitational force = $mg = 3.97 \times 0.0330435$ = 0.131 N		A1
	[value 0.127 ≤ gravitational force ≤ 0.140]		Б4
	direction: towards (the centre of) the planet / to the left (BOD)		ы
	Examiner's comments:		
	Many students used the formula for gravitational potential, $-\frac{GM}{r^2}$, to solve this part but		
	did not realise/understand that the formula applies only for the gravitational potential due a single object. In this context, the gravitational potential, ϕ , is due to the system of planet and moon.		
	For others who realized that a tangent to the graph is needed, guite a few gave the		
	wrong relationship, thinking that $F = -\frac{d\phi}{dx}$. Many had power of ten (POT) error as they		
	did not read the axes of the graph. Quite a few had issues with reading the coordinates		
	correctly. To achieve full credit for determining the magnitude of gravitational force, the line drawn has to be tangential to the graph, hence an accuracy mark was deducted		
	from answers that fall out of the range indicated in the above answer.		
	E1 use $\phi = -\frac{GM}{r}$		
	E2 use $F = -\frac{d\phi}{dx}$		
5cii	From Fig. 5.2, the gravitational potential is -2.4×10^5 J kg ⁻¹ when $x = 6.75 \times 10^6$ m.	D	
	For the rock to travel off into space (or escape from the field of the planet and moon), it must reach infinite distance with minimum kinetic energy of zero and its total energy would be zero.		B1
	Fither		
	Let v_{\min} be the escape speed of the rock when $x = 6.75 \times 10^6$ m.		
	Hence, by conservation of energy,		
	total energy at 6.75 × 10 ⁶ m = total energy at infinite distance		М1
	$\frac{V_2 m v_{\text{min}}^2 + m \phi = 0}{v_{\text{min}}^2 = -2 \phi}$		1011
	$V_{\min} = \sqrt{-2(-2.4 \times 10^5)}$		
	$= 692.82 \text{ m s}^{-1}$		
	Since the speed of the rock is less than the escape speed, the rock will not travel off into space.		A1
	OR		
	Total energy of the rock = $\frac{1}{2} m v^2 + m \phi$ = 3.97 × [$\frac{1}{2}$ × 550 ² + (-2.4 × 10 ⁵)] = -352 337 5 J		M1
	- 002,001.00		

	Since total energy of the rock is less than zero, the rock will not travel off into space.		A1
	<u>Examiner's comments:</u> Students are advised to interpret whether the context is about a body orbiting or moving away from another body before attempting to solve the question. In this case, "travel off into space" means that the rock leaves the gravitational field of the planet-moon system, that is, this is an escape speed context. The physics concepts required here are Conservation of Energy and that total energy of the rock must be minimally zero at infinity for it to escape into space.		
	Many students who went straight into using equations without explaining the physics concept required here get little or no credit, even though the final "answer" is the same. Students who used gravitational potential energy as $-\frac{GMm}{r}$ in their equation or memorized the escape speed formula also get no credit as this expression is not applicable to this planet-moon system context.		
	E1 use $GPE = -\frac{GMm}{r}$ or $v_e = \sqrt{\frac{2GM}{R_e}}$ E2 use $\frac{GMm}{r^2} = \frac{mv^2}{r}$		
6a	$a = -\omega^2 x$ $a =$ acceleration, $x =$ displacement from equilibrium position and $\omega =$ angular frequency	E	M1 A1
	<u>Examiner's comments:</u> Most students correctly answered this part. A significant number of students incorrectly mentioned angular "velocity" instead of "frequency". Many students did not answer the question when they stated the definition of simple harmonic motion (SHM).		
6bi	$V_0 = \omega X_0$	Α	
	$\omega = \frac{V_0}{x} = \frac{0.20}{0.12}$		M1
	$x_0 = 0.12$ = 1.6667		M1
	$= 1.7 \text{ rad s}^{-1}$		AO
	<u>Examiner's comments:</u> This was generally well answered. Some students may not have realized that it was easier to use the maximum values of amplitude and velocity (and instead used other values of displacement and velocity).		
6bii	$E_{p,\max} = E_{k,\max} = \frac{1}{2}Mv_0^2$	Α	01
	$0.050 = \frac{1}{2} \times M \times 0.20^2$		
	<i>M</i> = 2.5 kg		A1
	<u>Examiner's comments:</u> This question was generally well answered.		
6ci	Loss of (total) energy (of system) / dissipation of (total) energy (of system) with time due to resistive forces	E	B1 B1

	<u>Examiner's comments:</u> Some answers reflected the misconception that "damping" is a "force", when it should be the "loss of total energy…". A "decrease in amplitude of oscillation" does not answer the question because it is an observation that does not explain the concept of loss of energy behind the decrease in amplitude.		
6cii	When $x_0 = 0.06$ m, $v_0 = \omega x_0 = 1.7 \times 0.06 = 0.10$ m s ⁻¹ Closed ellipse surrounding the origin with maximum x at ± 0.060 m passing through $v = 0$ maximum velocity shown as ± 0.10 m s ⁻¹ passing through $x = 0$ v/m s ⁻¹	A	B1 B1
	-012 -0.08 -0.04 0.004 0.08 (0.12		
	<u>Examiner's comments:</u> A significant number of students drew the correct ellipse. Candidates need to draw the curves more accurately.		
7a	Particle A is instantaneously at rest, and particle B is moving downwards. <u>Examiner's comments:</u> It is surprising that many candidates get the directions for particle A wrong. Many candidates did not read the question carefully and jumped to sketching the wave a moment later assuming the wave moves to the right. There are some nonsensical responses of the particles moving left or right showing lack of understanding of a transverse wave.	A	B1
7b	Period, $T = 15/1.5 = 10$ s, and $\lambda = 0.18$ m	Α	C1
	Speed of wave = $7A$ = $(1/7)(0.18)$ = $(1/10)(0.18)$ = 0.018 m s^{-1}		A1

	Examiner's comments:		
	Some candidates mixed up frequency with period while some forgot to convert cm to		
	m in the calculation. There are a significant number of candidates finding it difficult to		
	determine the period and just read on to 10,5 s.		
7c	phase difference,	Α	
	$\Delta \phi = \frac{\Delta x}{2} \times 2\pi$		
	$=\frac{0.06}{2}\times 2\pi$		C1
	0.18		
	= 2.09 rad		A1
	Examiner's comments:		
	This part is mostly well done. There a few candidates who treated P and Q as		
	particles rather than waves. Candidates need to know that the final answer must be		
	expressed in decimal.		
8ai	constant phase difference, between (two) waves	Е	B1
	Examinar'a commenta:		
	Majority of students were able to recall the correct definition		
8aii	The two coherent waves from the slits arrive/meet/overlap/superpose at P1 with	Α	B1
	<u>path difference</u> is either λ or $n\lambda$, OR		D1
	phase difference is 360° or n × 360° or n2 π rad		Ы
	Examiner's comments:		
	Most students can explain how the two waves arrive at P_1 in-phase leading to		
	constructive interference. However, they usually miss out on the path / phase difference		
	leading to constructive interference, hence not getting full credit. In this scenario, the		
	path difference at P_1 cannot be zero (it must be at least λ), because point P_1 is not		
	equidistant from the two slits. Likewise the phase difference cannot be zero (it must be minimally 260°)		
	F1 - did not state the condition for path / phase difference		
8aiii	$x = \lambda D / a$	Α	
	$= (630 \times 10^{-9} \times 1.5) / 0.45 \times 10^{-3}$		
	$= 2.1 \times 10^{-1} \text{III}$		AI
	Examiner's comments:		
	Well done! A small group of students had power of ten error.		
8b	no change to separation/fringe width	Α	B1
0.0	no change to dark fringes/dark fringes remain dark		B1
	bright fringes are brighter/more intense		B1
	Examiner's comments:		
	Majority can identify that bright fringes will become brighter. However, quite a number		
	stated that dark fringes will also become brighter. Explanation using contrast gains no		
	credit as it is only complete when changes, if any to both bright and dark fringes have		
	been discussed. Many did not discuss about fringe separation / width hence could not		
	gain tuli credit.		

9a		S/m	<i>r</i> ₁ / m	<i>r</i> ₂ /m	$r_1 + r_2$	S		Е	B1
					$r = \frac{r}{2}$	$\frac{1}{r}$			
		0.200	0.129	0.131	0.130	1.54			
		0.100	0.090	0.088	0.089	1.1			
	1 m for corre	ct calculatio	n and s.f.				1		
	Evaminar's c	omments:							
	Examiner's comments: This part is badly done and the most common mistake is leaving the answer in the last								
	row in 3 sf instead of 2 sf when the lowest sf of the raw data is 2 sf.								
9b	2 points plotted correctly accurate to half a small square.							Е	B1
	Straight line of best fit – judge by scatter of points about the candidate's line. There						ne. There		B1
	must be a fai	r scatter of	points eithe	r side of the	e line.				
	Examiner's c	<u>comments:</u> candidates	were not c	areful in nlo	tting and some	did not plot	to half a		
	small square	accuracy.	There are s	ome best fit	t lines that are of the title o	bviously un	balanced		
	than 5 valid p	ooints, the a	nomalous p	oints identi	ified by candida	tes will be l	eft out when		
	assessing the	e best fit lin	9.						
9c	Anomalous d	lata/results,	if any, mus	t be identifi	ed. Appropriate	justification	n must be	Α	A1
	e.g.: The point (x,	y) is an and	malous po	int because	it is far/further	away from t	he best fit		
	line as comp	ared to the	other points	6.					
	OR								
	There is no anomalous data as all points plotted are close to the best fit line.								
	Examiner's comments:								
	I here are a s either the ap	significant n paratus or ti	umber of ca he experim	andidates w enter for the	ho still cite crea anomalous rea	ative reason sults. A few	s blaming candidates		
	thought any passessment	point not tou Candidates	iching the li should no	ine is anom t use "furthe	alous thus jeop er/furthest" in th	ardizing the eir answer a	ir best fit line as this		
	suggests a c	omparison	which will b	e valid for a	Il graphs thus s	uggesting ti	hat every		
	giapii nas an	ranomaious	s point.						_
9d	Gradient – th drawn line. R	le hypotenu lead-offs mu	se of the tri ist be accu	angle must rate to half	be greater thar a small square.	half the ler Check for <i>L</i>	ngth of the Δ <i>y</i> /Δ <i>x</i> (i.e. do	A	B1
	not allow Δx	Δy).							
	y-intercept –	must be de	termined fro	pm y = mx +	- <i>c</i> using a poin	t on the line			B1
		0.00	0						
	gradient = $-\frac{1}{6}$	2.36 - 1.1	$\frac{6}{90} = 9.09$						
	Qubet (0.000								
	Subst (0.090	, 1.16) Into	y = mx + C,						

-		1	1
	1.16 = (9.09)(0.090) + c		
	$\therefore c = 0.342$		
	Examiner's comments		
	<u>Examiner's comments.</u>		
	Most candidates are still reading off the intercept despite faise origin. Some gradient		
	triangles are smaller than half the line drawn and some gradient coordinates are not		
	read accurate to half a small square. A small minority use change in x over change in		
	V S S S		
	· ·		
•			D 4
9e	Values of P and Q calculated correctly	Α	B1
	with units of m s ⁻¹ .		B1
	$S = \frac{r}{r} r + \frac{r}{r} r^{2}$		
	$Q = Q^2$		
	$\int \frac{S}{r} = \frac{\kappa}{r} \frac{r}{r} + \frac{P}{r}$		
	$r Q^2 Q$		
	\mathbf{O} and $\mathbf{b} = \mathbf{A} \cdot \mathbf{O}$ and \mathbf{c}^2		
	Since $K = 4.9 \text{ m s}^{-2}$		
	K		
	$\frac{1}{\Omega^2} = gradient$		
	Q		
	k		
	$Q = \sqrt{\frac{\pi}{2}}$		
	∖ gradient		
	4.9		
	$=\sqrt{\frac{1}{2}}$		
	¥ 9.05		
	$= 0.734 \text{ m s}^{-1}$		
	ח		
	$\frac{P}{-} = v$ -intercept		
	Q		
	$D = 0.242 \times 0.724$		
	$r = 0.342 \times 0.734$		
	$-0.251 \mathrm{m s^{-1}}$		
	Examiner's comments:		
	The most common mistake is omitting the units of P and Q. Some candidates have		
	difficulty manipulating the equation and some forgot to take square root for Q.		

