
and as assert break class continue def del elif else except exec 
False finally for from global if import in is lambda None not or 



pass print raise return True try while with yield

In [ ]: x = 1 
id(x) 

In [ ]: x = 2 
y = 3 
 
# To print the contents of the variables 
print(x) 
print(y) 
 
# To print the memory addresses of the variables 
print(id(x)) 
print(id(y)) 

In [ ]: x, y = 5, 7 
 
print(x) 
print(y) 



In [ ]: type(5) 

In [ ]: type(3.1) 

In [ ]: type(3.0) 

In [ ]: type(True) 

In [ ]: type('abc') 

In [ ]: type(x) 

In [ ]: y = 'Hello' 
type(y) 

In [ ]: float(3) 



In [ ]: int(2.1) 

In [ ]: int(2.9) 

In [ ]: int(-0.9) 

In [ ]: x = 1.6 
print(int(x)) 
print(type(x)) 

In [ ]: y = int(x) 
print(type(y)) 

In [ ]: print(str(1965)) 
 
s = '2000' 
print(int(s)) 
print(float(s)) 
print(type(s)) 

In [ ]: 2+3 

In [ ]: 2-3 

In [ ]: 2*3 

In [ ]: 2/3 

In [ ]: 10/5 

In [ ]: 2 ** 3 

In [ ]: x = 36 
y = 7 



 
q = x // y 
r = x % y 
s = x / y 
 
print(q) 
print(r) 
print(s) 
 
print(type(q)) 
print(type(r)) 
print(type(s)) 

In [ ]: 3 + 2 * 5 

In [ ]: (3 + 2) * 5 

In [ ]: 2 * 3 ** 2 

In [ ]: a = 12 + 3.0 
b = 12 * 3.0 
 
print(a) 
print(type(a)) 
 
print(b) 
print(type(b)) 

In [ ]: x = 36 
y = 3.5 
 
q = x // y 
r = x % y 
s = x / y 
 
print(type(q)) 
print(type(r)) 
print(type(s)) 

In [ ]: x = 3 
print(x) 
 
x = 5 
print(x) 

In [ ]: x = 3 
print(x) 
 
x = x+1 



print(x) 
 
x = x+1 
print(x) 

In [ ]: a, b = 3, 5 
print(a) 
print(b) 
 
a, b = b, a 
print(a) 
print(b) 

In [ ]: a, b = 3, 5 
print(a) 
print(b) 
 
a = b 
b = a 
print(a) 
print(b) 



In [ ]: x = True 
print(type(x)) 
print(x) 
 
y = False 
print(type(y)) 
print(y) 

In [ ]: x = 2==2 
print(type(x)) 
print(x) 

In [ ]: a = 2 
x = (a == 2) 
print(x) 

In [ ]: y = (a > 1) 
print(y) 

In [ ]: z = (a < 1) 
print(z) 

In [ ]: p = (a >= 2) 
print(p) 

In [ ]: q = (a != 2) 
print(q) 

In [ ]: r = (a != 3) 
print(r) 



In [ ]: ' ' < '1' 

In [ ]: '1' < 'A' 

In [ ]: 'Z' < 'a' 

In [ ]: 'a' < 'b' 

In [ ]: 'an' < 'at' 

In [ ]: 'ant' < 'antman' 

In [ ]: 'ant' < 'Antman' 



In [ ]: x = 2 
y = 3 
a = (x < 1) or (y < 4) 
print(a) 

In [ ]: b = (x == 2) and (y > 3) 
print(b) 

In [ ]: c = (x + y >= 4) and (y - x <= 0) 
print(c) 

In [ ]: x = 2021 

In [ ]: a = (x % 2 == 0) 
print(a) 

In [ ]: b = (x % 2 == 1) 
print(b) 
# OR if we want to reuse the variable a: b = not a 

In [ ]: c = (x % 2 == 1) and (x % 3 == 0) 
print(c) 

In [ ]: d = (x % 4 == 0) and (x % 100 != 0) 
print(d) 



In [ ]: y = 2000 
isleap = (y % 400 == 0) or ((y % 4 == 0) and (y % 100 != 0)) 
print(isleap) 

In [ ]: # Type your code here

In [ ]: x = 2019 
a = not(x % 2) 
print(a) 



In [ ]: if <boolean_expression>: 
    #code1 
#code2 

In [ ]: x = -3 
 
if x < 0: 
    print("The value of x has been changed to zero.") 
     
print("This is the end of the program.") 

In [ ]: if <boolean_expression>: 
    #code1 
else: 
    #code2 
#code3 



In [ ]: x = 3 
if x % 2 == 0: 
    print("x is even.") 
else: 
    print("x is odd.") 
     
print("That's all, folks!") 

In [ ]: first_int = 20 
second_int = 20 
 
if first_int > second_int: 
    print("The first integer is bigger.") 
else: 
    print("The second integer is bigger.") 

In [ ]: x = 5 
 
if x % 3 == 0: 
    print("x is a multiple of 3.") 
else: 
    if x % 3 == 1: 
        print("x has a remainder of 1 when divided by 3.") 
    else: 
        print("x has a remainder of 2 when divided by 3.") 

In [ ]: year = 2004 
 
if year % 400 == 0: 
    print("It is a leap year.")
else: 
    if year % 100 == 0: 
        print("It is not a leap year.") 
    else: 
        if year % 4 == 0: 
            print("It is a leap year.") 
        else: 
            print("It is not a leap year.") 



In [ ]: if <boolean_expression1>: 
    #code1 
elif <boolean_expression2>: 
    #code2 
elif <boolean_expression3>: 
    #code3 
 
# There can be as many elif statements as needed. 
 
else: 
    #code_else 
#code_after

In [ ]: x = 5 
 
if x % 3 == 0: 
    print("x is a multiple of 3.") 
elif x % 3 == 1: 
    print("x has a remainder of 1 when divided by 3.") 
else: 
    print("x has a remainder of 2 when divided by 3.") 



In [ ]: year = 2004 
 
if year % 400 == 0: 
    print("It is a leap year.")
elif year % 100 == 0: 
    print("It is not a leap year.") 
elif year % 4 == 0: 
    print("It is a leap year.")
else: 
    print("It is not a leap year.") 



Mr Cliff says, "Hello, everyone! Welcome to Computing!"

<name_of_string>[<start>:<stop>:<step>] 

s 
n 

In [ ]: print('Mr Cliff says, "Hello, everyone! Welcome to Computing!"') 

In [ ]: print("a" + "b") 

In [ ]: result = "one" + "one" + "one" 
print(result) 

In [ ]: # What does this do? 
test = "abc" 
print(test * 3) 

In [1]: s = "some random string" 
print(s[0]) 
print(s[7]) 



some 
e ran

sm ad
seao 

- s[-1]   
- s[10:0:-1] 
- s[-10:-2:1]

g 
modnar emo
dom stri 

In [2]: print(s[0:4]) 
print(s[3:8]) 

In [3]: print(s[0:10:2]) 
print(s[0:10:3]) 

In [4]: print(s[-1]) 
print(s[10:0:-1]) 
print(s[-10:-2:1]) 



In [ ]:   

In [ ]: str1 = "How {} you?".format("are") 
print(str1) 

In [ ]: str2 = "1 + 1 = {}".format(1+1) 
print(str2) 

In [ ]: str3 ="{} and {}".format("Apple", "Pen") 
print(str3) 



In [ ]: str4 = "1st: {1}, 2nd: {0}".format("one", "two") 
print(str4) 

In [ ]: str5 = "{1}, {2}, {0}".format("One", "Two", "Three") 
print(str5) 

In [ ]: name = input("What is your name? ") 
print("Hello, " + name + "! Nice to meet you!") 

In [ ]: num1 = int(input("Enter the first number: ")) 
num2 = int(input("Enter the second number: ")) 
 
answer = num1 + num2 
 
print("The answer is " + str(answer)) 

In [ ]: str1 = input("Enter your string here: ") 
result = str1[::-1] 
print(result) 

https://docs.python.org/3.6/library/stdtypes.html#typesseq-common


2020 JC1 H2 Computing 9569 
04. Flowchart and Decision Table 
 
An algorithm is a sequence of steps to complete a particular task.  
 
As a simple example, the following is one algorithm to prepare a slice of bread with jam for 
breakfast. 
 
1. Take a slice of bread from the packet of bread. 
2. Grab a bottle of jam from the fridge. 
3. Open the bottle of jam. 
4. Scoop some jam from the bottle using a knife. 
5. Spread the jam on the bread using the knife. 
6. Fold the bread in half. 
 
Very often, there is more than one way to complete a task. Hence, one can formulate multiple 
algorithms to solve the same problem. However, some algorithms are more efficient than 
others. We shall discuss about efficiency in a later topic. 
 

Flowchart 
 
A flowchart is a graphical representation of a computer program in relation to the sequence 
of steps it is intended to perform. 
 
There are four standard symbols used in flowcharts. 
 
1. Terminator 
 

The terminator symbol is a rectangle with rounded corners. 
 
 
 
 

It represents either: 
 

 the beginning of the algorithm with the START command, or 
 the end of the algorithm with the STOP command. 

  
 
 
 
 
 
 
 

START 

STOP 



2. Data 
 

The data symbol is a parallelogram. 
 
 
 
 
 

It represents a step of either: 
 

 receiving input data from outside the algorithm using the INPUT command, 
 or producing output from within the algorithm using the OUTPUT command. 

 
An example of each type of command is shown below. 
 
 
 
 
 
 
 

 
 
3. Decision 
 

The decision symbol is a diamond. 
  
 
 
 
 

 
 
It represents a step involving a question. The outgoing arrows represent the possible 
outcomes to the question and are usually labelled “Yes” and “No”. There may be two or 
three outgoing arrows depending on the number of possible outcomes. Only one of these 
outgoing arrows should be followed at any one time when performing the algorithm. 

 
 
 
 
 
 
 
 
 
 
 

INPUT x OUTPUT “Hi!” 

Is Computing 
fun? 

No 

Yes 

 



4. Process 
 

The process symbol is a rectangle. 
 
 
 
 
 

 
The process symbol is a rectangle. It represents a step involving an operation. This usually 
involves changing the value of a variable or performing more complex actions. 
 
An example is shown below. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Spread jam on bread 



Examples 
 
The example below shows a flowchart of an algorithm to convert from Singapore Dollar to 
Malaysian Ringgit. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

START 

INPUT amount in Singapore Dollar 

Convert amount to 
Malaysian Ringgit 

OUTPUT amount  
in Malaysian Ringgit 

STOP 



Another example below shows how a guess-the-number game works. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

START 

INPUT guess from user 

Set a number 

STOP 

Did the user 
guess correctly? 

No 

OUTPUT “You win!” 

Yes 



Exercise 
 
Two new rules are to be implemented for the guess-the-number game mentioned in the 
previous page. 
 
1. The range of numbers is limited to 0 to 50 inclusive. 
2. The user has up to 10 chances to guess the number. 
 
Draw a new flowchart to capture the new rules. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

START 

Set a number between 0 to 
50 inclusive 

 

STOP 

Is chance < 10? 

OUTPUT “You win!” 

No 

Chance = 0 

INPUT guess from user 

Did the user 
guess correctly? No 

Yes 

Chance = chance + 1 
No 

OUTPUT “You lose!” 

Yes 



Decision Table 
 
Decision table is a visual logic representation for specifying which actions to perform 
depending on given conditions. Possible combinations of conditions are considered before 
deciding on the action to be taken. 
 
A useful tool for program testing, it is used to analyse a situation where the conditions and 
actions involved are more complex. 
 
Shown below is the typical format of a decision table. 
 

C
on

di
tio

ns
 <Condition 1> 

 
Y Y … 

<Condition 2> 
 

Y N … 

… 
 

… … … 

A
ct

io
ns

 

<Action 1> 
 

X  … 

<Action 2> 
 

 X … 

… 
 

  … 

 
Examples 
 
An example below shows a two-condition decision table. 
 

C
on

di
tio

ns
 >= 70 marks 

 
 

Y Y N N 

< 45 marks 
 
 

Y N Y N 

A
ct

io
ns

 

Grade ‘A’ 
 
 

- X   

Grade ‘Pass’ 
 
 

-   X 

Grade ‘Fail’ 
 
 

-  X  

 
Take note that the leftmost scenario cannot take place as a particular score cannot be larger 
than or equal to 70 marks and less than 45 marks at the same time. As such, we put the dash 
symbol (-) on each of the actions to indicate the impossibility of such a scenario. 



Another example below shows a three-condition decision table. 
 

C
on

di
tio

ns
 

Male 
 
 

Y Y Y Y N N N N 

Singaporean or 
2nd gen. PR 
 

Y Y N N Y Y N N 

Healthy 
 
 

Y N Y N Y N Y N 

A
ct

io
ns

 

Serve NS 
 
 

X        

Do not need to 
serve NS 
 

 X X X X X X X 

 
Notice that some of the cells are actually redundant since NS is mandatory only to those who 
satisfy all the three conditions specified. 
 
It is possible to come up with a simpler decision table and eventually a simpler program code 
to be written. 
 

C
on

di
tio

ns
 

Male 
 
 

Y N - - 

Singaporean or 
2nd gen. PR 
 

Y - N - 

Healthy 
 
 

Y - - N 

A
ct

io
ns

 

Serve NS 
 
 

X    

Do not need to 
serve NS 
 

 X X X 

 
The dash symbol (-) for the conditions means that they can either be true or false for the given 
intended actions. 
 
 
 
 
 



Exercise 
 
An airline company offers discounted tickets according to the following rules: 
 
1. 5% discount applies to every passenger aged 3 and above who purchase a ticket 90 days 

prior to the departure date. 
 

2. 80% discount applies to every infant aged 0 to 2 occupying a seat. 
No further discount can be granted for an infant ticket.  

 
Draw a decision table for the scenario above. 
 

C
on
di
tio
ns

 

Age <= 2 
 
 

Y Y N N N 

Age >= 3 
 
 

Y N Y Y N 

Buy 90 days 
in advance 
 

- - Y N - 

A
ct
io
ns

 

Offer usual 
price 
 

-   X - 

Offer 5% 
discount 
 

-  X  - 

Offer 80% 
discount 
 

- X   - 

 



In [ ]: init1 = 25 
result1 = init1 + 273.15 
print(result1) 
 
init2 = 30 
result2 = init2 + 273.15 
print(result2) 

In [ ]: def <name_of_function>(<arguments>): 
    <do something> 
    <return something> 

In [ ]: def C_to_K(T_C): 
    return T_C + 273.15 

In [ ]: # Converts 25 degree Celcius to Kelvin 
result = C_to_K(init1) 
print(result) 
 
# Converts 30 degree Celcius to Kelvin 
print(C_to_K(init2)) 
 
# Converts 50 degree Celcius to Kelvin 
print(C_to_K(50)) 



In [ ]: # Example 1.1 
def print_gaps(): 
    print() 
    print() 
    print() 

In [ ]: print("Good morning, world!") 
print_gaps() 
print("Good afternoon, world!")
print_gaps() 
print("Good night, world!") 

In [ ]: x = print_gaps() 
print(x) 

In [ ]: # Example 1.2 
def return_something(): 
    return "This is something!"

In [ ]: text = return_something() 
print(text) 

In [ ]: # Example 2.1 
def greet(name1, name2): 
    print("Hello, " + name1 + "!") 
    print("Hello, " + name2 + "!") 
    print("Nice to meet both of you!") 
 
greet("John", "Jane") 

In [ ]: # Example 2.2 
# Write a function that takes in three numbers and returns their sum. 
 
def add(x, y, z): 
    return x + y + z 
 
# Note that sum() is an in-built Python function. 
# Should we also use 'sum' as the name of the function in this example, the in

In [ ]: print(add(100, 200, 300)) 

In [ ]: # Example 3.1 
# Given the functions C_to_K() and K_to_F, use both of them to print the resu
def K_to_F(T): 
    return T * 9/5 - 459.67 
 
print(K_to_F(C_to_K(50))) 



volume = length × breadth × height 

density = mass / volume 

In [2]: # Example 4.1 
def area_of_rectangle(length, breadth): 
    return length * breadth 
 
def area_of_n_rectangles(n, length, breadth): 
    area = area_of_rectangle(length, breadth) 
    return n * area 

In [3]: def check_odd_even(x): 
    if x % 2 == 0: 
        return "It is an even number." 
    else: 
        return "It is an odd number." 

In [ ]: def first_char(s): 
    return s[0] 

In [4]: def volume(l, b, h): 
    return l * b * h 

In [5]: def density(l, b, h, m): 
    vol = volume(l, b, h) 
    return m/vol 



Input the length: 1 
Input the breadth: 1 
Input the height: 1 
Input the mass: 1 
The volume of the cuboid is 1.0 
The density of the cuboid is 1.0 

In [9]: l = float(input("Input the length: ")) 
b = float(input("Input the breadth: ")) 
h = float(input("Input the height: ")) 
m = float(input("Input the mass: ")) 
 
print("The volume of the cuboid is " + str(volume(l,b,h))) 
print("The density of the cuboid is " + str(density(l,b,h,m))) 



In [ ]: # Define an empty list 
empty_lst = [] 
 
# Define some lists with element(s) 
fruit = ['apple'] 
class_1MD10 = ['Sanjay', 'Phoebe', 'Matthew', 'Fauzan'] 
Matthew_details = ['Matthew', 'M', 17] 

In [ ]: lst_a = [1, 2, 3] 
lst_b = [4, 5, 6] 
 
lst_a += lst_b 
print(lst_a) 
 
lst_c = lst_b * 3 
print(lst_c) 

In [ ]: lst1 = ['John', 'M', 18, 'Basketball'] 

In [ ]: # Print the list
print(lst1) 

In [ ]: print(lst1[0]) 

In [ ]: print(lst1[0][0]) 

In [ ]: print(lst1[:2]) 

In [ ]: lst1[-1] = 18 
print(lst1) 



In [ ]: text = "I am 5 years old."
text[5] = 6 

In [ ]:   



https://docs.python.org/3.6/library/stdtypes.html#mutable-sequence-types










In [ ]: print(1) 
print(2) 
print(3) 
print(4) 
print(5) 

In [ ]: range(<start>, <stop>, <step>) 



In [ ]: # Print a list of integers from 0 to 4 
a = range(5) 
print("a is", list(a)) 
 
# Print a list of integers from 1 to 4 
b = range(1,5) 
print("b is", list(b)) 
 
# Print a list of odd integers from 1 to 10 
c = range(1, 10, 2) 
print("c is", list(c)) 
 
# Print a list of integers from 3 to 0 
d = range(3, -1, -1) 
print("d is", list(d)) 

In [ ]: for i in range(<start>, <stop>, <step>): 
    <do something> 

In [ ]: for i in range(6): 
    print(i) 



In [ ]: for i in range(1, 8, 2): 
    print(i) 

In [ ]: while (<condition>): 
    <do something> 

In [ ]: i = 0 
 
while (i < 3): 
    print("Hello!") 

In [ ]: i = 0 
 
while (i < 6): 
    print(i) 
    i += 1 



In [ ]: i = 1 
 
while (i < 8): 
    print(i) 
    i += 2 

In [ ]: for i in range(5, 0, -1): 
    print(i) 

In [ ]: i = 5 
 
while i > 0: 
    print(i) 
    i -= 1 



In [ ]: result = 0 
 
for counter in range(1, 5): 
    x = input("Input an integer: ") 
    result += int(x) 
 
print("Sum = " + str(result)) 

In [ ]: result, counter = 0, 1 
 
while counter < 5: 
    x = input("Input an integer: ") 
    result += int(x) 
    counter += 1 
 
print("Sum = " + str(result)) 



In [ ]: result = 0 
 
for i in range(3): 
    result += i 
    print(result) 
    for j in range(2): 
        print("Hello!") 

In [ ]: j = 0 
 
for i in range(3): 
    print("Here we go!") 
    j=0 
    while (j < 3): 
        print(j) 
        j += 1 

In [ ]: for i in range(10, 15): 
    if (i == 13): 
        break 
     
    print(i) 
 
print("Done!") 

In [ ]: for i in range(10, 15): 
    if (i == 13): 
        continue
     
    print(i) 
 
print("Done!") 



In [ ]: s = "Hello" 
 
for i in s: 
    print(i) 

In [ ]: s = "Hello" 
 
for i in range(len(s)): 
    print(s[i] * 3) 

In [ ]: s = "I love Python." 
 
count = 0 
 
for i in s: 
    if i == 'o': 
        count += 1 
 
print(count) 
 
# OR 
 
count = 0 
 



for i in range(len(s)): 
    if s[i] == 'o': 
        count += 1 
 
print(count) 

In [ ]: l = ['apple', 'banana', 'cherry', 'durian'] 
 
for i in l: 
    print(i) 

In [ ]: l = ['apple', 'banana', 'cherry', 'durian'] 
 
for i in range(len(l)): 
    l[i] = l[i].upper() 

In [ ]: l = [1, 5, 2, 3, 6, 9, 8, 4, 7] 
 
for i in range(len(l)): 
    if l[i]%2 == 0: 
        l[i] *= 2 



lst = ["hello", "bye"] 
vowel_counter(lst) --> should return 3.

 
print(l) 

In [ ]: l1 = [1, 5, 2, 3, 6, 9, 8, 4, 7] 
l2 = [] 
 
for i in range(len(l1)): 
    if l1[i]%2 == 0: 
        l2.append(l1[i]*2) 
    else: 
        l2.append(l1[i]) 
 
print(l1) 
print(l2) 

In [ ]: lst = ["apple", "banana", "cherry", "durian"] 
 
def vowel_counter(lst): 
    count = 0 
    for word in lst: 
        for char in word: 
            if char in "aeiou": 
                count += 1 
    return count 
     
print(vowel_counter(lst)) # You should obtain 9. 

In [ ]: lst1 = ['y', 'b', 'k', 'j', 'o'] 
 
for i in range(len(lst1)): 
    if (lst1[i] == 'b'): 



        lst1.insert(i+1, 'x') 
    print(lst1[i]) 

In [ ]: lst2 = ['m', 'p', 'c', 'f', 'v'] 
 
for i in range(len(lst2)): 
    print(lst2[i]) 
    if (lst2[i] == 'c'): 
        lst2.pop(i) 

In [ ]: lst1 = ['y', 'b', 'k', 'j', 'o'] 
 
i = 0 
 
while i < len(lst1): 
    if (lst1[i] == 'b'): 
        lst1.insert(i+1, 'x') 
    print(lst1[i]) 
    i += 1 

In [ ]: lst2 = ['m', 'p', 'c', 'f', 'v'] 
 
i = 0 
 
while i < len(lst2): 
    print(lst2[i]) 
    if (lst2[i] == 'c'): 
        lst2.pop(i) 
    else: 
        i += 1 



- tup[6] 
- tup[-1][1] 
- tup[0:2]

In [ ]: # Define an empty tuple 
tup_a = () 
 
# Define a tuple with only one element 
tup_b = (100,) 
 
# What about this? 
tup_c = (100) 
print(tup_c) 
print(type(tup_c)) 
 
# Define a tuple with more than one element 
tup_d = (1, 2, 3, "Happy new year!") 

In [ ]: tup = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, (110, 120, 130)) 

In [ ]: print(tup[6]) 
print(tup[-1][1]) 
print(tup[0:2]) 

In [ ]: tup1 = (10, 20, 30, 40, 50) 
tup1[-1] = 500 

In [ ]: tup2 = (1, 2, 3) 
tup3 = (4, 5, 6) 

In [ ]: # Is this allowed? 



tup4 = tup2 + tup3 
print(tup4) 

In [ ]: # Is this allowed? 
tup5 = tup2 * 3 
print(tup5) 

In [ ]: # Is this allowed? 
tup4 += tup5 
print(tup4) 

In [ ]: tup5 = ('Computing', 'is', 'fun') 
print(tup5) 

In [ ]:  

In [ ]: tup8 = ('Alan', 'Betty', 'Charlie', 'Diana', 'Ethan') 
 
for item in tup8: 
    print(item) 

In [ ]: for i in range(len(tup8)): 
    print(tup8[i]) 

In [ ]: def div_3(tup): 
    ans = () 
    for item in tup: 
        if item % 3 == 0: 
            ans += (item,) 



    return ans 
 
print(div_3((1,2,3,4,5,6,7,8,9))) 

In [ ]: def remove_string(tup): 
    ans = () 
    for item in tup: 
        if type(item) != str: 
            ans += (item,) 
    return ans 
 
print(remove_string(('a',1,2,3,'b',4,6,7,'c',True))) 
 
# Additional example: removing not only strings, but also 
boolean 
def remove_str_bool(tup): 
    ans = () 
    for item in tup: 
        if type(item) not in (str, bool):     # OR if 
type(item) != str and type(item) != bool: 
            ans += (item,) 
    return ans 
 
print(remove_str_bool(('a',1,2,3,'b',4,6,7,'c',True,8.0,9.0))) 

In [ ]: def odd_tuple(tup): 
    result = () 
    for item in tup: 
        if item%2 == 1: 
            result += (item,) 
    return result 
 
# Test your code with the following. 
# odd_tuple((1,2,3,4,5)) --> (1, 3, 5) 
# odd_tuple((2,4,6,8)) --> () 
# odd_tuple((2,4,6,8,9)) --> (9,) 

In [ ]: def string_index(tup): 
    ans = () 
    for i in tup: 
        if type(i) == str: 
            ans += (tup.index(i),) 
    return ans 
 
# Test your code with the following. 
# string_index((1,2,3,'four',5,'six')) --> (3, 5) 
# string_index(('happy','sad','joy',2,3,4)) --> (0, 1, 2) 



In [ ]:  

In [ ]: text = "abc" 
print(tuple(text))
print(list(text)) 

In [ ]: tup7 = tuple(['a','b','c']) 
print(tup7) 
print(list(tup7)) 

In [ ]: rainbow = ['red', 'orange', 'yellow', 'green', 'blue', 
'indigo', 'violet'] 
 
rainbow[-1] = 'hot pink' 
 
print("The last colour of the rainbow is " + rainbow[-1] + ".") 

In [ ]: filter(name_of_function, iterable_data_type) 



In [ ]: def check_odd(x): 
    return x%2 == 1 
 
numbers = (48, 31, 77, 100, 95, 2, 0, 13, 209) 
 
result1 = filter(check_odd, numbers) 
result2 = tuple(result1) 
 
print(result1) 
print(result2) 

In [ ]: map(name_of_function, iterable_data_type)

In [ ]: def multiply_by_5(x): 
    return x*5 
 
numbers = (1, 2, 3, 4, 5, 6) 
 
result1 = map(multiply_by_5, numbers) 
result2 = list(result1) 
 
print(result1) 
print(result2) 

In [ ]: def square(x): 
    return x**2 
 
def check_even(x):
    return x%2 == 0 
 
numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) 
 
perfect_squares = tuple(map(square, numbers)) 
even_perfect_squares = tuple(filter(check_even, 
perfect_squares)) 
 
print(even_perfect_squares) 





In [ ]: open("sample1.txt", "r") # OR open("sample1.txt") 

In [ ]: f1 = open("sample1.txt") 
 
# Alternatively,
# f1 = open("sample1.txt", "r") 
 
f1.close() 

In [ ]: f1 = open("sample1.txt", "r") 
 
line = f1.read() 
print(line) 
 
f1.close() 

In [ ]: f1 = open("sample1.txt", "r") 



 
line = f1.readline() 
print(line) 

In [ ]: line = f1.readline() 
print(line) 

In [ ]: line = f1.readline() 
print(line) 

In [ ]: line = f1.readline() 
print(line) 
 
f1.close() 

In [ ]: f1 = open("sample1.txt", "r") 
 
for line in f1: 
    print(line) 
 
f1.close() 

In [ ]: f1 = open("sample2.txt", "r") 
lst = [] 
     
for line in f1: 
    lst.append(int(line)) 
 
print(sum(lst)) 
 
f1.close() 

In [ ]: def capital_count(filename): 
    f1 = open(filename) 
    count = 0 
     
    for line in f1: 
        if line[0].isupper(): 
            count += 1 
     
    f1.close() 
     
    return count 
 
print(capital_count('sample3.txt')) 



In [ ]: f1 = open("sample4.txt", "w") 
 
f1.write("I just wrote something 1 \n") 
f1.write("I just wrote something 2 \n") 
f1.write("I just wrote something 3 \n") 
 
f1.close() 

In [ ]: f1 = open("sample4.txt", "w") 
 
f1.write("I just wrote something 4 \n") 
f1.write("I just wrote something 5 \n") 
f1.write("I just wrote something 6 \n") 
 
f1.close() 

In [ ]: f1 = open("sample4.txt", "a") 
 
f1.write("I just wrote something 7 \n") 
f1.write("I just wrote something 8 \n") 
f1.write("I just wrote something 9 \n") 
 
f1.close() 

In [ ]: def write_multiply(filename): 
    f1 = open(filename) 
    result = 1 
     
    for line in f1: 
        result = result * int(line) # OR result *= int(line) 
     
    f2 = open("output.txt", "w") 
    f2.write(str(result)) 
     
    f1.close() 
    f2.close() 
 
write_multiply("sample5.txt") 



In [ ]: row1 = "1 2 3 4 5" 
output1 = row1.split() 
print(output1) 
 
row2 = "6,7,8,9,10" 
output2 = row2.split(",") 
print(output2) 

In [ ]: row3 = "1,2,3,4,5" 
output3 = row3.split('3') 
print(output3) 

In [ ]: def capitalise_words(filename): 
    f1 = open(filename, "r") 
    result = [] 
     
    for line in f1: 
        lst = line.strip().split(",")   # easiest to do using strip() to remo
        for i in range(len(lst)): 
            lst[i] = lst[i].upper() 
        result.extend(lst) 
     
    print(result) 
     
    f1.close() 
 
capitalise_words("sample6.txt")



In [ ]: word1 = "      hello     "
print(word1.strip()) 
 
word2 = "   he   llo    " 
print(word2.strip()) 
 
word3 = "   he  llo \t hello \n \n \n" 
print(word3.strip()) 

In [ ]: word4 = ",,,hello," 
print(word4.strip(',')) 
 
word5 = "hey hey hey hhh" 
print(word5.strip('h')) 

In [ ]: lst = [] 
 
with open("sample7.txt") as f1: 
    for line in f1: 
        lst.append(line.strip()) 
 
print(lst) 

In [ ]: import csv 
 
with open("sample8.txt") as f1: 
    csv_file = csv.reader(f1, delimiter=',') 
    for line in csv_file: 
        print(line) 

In [ ]: import csv 
 
lst = ['eagle', 'fox', 'giraffe', 'horse'] 
 
with open("sample9.txt", "w") as f1: 



    csv_file = csv.writer(f1, delimiter=',') 
    csv_file.writerow(lst) 



In [ ]: def recursive_function(n): 
    if <problem is easy>: 
        <do or return something> 
    else: 
        <do something> 
        return recursive_function(<change n>) 

In [ ]: # Type your code here
n = 3 
while n > 0: 
    print(n) 
    n -= 1 
print("Happy New Year!") 

In [ ]: def countdown(n): 
    if n == 0: 
        print("Happy New Year!") 
    else: 
        print(n) 
        return countdown(n-1) 
 
countdown(3) 



In [ ]: def f(n): 
    if n == 0: 
        return 2 
    else: 
        return f(n-1) + 5 
 
print(f(5)) 



product = (((1 x 3) x 5) x 7) 
        = ((3 x 5) x 7) 
        = (15 x 7) 
        = 105 

products = (1 x (3 x (5 x 7))) 
         = (1 x (3 x 35)) 
         = (1 x 105) 
         = 105

In [ ]: def product(lst): 
    if len(lst) == 1: 
        return lst[0] 
    else: 
        return product(lst[:-1]) * lst[-1] 
         
numbers = [1, 3, 5, 7] 
print(product(numbers)) 

In [ ]: def new_product(lst): 
    # Type your code here 
    if len(lst) == 1: 
        return lst[0] 
    else: 
        return lst[0] * new_product(lst[1:]) 
     
numbers = [1, 3, 5, 7] 
print(new_product(numbers)) 

In [ ]: def count_even(lst): 



len(lst) == 0

    if len(lst) == 0: 
        return 0 
    elif (lst[0] % 2 == 0): 
        return count_even(lst[1:]) + 1 
    else: 
        return count_even(lst[1:]) 
     
print(count_even([1,2,3,4,5])) 

In [ ]: lst = [5, 6, 7, 8] 
 
# Type your code here
def recursive_sum(lst): 
    return lst[0] + recursive_sum(lst[1:]) if lst else 0 
 
recursive_sum(lst) 

In [ ]: str1 = "PuRple DinOsAUr" 
 
# Type your code here
def count_capital(str1): 
    return int(str1.isupper()) if len(str1) == 1 else int(str1[0].isupper()) +
 
count_capital(str1) 

In [ ]: str2 = "aBCdE" 
 
# Type your code here
def tuplify(str2): 
    return (str2, ) if len(str2) == 1 else (str2[0], ) + tuplify(str2[1:]) 
 
tuplify(str2) 



https://www.mathsisfun.com/games/towerofhanoi.html


In [ ]: def deposit(lst, money): 
    lst[2] += money 
 
def withdraw(lst, money): 
    if lst[2] < money: 
        return "Not enough money!" 
    else: 
        lst[2] -= money 

In [ ]: bank_account = ["912-83746-5", "Sam Phua", 20000] 
 
deposit(bank_account, 1000) 
print(bank_account) 
 
withdraw(bank_account, 500) 
print(bank_account) 



In [ ]: class <name>(<optional parent class>): 
     
    def __init__(self, <optional parameters>): 
        <constructor body>
     
    def <method name>(self, <optional parameters>): 
        <method body> 
     
    ... 



In [ ]: class BankAccount: 
    # Constructor 
    def __init__(self, acct_num, acct_name, cur_bal, int_rate): 
        self.acct_num = acct_num 
        self.acct_name = acct_name 
        self.cur_bal = cur_bal 
        self.int_rate = int_rate 
     
    # Accessors 
    def get_acct_num(self): 
        return self.acct_num 
     
    def get_acct_name(self): 
        return self.acct_name 
     
    def get_cur_bal(self): 
        return self.cur_bal 
     
    def get_int_rate(self): 
        return self.int_rate 
     
    # Mutators 
    def set_acct_name(self, name): 
        self.acct_name = name 
     
    def set_int_rate(self, int_rate): 
        self.int_rate = int_rate 
     
    # Utllity methods
    def deposit_money(self, money): 
        self.cur_bal += money 
         
    def withdraw_money(self, money): 
        if money > self.cur_bal: 
            return "Not enough money!" 
        else: 
            self.cur_bal -= money 
     
    def add_int(self): 
        self.cur_bal += self.cur_bal * self.int_rate 



In [ ]: <object_name> = <class_name>(<required parameters defined in __init__>) 

In [ ]: david_account = BankAccount("123-45678-9", "David Tan", 100000, 0.001) 

In [ ]: # Test accessor methods 
 
print(david_account.get_acct_num()) 
print(david_account.get_acct_name()) 
print(david_account.get_cur_bal()) 
print(david_account.get_int_rate()) 

In [ ]: # Test mutator methods 
 
david_account.set_acct_name("David Tan Ming Quan") 
print(david_account.get_acct_name()) 
 
david_account.set_int_rate(0.002) 
print(david_account.get_int_rate()) 

In [ ]: # Test utility methods 
 
# This should print 110000 
david_account.deposit_money(10000) 
print(david_account.get_cur_bal()) 
 
# This should print 90000 
david_account.withdraw_money(20000) 
print(david_account.get_cur_bal()) 
 
# This should print "Not enough money!" 
david_account.withdraw_money(200000) 
 
# This should print 90180.0 
david_account.add_int() 
print(david_account.get_cur_bal()) 

In [ ]: # Instantiate an object of the list class 
my_list = list() 
 
# Perform some methods on the list object 



my_list.append('a') 
my_list.append('b') 
print(my_list) 
 
my_list.pop() 
print(my_list) 

In [ ]: class <name>(<superclass>): 
     



    def <additional / overriding method name>(self, <optional parameters>): 
        <method body> 
         
    ... 

In [ ]: class CurrentAccount(BankAccount): 
     
    def check_overdraft(self): 
        if self.cur_bal < 0: 
            return True 
        else: 
            return False 

In [ ]: ali_account = CurrentAccount("123-45678-9", "Ali Ramlan", 100000, 0.001) 

In [ ]: # Test accessor methods 
 
print(ali_account.get_acct_num()) 
print(ali_account.get_acct_name()) 
print(ali_account.get_cur_bal()) 
print(ali_account.get_int_rate()) 

In [ ]: # Test mutator methods 
 
ali_account.set_acct_name("Ali Ramlan") 
print(ali_account.get_acct_name()) 
 
ali_account.set_int_rate(0.00002) 
print(ali_account.get_int_rate()) 

In [ ]: # Test utility methods 
 
# This should print 12000 
ali_account.deposit_money(2000)
print(ali_account.get_cur_bal()) 
 
# This should print 11500 
ali_account.withdraw_money(500) 
print(ali_account.get_cur_bal()) 
 
# This should print False 
print(ali_account.check_overdraft())



+ withdraw_money()   allows cur_bal to go below zero 
+ add_int()          if overdraft, 5% should be applied to the 
debt annually 
                     otherwise, it should do the same as the 
original superclass method

In [ ]: class CurrentAccount(BankAccount): 
     
    def check_overdraft(self): 
        if (self.cur_bal < 0): 
            return True 
        else: 
            return False 
 
    # Redefine the two utility methods 
    def withdraw_money(self, money): 
        self.cur_bal -= money 
     
    def add_int(self): 
        if self.check_overdraft(): 
            self.cur_bal += self.cur_bal * 5/100 
        else: 
            self.cur_bal += self.cur_bal * self.int_rate 

In [ ]: kannan_account = CurrentAccount("876-54321-0", "Kannan Kumar", 800, 0.00001) 
 
# The account goes to an overdraft after withdrawing $1,800 to become -$1,000 
kannan_account.withdraw_money(1800) 
print(kannan_account.get_cur_bal()) 
 
# An interest of 5% is applied to the overdraft account to become -$1,050 
kannan_account.add_int() 
print(kannan_account.get_cur_bal()) 
 
# $2,000 is deposited into the account to become $950, so the account is not o
kannan_account.deposit_money(2000) 
print(kannan_account.get_cur_bal()) 
 
# The default interest rate is applied to the non-overdraft account to become 
kannan_account.add_int() 
print(kannan_account.get_cur_bal()) 



In [ ]: import random 
 
print(random.random()) 
print(random.randint(0, 5)) 
print(random.randrange(5)) 
print(random.randrange(5, 10)) 
print(random.randrange(1, 10, 2)) 
 
lst = [2, 0, 1, 9] 
random.shuffle(lst) 
print(lst) 

In [ ]: import math 
 
print(math.trunc(20.19)) 
# Output: 20 
 
print(math.floor(20.19)) 
# Output: 20 
 
print(math.ceil(20.19)) 
# Output: 21 
 
print(math.pow(2, 3))   # VS 2**3 
# Output: 8.0 (float)   # VS 8 (integer) 
 
print(math.exp(2)) 
# Output: 7.38905609893065 
 
print(math.log(10)) 
# Output: 2.302585092994046 
 
print(math.sqrt(4)) 
# Output: 2.0 



In [ ]: import datetime 
 
datetime.datetime.now() 

In [ ]: test_date1 = datetime.datetime(2019, 1, 1) 
 
print(test_date1.isoformat()) 

In [ ]: str_date = "01/04/19 13:55:26" 
str_format = "%d/%m/%y %H:%M:%S" 
 
test_date2 = datetime.datetime.strptime(str_date, str_format) 
 
print(test_date2) 

In [ ]: test_date3 = datetime.datetime(2019, 4, 1, 8, 20, 33) 
new_format = "Date: %d-%m-%y \nTime: %H:%M:%S" 
 
print(test_date3.strftime(new_format)) 



In [ ]: test_date4 = datetime.datetime(2019, 12, 25, 15, 30, 45) 
 
print(test_date4.year) 
print(test_date4.month) 
print(test_date4.day) 
print(test_date4.hour) 
print(test_date4.minute) 
print(test_date4.second) 

In [ ]: d1 = datetime.datetime(2019, 1, 1, 21, 10, 10) 
d2 = datetime.datetime(2020, 1, 1, 21, 10, 10) 
 
days_to_go = (d2-d1).days 
 
print(days_to_go) 

In [ ]: d3 = datetime.datetime(2019, 12, 25, 8, 0, 0) 
d4 = datetime.datetime(2023, 12, 25, 9, 1, 5) 
 
# Note that this considers only the difference in time and disregards the date
secs_to_go = (d4-d3).seconds 
 
print(secs_to_go) 

In [ ]: d5 = datetime.datetime(2020, 1, 1) 
diff = datetime.timedelta(days=100) 
 
# What is 100 days later after 1 January 2020? 
d6 = d5 + diff 
print(d6) 



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 1/14

2020 JC1 H2 Computing 9569

13. Storing Characters and Numbers

Storing Characters ¶

How are characters stored in computers?

Any group of 0s and 1s can be used to represent a specific character. The number of bits used to store one
character is called a byte, which usually comprises eight bits. The complete set of characters that a particular
computer uses is known as its character set.

Consider a three-bit system to represent upper case letters in alphabetical order as shown in the table below.

It can be seen that using a three-bit system only allows for eight possible unique codes. That is to say, we
can only store the upper case letters ‘A’ to ‘H’, but not the rest of the alphabet, not to mention their lower case
counterparts, punctuation marks, decimal digits and so on.

Some systems do not need to be able to recognise a lot of characters, so a few bits for each character is
sufficient. One example is an Automated Teller Machine (ATM) that we use to perform financial transactions.

As a quick thinking exercise, how many bits are necessary to encode the required number of characters used
in an ATM? Assume that we only have the digits 0 to 9, as well as three operations: enter, delete and cancel?



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 2/14

Let us look at the typical layout of a QWERTY keyboard, which gives a quick glance into a portion of the
character set of the computers that most of us use in our daily lives.

Imagine a situation where one computer uses 10000001 to represent the upper case letter ‘A’, while another
computer represents the same letter with 10000010. Any document files created on one of the computers is
not going to make sense to the other as the two will interpret the codes differently. As such, standardisation is
required in order for computers to be able to communicate with each other.

American Standard Code for Information Interchange (ASCII)

In October 1960, the work on the American Standard Code for Information Interchange (ASCII) began
and it became the first character encoding system to be used across the globe. Each ASCII character is
represented by a sequence of bits or a byte.

The original ASCII system uses the decimal numbers 0 to 127 (i.e., the binary numbers 0000000 to 1111111)
to encode each character, so each character is represented by seven bits.

(An eighth bit was used as a check digit if the computer manufacturer wished to do so. Some computer
manufacturers simply set the eighth bit to 0 for all characters. Because of this, the convention that a byte
represented eight bits began. Check digits will be explained in the chapter on Debugging.)



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 3/14



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 4/14

Another version of the table can be found at http://www.asciitable.com/ (http://www.asciitable.com/)

Characters 0 to 31 (0000000 to 0011111), as well as 127 (1111111) are known as control characters.
These were previously used to assist in data transmission or entering data at a computer terminal, as
well as controlling the output when a computer printed out its output directly on paper without displaying
it on a screen. They have very limited use in modern computing. 

Characters 48 to 57 (0110000 to 0111001) represent the digits 0 to 9. The choice of this range provides
an easy way for a human to recognise a denary digit in ASCII - if it starts with 011, the person can
(mentally) convert the remaining 4 binary digits into a denary number. 

Characters 65 to 90 (1000001 to 1011010) represent the uppercase letters A to Z, and characters 97 to
122 (1100001 to 1111010) represent the lowercase letters a to z. Again, this provides an easy way for a
human to recognise a letter of the alphabet. If it starts with 10 or 11, it is a uppercase or lowercase letter
respectively and the remaining 5 bits indicate the position of the letter in the alphabet (e.g. M is 13 which
is 1101 in binary, so uppercase M is 1001101 in ASCII.) 

The remaining characters (32 to 47, 58 to 64, 91 to 96, and 123 to 126) represent various punctuation
symbols.

The ASCII encoding of a character can be found using the Python function ord . Likewise, a denary number
can be converted into its corresponding character using the Python function chr .

In [ ]:

print(ord('A'))
print(ord('a'))
print(ord('@'))
print(chr(65))
print(chr(97))
print(chr(64))

The ASCII encoding system is adequate for the English language and some others that use a similar
alphabet, such as Latin and Malay. In time, speakers of other languages would develop encoding systems for
their own languages.

IBM released an extension of ASCII called 'Code page 437' which would eventually become known as
Extended ASCII. These included additional punctuation symbols, mathematical symbols, and some
characters used in European languages (such as Æ,ñ, and ö).

The Extended ASCII table is shown below.

http://www.asciitable.com/


4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 5/14

Since the numbers now run from 0 to 255, eight bits (one byte) are now required to encode all the characters
in the Extended ASCII table without using any check digits. The original ASCII characters would have a 0
added to the front. Since four binary digits (bits) correspond to one hexadecimal digit, this extended ASCII
system uses two hexadecimal digits to represent each character in the system.

Some countries, such as India and Vietnam, would eventually create their own extensions of ASCII (known
as ISCII and VISCII) respectively. These are extensions in the sense that 0 to 127 would still correspond to
the original ASCII characters, and the additional characters used for other languages would be encoded with
numbers greater than 127. This allows for compatibility with ASCII users, since a text encoded with ASCII
would still be able to be read normally in the other encoding systems without any modification.



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 6/14

Establishing a Global Standard
Unfortunately, there are some languages that are used in multiple countries or regions, each of which
developed their own encoding systems that may have been compatible with ASCII but not with each other.
For instance, Chinese was encoded primarily using the GB (Guobiao) system in China and Singapore, and
the Big5 system in Taiwan, Hong Kong and Macau. This meant that transmissions from one country to
another could turn out garbled.

The following parcel, for instance, was sent from a French person to her Russian friend.



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 7/14

The Russian friend emailed the French person her address in Russia, but as their two computers used
different encoding systems, the address, which was meant to be written in the Russian alphabet, was
decoded using a different system. Fortunately, the Russian post office realised the problem and managed to
find the corresponding Russian characters, and delivered the parcel correctly.

In an effort to avoid such problems, the computing industry tried to establish a global standard. There were
two ways it could have gone about this:

What does not work: assigning each character more bytes

One simple way to establish a global standard would be to determine at the outset how many characters
would be encoded into the standard, and work out how many bytes would be needed for each character. For
instance, assuming 2  = 16,777,216 characters are needed to encode the whole world's languages, then we
would only need 24 bits, or 3 bytes, to represent every possible character. This sounds like a reasonable
assumption, but it does have disadvantages, namely:

This system is not backwards compatible with ASCII. This means that all previous files and programs
which were stored using ASCII would need to be converted into the new system, or a program for
converting ASCII files into the new system would need to be written.
Each character in this system would be 3 bytes, but the vast majority of files and programs in existence
are already written using ASCII, with only 1 byte per character. All these files and programs would need
to triple in size to accommodate the new system.
The system is not extendible. As technology spreads around the world, there is a need for an increasing
number of languages, with their written forms, to be computerised. In the (admittedly unlikely) event that
the predetermined number of bytes per character is not enough, the computing industry would once
again need to determine a new standard, and it would still not be backwards compatible with either
ASCII or the older standard.

While some of the national standards, especially for countries such as China, Japan and Korea, used this
system to extend ASCII to encode their languages, ultimately, it was decided that this would not be an
appropriate way to encode a global standard which would need many more characters.

Therefore, a system called Unicode was drawn up which would overcome the drawbacks mentioned above.

Unicode
The first volume of this standard was published in October 1991. The ultimate aim of Unicode is to be able to
present any possible text in any written language, in code form. This has been extended to include a number
of other symbols used in technical situations, as well as emoji. Unicode is designed so that once a code has
been determined, it never changes.

Unicode has its own special terminology. A character code is referred to as a code point. Currently, there
are three standards, known as UTF-8, UTF-16 and UTF-32 (UTF stands for ‘Unicode Transformation
Format’). The main difference between Unicode and the system described above is that Unicode encodes
each character with a different number of bytes. The system will be described in the next section (not in
syllabus).

Python 3.6 is compatible with UTF-8. UTF-8 encodes all characters using one to four eight-bit bytes. The
one-byte characters are the original ASCII characters. This ensures that old files and programs written in
ASCII can still be read in Unicode without any conversion required, and, more importantly, their file
size is still the same.

24



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 8/14

The compatibility of UTF-8 with the original (non-Extended) ASCII encoding is demonstrated by the table
below. Note the Unicode terminology - the number representing the character is known as a code point, and
is written with 'U+' followed by a 4 (or more)-digit hexadecimal number. This system makes it easy for people
to refer to specific characters within the Unicode system.

Character ASCII (denary) ASCII (7-bit binary) ASCII (hexadecimal) UTF-8 code point

$ 36 0100100 24 U+0024

Other characters, not in the original ASCII set, also have their own Unicode encodings.

Character UTF-8

¢ U+00A2

Ğ U+0939

€ U+20AC

ߣ U+10348

৽ U+1F431

The Python functions ord  and chr  actually contain the Unicode characters and not just the Python ones
(although they may not print correctly if your computer does not have the appropriate fonts installed.)

In Python, the code points are represented using the control sequence "\u"  followed by the hexadecimal
numbers.

In [ ]:

print('Ɏ�ɥɪ�ɥ')
print(ord('Ɏ�ɥɪ�ɥ'))
print(chr(960))



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 9/14

Unicode in detail (not in syllabus)

The Unicode system can be seen in more detail in the following table (not in syllabus):

Number
of

bytes
Byte

1
Byte

2
Byte

3
Byte

4
Number

of bits for
encoding

Number of
possible

characters

First
code
point

Last
code
point

1 0xxxxxxx 7 2 =128 U+0000 U+007F

2 110xxxxx 10xxxxxx 11 2 =2,048 U+0080 U+07FF

3 1110xxxx 10xxxxxx 10xxxxxx 16 2 =65,536 U+0800 U+FFFF

4 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx 21 U+10000 U+10FFFF

(In practice, for reasons not related to the encoding system, not all 2  possible combinations are used for 4-
byte encodings. As a result, "only" 1,112,064 characters are allowed in UTF-8.)

Therefore, as a computer reads each byte, it knows how many bytes to expect for the current character. If the
byte it is reading starts with '0', then it is a one-byte character. If the byte it is reading starts with '1110', then it
is a three-byte character, so this byte and the next two comprise one single character.

There is also some degree of error checking involved. For instance, if one byte starts with '1110' and the
following two bytes do not both start with '10', then there is an error somewhere and the file has been
corrupted.

The following examples show how characters are encoded in UTF-8:

Character Code point Number
of bytes

Conversion
to binary Unicode

¢ U+00A2 2 0000 0000 1010 0010 11000010 10100010

Ğ U+0939 3 0000 1001 0011 1001 11100000 10100100 10111001

€ U+20AC 3 0010 0000 1010 1100 11100010 10000010 10101100

ߣ U+10348 4 0001 0000 0011 0100 1000 11110000 10010000 10001101 10001000

৽ U+1F431 4 0001 1111 0100 0011 0001 11110000 10011111 10010000 10110001

7

11

16

21

Storing Numbers



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 10/14

Strictly, this section is not in syllabus. However, it is extremely useful to know why your computer
programs sometimes have inexplicable rounding-off errors, and what you can do to avoid them.

Integers
Integers are stored in binary notation. For instance, a computer program may dedicate one byte (eight bits) to
storing an integer. This means that the integer can be between 00000000 (0 in denary) and 11111111 (255 in
denary). The main advantage of the binary system, apart from the fact that it fits naturally with the electronic
components used to make computers, is that very few arithmetic operations need to be hard-coded into the
computer for it to be able to carry out mathematical operations.

For example, binary addition only has four rules:

0 + 0 = 0
1 + 0 = 1
0 + 1 = 1
1 + 1 = 0 and carry 1.

Likewise, binary multiplication only has four rules as well:

0 × 0 = 0
1 × 0 = 0
0 × 1 = 0
1 × 1 = 1

Performing operations in binary works as long as the final answer is within the range of integers that can be
encoded with one byte (0 to 255).

This system can be modified in a number of ways:

If we want to store larger numbers, we would need more than one byte to do so. Most computer systems
use either two or four bytes to store integers, allowing them to go up to 2  - 1 = 65535 or 2  - 1 =
4294967295 respectively. Nevertheless, if this is not pre-empted as the result of a calculation the
computer is making, it can lead to an overflow error.
We don't have a good way of storing negative numbers. This can be addressed by either of the following
methods.

Use one bit for the sign

The first bit, which we also call the most significant bit (MSB) can represent the sign, for instance, 0 for
positive numbers and 1 for negative numbers. The remaming seven bits are used to indicate the magnitude
(absolute value) of the number. Therefore, using one byte, we can represent numbers between -127 and
+127. However, we have to modify the arithmetic operations described above to allow for adding negative
numbers. Furthermore, this system also has a positive and negative zero (10000000 and 00000000), which
are two different encodings for the same number.

Two's complement

In the original binary system, each bit represents one of the powers of two, from 2  being the most significant
bit to 2  being the least significant bit. As we read from left to right, we add up that power of 2 if the
corresponding bit is 1, and ignore it otherwise.

16 32

7

0



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 11/14

In the Two's complement system, the most significant bit represents a QHJDWLYH number, -2 . The remaining
bits represent positive powers of 2 as usual. Therefore, if the most significant bit is 0, the remaining seven
bits are the usual binary representation of a number from 0 to 127. If the most significant bit is 1, however, we
decode the remaining seven bits as a number between 0 and 127, and VXEWUDFW 128 from it.

For example, 01110101 (2  + 2  + 2  + 2  + 2 ) represents the number 117 . On the other hand, 10001011
(-2  + 2  + 2  + 2 ) represents the number -117. The advantage of this method is that the addition rules
mentioned above continue to work as long as the result is in the range of numbers that can be encoded (-128
to 127).

Another way to obtain the encoding of a negative number is to write down the PDJQLWXGH of the number in
binary (8 bits), then change all the digits - changing 1 to 0, and vice versa (hence the 'complement' in the
name), and then adding 1 to the final answer. For instance, +117 is encoded as 01110101 (we only take the
last 7 bits). Taking the complement of the digits gives 1001010, and adding 1 gives 1001011.

Finally, we do not have a good way to represent fractions or decimals in this form. The usual way to do
this now is to use the floating point notation, described below.

Real numbers
In denary, the digits after the decimal point indicate negative powers of 10. For instance,

23.456 = 2 × 10  + 3 × 10  + 4 × 10  + 5 × 10  + 6 × 10 .

We can write it in the form D×10  where -1 < D < 1. (This is similar to scientific notation, but the range of
allowed values of D is from 0 to 1, instead of 1 to 10.) In this case,

23.456 = 0.23456 × 10 .

In such a notation, D = 0.23456 is called the mantissa and E = 2 is called the exponent.

Likewise, a number like 0.0000134 would be written as 0.134 × 10 . In this case, 0.134 is the mantissa and
-4 is the exponent.

Likewise, in the binary system, the digits after the bicimal point (also called the radix point) indicate
negative powers of 2. For instance,

10.1011 = 2  + 2  + 2  + 2  (which is 2.6875 in denary).

However, we can write it as

10.1011 = 0.101011 × 2 ,

so that 0.101011 is the mantissa and 2 is the exponent.

Similarly,

0.0001101 = 0.1101 × 2 ,

so that 0.1101 is the mantissa and -3 is the exponent.

We can thus store any real number as a mantissa and an exponent. This is known as a floating point
representation because the bicimal or decimal point floats into position, depending on the value of the
exponent.

Suppose we want to store a number using two bytes. We can use the first byte to store the mantissa and the
second byte to store the exponent.

7

6 5 4 2 0

7 3 1 0

1 0 -1 -2 -3

E

2

-4

1 -1 -3 -4

2

-3



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 12/14

For example, the denary number 112 would be encoded in the following way:

112  = 1110000  = 0.1110000 × 2  (remember the exponent is also in binary).

Hence it would be encoded as 01110000 00000111.

The binary number 10.11011 = 0.1011011 x 2  would be encoded as 01011011 00000010.

The binary number 0.00000101011 = 0.1010110 x 2  would be encoded as 01010110 11111011 (the
negative exponent is encoded using Two's complement)

The negative binary number -1011 is encoded using the following steps.

1. -1011 = -0.1011 x 2 .
2. The magnitude of the mantissa is 0.1011. We use the Two's complement method (changing 1s and 0s,

and then adding 1 at the rightmost bicimal place) to get 1.0101.
3. Therefore, the mantissa would be encoded as 10101000.
4. The exponent is 00000100.

The negative binary number -0.01001 (which is 11/32 in denary) is encoded using the following steps.

1. -0.01001 = -0.1011 x 2 .
2. The magnitude of the mantissa is 0.1001. We use the Two's complement method (changing 1s and 0s,

and then adding 1 at the rightmost bicimal place) to get 1.0111.
3. Therefore, the mantissa would be encoded as 10111000.
4. The exponent is a negative number, and hence would also be encoded using Two's complement to get

10 2
111

10

-101

100

-1

In [ ]:

print(0.1 + 0.2)

0.1 in binary is 0.0001100110011... 0.2 in binary is 0.0011001100110... These are stored as floating point
numbers in the computer, but since they are infinitely recurring bicimal numbers, the mantissa has to be
truncated at a certain number of significant figures before the mathematical operation can be carried out.
This results in a loss of precision in the final answer.

For simplicity, assume that the calculation is carried out to 7 significant figures.

The computer thus adds 0.001100110 to 0.0001100110 to get 0.01001101. Translating this back into denary
notation, this is

2 +2 +2 +2  = 0.25 + 0.03125 + 0.015625 + 0.00390625 = 0.30078125

As a result, if floating point numbers are stored up to 7 significant (binary) figures, we do not expect accuracy
beyond about 3 significant figures in decimal.

This affects many functions which operate on floating point numbers.

-2 -5 -6 -8

In [ ]:

print(round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1))

In [ ]:

print(round(.1 + .1 + .1, 10) == round(.3, 10))



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 13/14

The above explanation is a simplified explanation. Python floating point numbers are accurate to 16
significant figures in base 10.

Problems with floating point numbers
Many uses of floating-point numbers are in extended mathematical procedures involving repeated
calculations. Examples of such use would be in weather forecasting using a mathematical model of the
atmosphere or in economic forecasting. In such programming, there is a slight approximation in recording the
result of each calculation. These rounding errors can become significant if calculations are repeated enough
times. The only way of preventing this becoming a serious problem is to increase the precision of the floating-
point representation by using more bits for the mantissa. Some programming languages offer options two
work in 'double precision' (or 'quadruple precision') where double (or quadruple) the usual number of bytes
are used to store the mantissa.

Another problem is the range of numbers that can be stored. While the range of numbers is much larger than
what can be stored as an integer, there is also a possibility that if a very small number is divided by a very
large one, the result in a value smaller than the smallest possible number that can be stored. This is an
underflow error. Some programming languages treat such a small number as zero; depending on the nature
of the calculation involved, it may lead to errors later on.

In [ ]:

print(2**50)
print(2**50 + 0.1)

In [ ]:

print(10000+0.1-10000)
print(10000-10000+0.1) 

ɪ�����������������������������ţ

In [ ]:

��� i �� range(10): 
   print(1/(2**(1000+i*10))) 

ɪ������������������������������������������������������������������������������������Ŝ

Most calculating devices which have to deal with real numbers use some kind of floating point system. This
includes your graphing calculator! Try some of the calculations on your GC and see what happens!



4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 14/14

Appendix

For your watching pleasure!

Unicode and Character Encoding

https://www.youtube.com/watch?v=wCQSIub_g7M (https://www.youtube.com/watch?v=wCQSIub_g7M)
https://www.youtube.com/watch?v=MijmeoH9LT4 (https://www.youtube.com/watch?v=MijmeoH9LT4)
https://www.youtube.com/watch?v=qBex3IDaUbU (https://www.youtube.com/watch?v=qBex3IDaUbU)
https://www.youtube.com/watch?v=5OPkGQoPeHk (https://www.youtube.com/watch?
v=5OPkGQoPeHk)

Floating Point Numbers

https://www.youtube.com/watch?v=PZRI1IfStY0 (https://www.youtube.com/watch?v=PZRI1IfStY0)

https://www.youtube.com/watch?v=wCQSIub_g7M
https://www.youtube.com/watch?v=MijmeoH9LT4
https://www.youtube.com/watch?v=qBex3IDaUbU
https://www.youtube.com/watch?v=5OPkGQoPeHk
https://www.youtube.com/watch?v=PZRI1IfStY0


: def if

lst[10] lst

lst[10]
lst[10]

if else



In [ ]: # NameError: number and the_sum have not been defined yet 
 
while number = 100:   # logic error: should be <= 
                      # also a syntax error because a single = cannot be used 
    the_sum = the_sum + number 
     
print("The answer is", the_sum) 

In [ ]: number = 1 
the_sum = 0 
 
# logic error: infinite loop since number is not incremented 
while number <= 100: 
    the_sum = the_sum + number 
     
print("The answer is", the_sum) 

In [ ]: # Final corrected code 
number = 1 
the_sum = 0 
 
while number <= 100: 
    the_sum = the_sum + number 
    number += 1 
     
print("The answer is", the_sum) 



try except finally

In [ ]: def median(L): 
    L_length = len(L) 
    L_sorted = sorted(L)  # creates a new sorted list instead of doing L.sort
         
    if L_length % 2 = 1:  # odd number of elements     syntax error: a single 
        return L_sorted[L_length/2]   # TypeError: index must be an integer an
    else:                 # even number of elements 
        return (L_sorted[L_length/2] + L_sorted[L_length/2 + 1])/2   # logic e
 
# Final corrected code 
def median(L): 
    L_length = len(L) 
    L_sorted = sorted(L) 
         
    if L_length % 2 == 1:   # use == 
        return L_sorted[L_length//2]   # use integer division (//) instead to 
    else: 
        return (L_sorted[L_length//2] + L_sorted[L_length//2 - 1])/2   # chang

In [ ]: lst = [1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
# logic error: some values are skipped (2, 4, 6, 8) 
for x in lst: 
    print(x) 
    lst.remove(x) 
     
# Final corrected code 
while lst: 
    print(lst[0]) 
    lst.remove(lst[0])  # OR lst.pop(0) 
     
# Always remember to use a while loop instead of a for loop when we want to ch

In [ ]: try: 
    num = int(input("Enter a number: ")) 
except: 
    print("Are you sure that is a number?") 
finally:   # optional 
    print("This is the end of the program.") 

In [ ]: num1 = 1 
num2 = 0 
 
try: 
    print(num1/num2) 
except ZeroDivisionError as err1: 



    print("An error occurs:", err1) 
except TypeError as err2: 
    print("An error occurs:", err2) 
finally: 
    print("This is the end of the program.") 

In [ ]: # Taking care only normal test cases 
def abbreviate(s): 
    # Extract each word into a list 
    lst = s.split() 
 
    # Abbreviate and capitalise the first letter of each word  
    result = '' 
 
    for i in lst: 
        result += i[0].upper() 
     
    return result 

In [ ]: # Normal test case 1: The first letter of each word is in uppercase  
# It should return "CS". 
abbreviate("Computer Science") 
 
# Normal test case 2: The first letter of each word can be in uppercase or low
# It should return "MOE". 
abbreviate("Ministry of Education") 
 
# Normal test case 3: All letters are in lowercase 
# It should return "PS". 
abbreviate("political science")



int float
str list

In [ ]: # Boundary test case 1: Empty string 
# It can be made to return "Nothing to abbreviate!" 
abbreviate("") 
 
# Boundary test case 2: A string with only one word 
# It can be made to return "Nothing to abbreviate!" 
abbreviate("Python") 
 
# Modified code 
# Can split according to a single white space and a dash 
def split(s): 
    lst = [] 
    temp = "" 
     
    for char in s: 
        if char == " " or char == "-": # char in [" ", "-"] 
            if temp != "": 
                lst.append(temp) 
            temp = "" 
        else: 
            temp += char 
    if temp != "": 
        lst.append(temp) 
         
    return lst 
 
def abbreviate(s): 
    if type(s) != str: 
        return "Only strings can be abbreviated!" 
    if len(s) <= 1: 
        return "Nothing to abbreviate!" 
     
    # Extract each word into a list 
    lst = split(s) 
 
    # Abbreviate and capitalise the first letter of each word  
    result = '' 
 
    for i in lst: 
        if i.isnumeric(): 
            result += i 
        else: 
            result += i[0].upper() 
 
    return result 



In [ ]: # Boundary test case 3: Extra white spaces 
# It should return "MOE". 
abbreviate(" Ministry of  Education ") 
 
# Boundary test case 4: Inclusion of digits  
# It should return "CS101". 
abbreviate("Computer Science 101") 
 
# Boundary test case 5: Anglo-Chinese Junior College 
# It should return "ACJC". 
abbreviate("Anglo-Chinese Junior College") 
 
# How to handle the test cases above? 

In [ ]: # Erroneous test case 1: Integer 
# It can be made to return "Only strings can be abbreviated!" 
abbreviate(123) 
 
# Erroneous test case 2: Boolean 
# It can be made to return "Only strings can be abbreviated!" 
abbreviate(True) 
 
# Modified code 
def abbreviate(s): 
    if type(s) != str: 
        return "Only strings can be abbreviated!" 
    elif len(s) <= 1: 
        return "Nothing to abbreviate!" 
     
    # Extract each word into a list 
    lst = s.split() 
 
    # Abbreviate and capitalise the first letter of each word  
    result = '' 
 
    for i in lst: 
        result += i[0].upper() 
 
    return result 





In [ ]: score = None 
grade = '' 
 
while score == None: 
    score = int(input("Enter score: ")) 
     
    # Range check 
    if score < 0 or score > 100: 
        print("The score entered is out of range. It should be between 0 and 
        score = None 
 
if (score >= 70): 
    grade = 'Distinction' 
elif (score >= 60): 
    grade = 'Merit' 
elif (score >= 50): 
    grade = 'Pass' 
else: 
    grade = 'Fail' 
 
print("Grade: " + grade) 



In [ ]: score = None 
grade = '' 
 
while (score == None): 
    score = input("Enter score: ") 
     
    # Format check 
    if not score.isdigit(): 
        print("You have entered an invalid score. It must be an integer betwee
        score = None 
        continue
 
    score = int(score) 
     
    # Range check 
    if (int(score) < 0 or int(score) > 100): 
        print("The score entered is out of range. It should be between 0 and 
        score = None 
 
if (score >= 70): 
    grade = 'Distinction' 
elif (score >= 60): 
    grade = 'Merit' 
elif (score >= 50): 
    grade = 'Pass' 
else: 
    grade = 'Fail' 
 
print("Grade: " + grade) 

In [ ]: password = None 
 
while password == None: 
    password = input("Create a password: ") 
 
    # Length check 
    if len(password) < 8: 
        print("Your password needs to be at least 8 characters long.") 
        password = None 
 
print("Password accepted.") 

In [ ]: password = None 
 
while password == None: 
    password = input("Create a password: ") 



s % 10 == 0

100 % 10 == 0

 
    # Presence check 
    if (password == ''): 
        print("You have not entered anything.") 
        password = None 
         
    # Length check 
    elif len(password) < 8: 
        print("Your password needs to be at least 8 characters long.") 
        password = None 
 
print("Password accepted.") 









- is_empty() 
- size() 
- push(item) 
- pop()
- peek() 

True 

Stack is empty! 

5 

3 

b 

In [58]: # Type your code here 
class Stack: 
    def __init__(self): self.stack = [] 
    def is_empty(self): return not self.stack 
    def size(self): return len(self.stack) 
    def push(self, item): self.stack.append(item) 
    def pop(self): return self.stack.pop() if self.stack else 
None 
    def peek(self): return self.stack[-1] if self.stack else 
None 

In [59]: s = Stack() 

In [60]: # This should display True 
print(s.is_empty()) 

In [61]: # There is no item to peek 
print(s.peek()) 

In [62]: s.push(2) 

In [63]: s.push(5) 

In [64]: #This should display 5 
print(s.peek()) 

In [65]: s.push('b') 

In [66]: # This should display 3 
print(s.size()) 

In [67]: # This should display 'b' 
print(s.pop()) 

In [68]: # This should display 5 
print(s.pop()) 



5 

False 

In [69]: # This should return False 
print(s.is_empty()) 



- is_empty() 
- size() 
- enqueue(item) 
- dequeue() 
- show_head() 
- show_tail() 

In [1]: # Type your code here 
class Queue: 
    def __init__(self): self.queue = [] 
    def is_empty(self): return not self.queue 
    def size(self): return len(self.queue) 
    def enqueue(self, item): self.queue.append(item) 
    def dequeue(self): return self.queue.pop(0) if self.queue 
else None 
    def show_head(self): return self.queue[0] if self.queue 
else None 
    def show_tail(self): return self.queue[-1] if self.queue 
else None 



True 

Stack is empty! 

3 

8 

2 

k 

3 

In [103… q = Queue() 

In [104… # This should return True 
print(q.is_empty()) 

In [105… # There is no item at the head 
print(q.show_head()) 

In [106… q.enqueue(3) 

In [107… q.enqueue(8) 

In [108… # This should display 3 
print(q.show_head()) 

In [109… # This should display 8 
print(q.show_tail()) 

In [110… # This should display 2 
print(q.size()) 

In [111… q.enqueue('k') 

In [112… # This should display 'k' 
print(q.show_tail()) 

In [113… # This should display 3 
print(q.dequeue())





In [1]: class Array: 
     
    def __init__(self, n): 
    # The array is initialised as a list, of length n, of empty strings. 
        self.Array = [] 
        for i in range(n): 
            self.Array.append("") 
 
    def add_entry(self, i, newstring): 
    # Change the entry at index i to newstring 
        self.Array[i] = newstring 
     
    def get_entry(self, i): 
    # Returns the entry at index i 
        return self.Array[i] 
 
    # If we want to make a delete method, the best we can do is 
    # make a method to replace the string there with an empty string. 
     
    def delete_entry(self, i): 
    # Deletes the entry at index i 
        self.add_entry(i, "") 
 
MyArray = Array(10) 
MyString = "singapore" 



sing 
singa
singap 
sing 

singap 

for i in range(len(MyString)): 
    MyArray.add_entry(i, MyString[:i]) 
 
for i in range(4,7): 
    print(MyArray.get_entry(i)) 
 
MyArray.delete_entry(5) 
 
for i in range(4,7): 
    print(MyArray.get_entry(i)) 

In [ ]: class Array: 
    def __init__(self, n): 
        self.Array = [] 
        for i in range(n): 
            self.Array.append("") 
     
    def add_entry(self, i, newstring): 
        self.Array[i-1] = newstring 
     
    def get_entry(self, i): 
        return self.Array[i-1] 

In [3]: class TDArray: 
    def __init__(self, row, col): 
        self.TDArray = [] 
        for _ in range(row): 
            temp = [""] * col 
            self.TDArray.append(temp) 
 
    def add_entry(self, row, col, new_string): 
        self.TDArray[row][col] = new_string 
     
    def get_entry(self, row, col): 
        return self.TDArray[row][col] 
     
    def delete_entry(self, row, col): 
        self.add_entry(row, col, "") 





In [ ]: class Stack(Array): 
 
    def __init__(self, n): 
         
        # We define a Stack as a subclass of Array. 
        # In this example, the convention for the indices is that 
        # they go from 0 to n-1 (inclusive). 
         
        self.Array = [] 
        for i in range(n): 
            self.Array.append("") 
 
        self.StackPointer = 0 
        # In an empty Stack, the StackPointer points to a non-existent entry. 
        # Note that in the code, we do not use -1 to refer to the 
        # last entry of the array. 
     
    def size(self): 
         
        # This returns the number of elements currently in the Stack. 
         
        return self.StackPointer 
         
    def push(self, newstring): 
         
        # The stack is full when there are n entries in it. 
        # The StackPointer then points to the hypothetical cell at index = n 
         
        if self.StackPointer == len(self.Array)-1: 
            print("Error: Stack is full!") 



        else: 
            self.StackPointer += 1 
            self.add_entry(self.StackPointer, newstring)
     
    def pop(self): 
         
        # The stack is empty when there are no entries in it. 
        # The StackPointer then points to hypothetical cell at index = -1. 
         
        if self.StackPointer == -1: 
            print("Error: Stack is empty!") 
        else: 
            data = self.Array[self.StackPointer] 
            self.Array[self.StackPointer] = "" 
            self.StackPointer -= 1 
            return data 
     
    def peek(self): 
        if self.StackPointer == -1: 
            print("Error: Stack is empty!") 
        else: 
            return self.Array[self.StackPointer] 





In [ ]: class CircularQueue(Array): 
    def __init__(self, n): 
         
        # We define a CircularQueue as a subclass of Array. 
        # In this example, the convention for the indices is that 
        # they go from 0 to n-1 (inclusive). 
         
        self.Array = [] 
        for i in range(n): 
            self.Array.append("") 
         
        self.Head = 0 
        self.Tail = 0 
        # The head and tail pointers both start off pointing to 
        # the smallest index in the array. 
         
        self.MaxSize = n-1 
        # Since the tail pointer must always point to an empty cell, 
        # we can only put a maximum of n-1 entries in the queue. 
     
    def size(self): 
         
        # This returns the number of elements currently in the queue. 
        # This is useful later. 
         
        if self.Tail >= self.Head: 
            return (self.Tail - self.Head) 
        else:                     
            # If the tail has gone around the circle but the head has not, 
            # what is the size of the queue? 
            return (self.MaxSize + 1 - (self.Head-self.Tail)) 
     
    def enqueue(self, newstring): 
 
        # The CircularQueue is full when there are n-1 entries in it. 
         
        if self.size() == self.MaxSize: 
            print("Error: Queue is full!") 



        else: 
            self.add_entry(self.Tail, newstring) 
            self.Tail = (self.Tail + 1) % (self.MaxSize + 1) 
     
    def dequeue(self): 
         
        # The circular queue is empty when there are no entries in it. 
        # The head and tail pointers are thus pointing to the same cell. 
         
        if self.size() == 0: 
            print("Error: Queue is empty!") 
        else: 
            data = self.Array[self.Head] 
            self.Array[self.Head] = "" 
            self.Head = (self.Head + 1) % (self.MaxSize + 1) 
            return data 
     
    def readHead(self): 
        if self.size() == 0: 
            print("Error: Queue is empty!") 
        else: 
            return self.Array[self.Head] 
     
    def readTail(self): 
        if self.size() == 0: 
            print("Error: Queue is empty!") 
        else: 
            return self.Array[self.Tail-1] 
            # Here, we are using Python's convention that when the index is -
            # it refers to the last entry in the array. 



2020 JC1 H2 Computing 9569

18. Linked List and Dynamic Memory
The order of data entries in the array corresponds directly to the order in which the

entries are stored in the memory block of the computer. As we have seen, we would like

to keep the data in the array contiguous so that it is easy to iterate through the data to

locate the entry that we want. For an array where data gets inserted and deleted

frequently, this is troublesome as it would mean having to shuffle data around repeatedly.

In the previous chapter, we saw that one way to get around this problem is to prevent it

from arising, i.e., to add or delete data only at one end of the array. This led us to two

data structures, the stack and the queue. We also introduced the concept of the pointer.

Using pointers, we can also solve the problem of having a frequently-changing array in a

different way. This is to make use of a new data structure, a linked list.

A linked list is a linear data structure where the order of the data entries may not

correspond their physical placement in the memory block of the computer. In a linked list,

each entry may be stored in a different area of the memory block. However, we still need

to ensure that we can still go from one entry to the next in a list. To do this, each entry

should be represented as a node, which consists of two parts: the data, and a pointer

(typically called next) to indicate the location of the next entry in the list. (You may think

of a node as a list/tuple of length two.)

We also need to know where the list begins and ends. For the beginning of the list, we

have a pointer to indicate the location of the first entry, known as the start pointer or

head pointer. At the end of the list, the last entry has a null pointer (in the case of

Python, the pointer shall point to None). This indicates that there are no further entries in

the list.

The diagram below shows how the list [5, 10, 20, 1] looks like as a linked list.

Creating a Linked List

Before we can create the LinkedList class, we need to define the Node class, the

objects of which shall be the buildings blocks for our linked list.



With the above, we can now proceed to make a linked list llist to represent the list [1,
2, 3].

Three nodes have been created, namely llist.head, second and third. At the

moment, they are not linked to one another as all their pointers point to None.

     llist.head         second             third 
         |                 |                 | 
         |                 |                 | 
    +----+------+     +----+------+     +----+------+ 
    | 1  | None |     | 2  | None |     | 3  | None | 
    +----+------+     +----+------+     +----+------+ 

Let us link the first node with the second.

The first node has been linked to the second.

     llist.head         second             third 
         |                 |                 | 
         |                 |                 | 
    +----+------+     +----+------+     +----+------+ 
    | 1  |  o-------->| 2  | None |     | 3  | None | 
    +----+------+     +----+------+     +----+------+  

How should we link the second node with the third?

In [ ]: class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None

In [ ]: llist = LinkedList()

llist.head  = Node(1)
second = Node(2)
third  = Node(3)

In [ ]: print(llist.head.next)
print(second.next)
print(third.next)

In [ ]: llist.head.next = second

print(llist.head.next)
print(llist.head.next.data)



We have now successfully created the linked list with three entries.

     llist.head         second             third 
         |                 |                 | 
         |                 |                 | 
    +----+------+     +----+------+     +----+------+ 
    | 1  |  o-------->| 2  |  o-------->| 3  | None | 
    +----+------+     +----+------+     +----+------+ 

Printing Entries

The method PrintList contains a variable called temp that helps us to iterate through

the entries and prints them out sequentially.

Try running the code below to check whether your implementation of PrintList is

correct.

In [ ]: print(second.next)
print(second.next.data)

In [6]: class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None
    
    def PrintList(self):
        temp = self.head
        while temp != None:
            print(temp.data)
            temp = temp.next

In [ ]: llist = LinkedList()

llist.head  = Node(1)
second = Node(2)
third  = Node(3)

llist.head.next = second
second.next = third

llist.PrintList()



Adding a Node

Notice that there are three places where we can add nodes:

at the beginning (Push method)

somewhere in the middle (InsertAfter method)

at the end (Append method)

You may wish to use the space below to draw a diagram to illustrate what the code is

actually doing.

Work through the code below and try to guess the sequence of the entries in the linked

list before running it.

In [ ]: class LinkedList:
    # Copy and paste the methods: __init__, printList
    
    def Push(self, new_data):     
        new_node = Node(new_data)
        new_node.next = self.head
        self.head = new_node
    
    def InsertAfter(self, prev_data, new_data):
        #check if prev_node is in the linked list
        temp = self.head
        while temp != None:
            if temp.data == prev_data:
                new_node = Node(new_data) 
                new_node.next = temp.next
                temp.next = new_node
                break
            else:
                temp = temp.next
        if temp == None:
            # iterated thru whole list, cannot find prev_data
            print("Error: Cannot find prev_data")
    
    def Append(self, new_data):   
        new_node = Node(new_data)
 
        # if the linked list is empty, new_node shall become the first entry
        if not self.head:
            self.head = new_node
            return

        # at the end of the loop, last points to the last node before appending the new node
        last = self.head

        while last.next:
            last = last.next
                                  
        last.next = new_node



At this point you may be wondering if it is possible to InsertAfter a node with a given

index (in the linked list). You would need to modify the code of InsertAfter to do this.

You may also be wondering if it is possible to InsertAfter a node with a given data. To

do this, we would first need to search for the node with that particular data within the list.

This is addressed both of the sections below, "Deleting a Node" and "Searching for an

Entry".

Deleting a Node

We may identify the node to be deleted by its index or by its data. The code below shows

how to identify a node by its data before deleting it.

What are some considerations we must bear in mind before deleting a node?

In [ ]: llist = LinkedList()

llist.Append(6)
llist.Push(7)
llist.Push(1)
llist.Append(4)
llist.InsertAfter(7, 8)
llist.InsertAfter(8, 9)
  
print('Result:')
llist.PrintList()



Try running the code below to check whether your implementation of deleteNode is

correct.

Searching For an Entry

Searching for an entry - that is, searching for a node which has a given data stored inside

it - can either be done iteratively or recursively.

In [ ]: class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    # Copy and paste the methods: __init__, PrintList, Push, InsertAfter, Append
    
    def DeleteNode(self, to_delete): 
        temp = self.head
        
        # if the list if empty, there is nothing to be done
        if not self.head:                  
            return 
     
        # if the first node is the one to be deleted
        if self.head.data == to_delete:                  
            self.head = self.head.next
            temp = None                # delete the data in temp
            return
        
        # when the node to be deleted is somewhere else
        # need to know the node BEFORE the one to be deleted when the loop breaks
        while temp:                    
            if temp.data == to_delete:
                break 
            prev = temp                
            temp = temp.next

        prev.next = temp.next
        temp = None                    # delete the data in temp

In [ ]: llist = LinkedList() 
llist.Push(7) 
llist.Push(1) 
llist.Push(3) 
llist.Push(2) 

llist.PrintList()

llist.DeleteNode(1)
llist.PrintList()



Either search method should return True when the integer 21 is supplied as an

argument.

Setting Up a Linked List Inside an Array

Similar to what we have done for stacks and queues, we would like to simulate a

computer's memory block using an array and use that to store a linked list. To do that, we

need to first create something called a free list. This is a linked list containing all the

unused memory cells. At the beginning, since all the cells are unused, the free list would

be the same as the array.

In [ ]: class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    # Copy and paste the methods: __init__, printList, push, insertAfter, append, deleteNode
    
    def Search_iter(self, x):       # iterative search
        temp = self.head
        while temp.data != x:
            temp = temp.next
            if temp == None:
                return "Not Found!"
        return "Found!"
    
    def Search_recur(self, x):  # recursive search
        def Search_recur_helper(cur, x):
            if not cur:
                return False
            elif cur.data == x:
                return True
            else:
                return Search_recur_helper(cur.next, x)

        return Search_recur_helper(self.head, x)

In [ ]: llist = LinkedList() 

llist.Push(10)
llist.Push(30)
llist.Push(11)
llist.Push(21)
llist.Push(14)
  
print(llist.Search_iter(21))
print(llist.Search_recur(21))



In [ ]: class Array:
    
    # The array has indices 0 to n-1 (inclusive).
    # Each entry in the array is a node, which will be a list of two elements.
    
    def __init__(self, n):
        self.Array = []
        for i in range(n-1):
            node = ["", i+1]
            
            # node[0] the data, which we initialise using an empty string.
            # node[1] is the pointer.
            
            self.Array.append(node)
        
        self.Array.append(["",None])
        
        self.FreeListPointer = 0 # Head pointer of free list.



Our array now looks like this (where we use n=5):

FreeListPointer = 0

Array:
    +------+---------+
    | Data | Pointer |
    +------+---------+
[0] |  ""  |    1    |
[1] |  ""  |    2    |
[2] |  ""  |    3    |
[3] |  ""  |    4    |
[4] |  ""  |  None   |
    +------+---------+

If we were to visualise this linked list using the diagrams we had above, it would look like

this:

FreeListPointer
     |
     | 
+----+-----+   +----+-----+   +----+-----+   +----+-----+   
+----+------+ 
| "" |  o----->| "" |  o----->| "" |  o----->| "" |  o----->| 
"" | None |
+----+-----+   +----+-----+   +----+-----+   +----+-----+   
+----+------+ 
(Cell [0])     (Cell [1])     (Cell [2])     (Cell [3])     
(Cell [4])

Suppose we decide to create a linked list using this array. We would begin by initialising it

as an empty linked list (i.e. the head pointer points to None).

To add a node to the linked list:

1. Determine where the node is to be added (see "Adding a Node" abvove).

2. The data for the new node goes into the first node of the free list.

3. Update the pointers (not necessarily in the order indicated):

A. Free list pointer points to the second node of the free list.

B. The new node points to the node after the insertion point.

C. The node before the insertion point points to the new node.

To delete a node from the linked list:

1. The data of the node is deleted and the node is added to the beginning of the free

list.

2. The pointers in the linked list are updated.



Example

Step 1

We create a list called MyList. Initially it is empty.

MyListPointer = None
FreeListPointer = 0

Array:
    +------+---------+
    | Data | Pointer |
    +------+---------+
[0] |  ""  |    1    |
[1] |  ""  |    2    |
[2] |  ""  |    3    |
[3] |  ""  |    4    |
[4] |  ""  |  None   |
    +------+---------+

MyListPointer
   |
   |
   None

FreeListPointer
     |
     | 
+----+-----+   +----+-----+   +----+-----+   +----+-----+   
+----+------+ 
| "" |  o----->| "" |  o----->| "" |  o----->| "" |  o----->| 
"" | None |
+----+-----+   +----+-----+   +----+-----+   +----+-----+   
+----+------+ 
(Cell [0])     (Cell [1])     (Cell [2])     (Cell [3])     
(Cell [4])



Step 2

We add "Tom" into MyList.

MyListPointer = 0
FreeListPointer = 1

Array:
    +-------+---------+
    | Data  | Pointer |
    +-------+---------+
[0] | "Tom" |  None   |
[1] |  ""   |    2    |
[2] |  ""   |    3    |
[3] |  ""   |    4    |
[4] |  ""   |  None   |
    +-------+---------+

MyListPointer
   |
   |
+-------+------+
| "Tom" | None | 
+-------+------+

FreeListPointer
     |
     | 
+----+-----+   +----+-----+   +----+-----+   +----+------+
| "" |  o----->| "" |  o----->| "" |  o----->| "" | None |
+----+-----+   +----+-----+   +----+-----+   +----+------+
(Cell [1])     (Cell [2])     (Cell [3])     (Cell [4])



Step 3

We add "Sue" into MyList before "Tom".

MyListPointer = 1
FreeListPointer = 2

Array:
    +-------+---------+
    | Data  | Pointer |
    +-------+---------+
[0] | "Tom" |  None   |
[1] | "Sue" |    0    |
[2] |  ""   |    3    |
[3] |  ""   |    4    |
[4] |  ""   |  None   |
    +-------+---------+

MyListPointer
   |
   |
+-------+-----+   +-------+------+
| "Sue" |  o----->| "Tom" | None |
+-------+-----+   +-------+------+

FreeListPointer
     |
     | 
+----+-----+   +----+-----+   +----+------+
| "" |  o----->| "" |  o----->| "" | None |
+----+-----+   +----+-----+   +----+------+
(Cell [2])     (Cell [3])     (Cell [4])



Step 4

We add "Ted" into MyList after "Sue".

MyListPointer = 1
FreeListPointer = 3

Array:
    +-------+---------+
    | Data  | Pointer |
    +-------+---------+
[0] | "Tom" |  None   |
[1] | "Sue" |    2    |
[2] | "Ted" |    0    |
[3] |  ""   |    4    |
[4] |  ""   |  None   |
    +-------+---------+

MyListPointer
   |
   |
+-------+-----+   +-------+-----+   +-------+------+
| "Sue" |  o----->| "Ted" |  o----->| "Tom" | None |
+-------+-----+   +-------+-----+   +-------+------+

FreeListPointer
     |
     | 
+----+-----+   +----+------+
| "" |  o----->| "" | None |
+----+-----+   +----+------+
(Cell [3])     (Cell [4])



Step 5

We delete "Sue" from MyList.

MyListPointer = 2
FreeListPointer = 1

Array:
    +-------+---------+
    | Data  | Pointer |
    +-------+---------+
[0] | "Tom" |  None   |
[1] |  ""   |    3    |
[2] | "Ted" |    0    |
[3] |  ""   |    4    |
[4] |  ""   |  None   |
    +-------+---------+

MyListPointer
   |
   |
+-------+-----+   +-------+------+
| "Ted" |  o----->| "Tom" | None |
+-------+-----+   +-------+------+

FreeListPointer
     |
     | 
+----+-----+   +----+-----+   +----+------+
| "" |  o----->| "" |  o----->| "" | None |
+----+-----+   +----+-----+   +----+------+
(Cell [1])     (Cell [3])     (Cell [4])

Notice that neither MyList nor the free list forms a contiguous block of cells in the array.

Also notice that the order of data entries in MyList is different in the array, and in the

linked list itself.

Instead of moving data around within the array, we leave it in the fixed location and only

update pointer values.



Note:

1. Some programmers use -1 (instead of None) to indicate the null pointer. In this case,

we need to avoid writing code in Python where -1 is used as the index of the last

element of a list to avoid confusion.

2. In the example shown, our array indices are from 0 to n-1. Cambridge may also use

array indices 1 to n. In this case, it is common to use 0 for the null pointer.

3. Notice that it is possible for two (or more) linked lists to share the same array. One

example is shown below.

BoyListPointer = 2
GirlListPointer = 3
FreeListPointer = 1

Array:
    +-------+---------+
    | Data  | Pointer |
    +-------+---------+
[0] | "Tom" |  None   |
[1] |  ""   |  None   |
[2] | "Ted" |    0    |
[3] | "Sue" |    4    |
[4] | "Ann" |  None   |
    +-------+---------+

BoyListPointer
   |
   |
+-------+-----+   +-------+------+
| "Ted" |  o----->| "Tom" | None |
+-------+-----+   +-------+------+

GirlListPointer
   |
   |
+-------+-----+   +-------+------+
| "Sue" |  o----->| "Ann" | None |
+-------+-----+   +-------+------+

FreeListPointer
     |
     | 
+----+------+
| "" | None |
+----+------+

This provides an analogy for how linked lists are stored within the computer's memory.

Multiple linked lists may not necessarily occupy contiguous blocks and their memory cells

may be intermingled with one another.



Doubly Linked List & Circular Linked List [Not in
Syllabus]

In a doubly linked list, each node has two pointers: one to the previous node and one to

the next node. This allows us to traverse the linked list in two directions. An example of a

doubly linked list is the list of webpages accessed when you are browsing the Internet.

You can traverse the list using the back and forward buttons on your browser.

In a circular linked list, the pointer of the last node points to the first node. An example

of a circular linked list is a music or video playlist that loops back to the first item after the

last one has finished playing.

Doubly linked list and circular linked list are not in the syllabus, but once you have

understood the concept of linked list well, they should not be difficult to implement.

Appendix

You may want to watch the following video to help you understand linked lists better.

https://www.youtube.com/watch?v=_jQhALI4ujg (until 6:25 for the syllabus)

https://www.youtube.com/watch?v=_jQhALI4ujg


DECLARE A : INTEGER

A ← 34 A = 34

B ← B + 1 B = B + 1

IF A > B
    THEN
    ELSE
ENDIF

if A > B:
    
else:
    

REPEAT
    
UNTIL A > B

WHILE A <= B
    
ENDWHILE

while A <= B:
    

FOR N ← 0 TO 10
    
ENDFOR

for N in range(11):
    

INPUT "Prompt:" A a = input("Prompt:")

OUTPUT "Message" B print("Message")
print(B)

// Comment # Comment

= =



< <

> >

<= <=

>= >=

<> !=

+ +

- -

* *

/ /

^ **

DIV //

MOD %

DECLARE n: INTEGER       // While variable declaration is not 
compulsory, 
DECLARE Total: INTEGER   // it is a good practice to do so, so 
that other people 
DECLARE Count: INTEGER   // reading your code know what data 
type it is. 

n ← 0 

WHILE n <= 0 
    INPUT n 
ENDWHILE 

Total ← 0 
Count ← 0 

REPEAT 
    INPUT Number 
    Total ← Total + Number 
    Count ← Count + 1
UNTIL Count = n 

OUTPUT Total/Count 



INPUT a
INPUT b
INPUT c

d ← (b*b) - (4*a*c) 

IF d < 0 
    THEN 
        OUTPUT "There are no real roots." 
    ELSE 
        SquareRoot ← SQRT(d)                 // For common 
mathematical functions, we can use abbreviations 
        Root1 ← (-b + SquareRoot) / (2*a) 
        Root2 ← (-b - SquareRoot) / (2*a) 
        OUTPUT Root1 and Root2 
ENDIF 

INPUT Value1 
INPUT Value2 

In [ ]: # Find average of n numbers 
# Type your code here
n = 0 
while n <= 0: 
    n = int(input("Enter number of numbers to input: "))
 
total = 0 
count = 0 
 
while count != n: 
    number = int(input(f"Enter number {count + 1}: ")) 
    total += number 
    count += 1 
 
print(total/count) 

In [ ]: # Find real roots of quadratic equation 
# Type your code here
a = int(input()) 
b = int(input()) 
c = int(input()) 
d = b*b - 4*a*c 
 
if d < 0: 
    print("There are no real roots.") 
else: 
    SquareRoot = d**0.5 
    Root1 = (-b + SquareRoot) / (2*a) 
    Root2 = (-b - SquareRoot) / (2*a) 
    print(Root1, Root2) 



Temp ← Value1 
Value1 ← Value2 
Value2 ← Temp 

INPUT Value1 
INPUT Value2 

Value1 ← Value1 + Value2 
Value2 ← Value1 - Value2 
Value1 ← Value1 - Value2 

Input value 1: 1 
Input value 2: 2 

DECLARE List1: ARRAY[1:3] of INTEGER     // This is a 1D array 
of integers of size 3. 
DECLARE List2: ARRAY[1:3] of INTEGER     // This is another 1D 
array of integers of size 3.

FOR Index ← 1 TO 3 
    List1[Index] ← Index*2 
ENDFOR 

FOR Index ← 1 TO 3 
    List2[Index] ← Index^2 
ENDFOR 

In [ ]: # Swap two values with temporary variable 
# Type your code here
Value1 = input("Input value 1: ") 
Value2 = input("Input value 2: ") 
 
Temp = Value1 
Value1 = Value2 
Value2 = Temp 

In [2]: #Swap two values without temporary variable 
# Type your code here
Value1 = int(input("Input value 1: ")) 
Value2 = int(input("Input value 2: ")) 
 
Value1 = Value1 + Value2 
Value2 = Value1 - Value2 
Value1 = Value1 - Value2 

In [6]: # Get a list of consecutive and square numbers 



DECLARE List: ARRAY[0:2, 0:4] of STRING 

OUTPUT List[1, 2]   // This is the equivalent of List[1][2] in 
Python 

str2 str1
str2 str1

LOCATE(str1, 
str2) str1.find(str2)

n str LEFT(str, n) str[0:n]

n str
m

MID(str, m, 
n) str[m:m+n]

n str
RIGHT(str, 
n) str[-n:]

str LENGTH(str) len(str)

str1 str2

str1 & str2

CONCAT(str1, 
str2)

str1 + str2

   A 
  AAA 
 AAAAA 
AAAAAAA

# Type your code here
List1 = [] 
List2 = [] 
 
for i in range(1, 4): 
    List1.append(i*2) 
 
for i in range(1, 4): 
    List2.append(i**2) 



INPUT character                          // the character to be 
used in the pyramid 

REPEAT 
    INPUT MaxNumberOfCharacters          // the number of 
characters in the bottom row (must be odd)
UNTIL MaxNumberOfCharacters MOD 2 = 1 

NumberOfSpaces ← (MaxNumberOfCharacters - 1)/2 
NumberOfCharacters ← 1 

REPEAT 
    FOR i ← 1 TO NumberOfSpaces 
        OUTPUT < ' Space' > 
    ENDFOR 

    FOR i ← 1 TO NumberOfCharacters
        OUTPUT character 
    ENDFOR 

    OUTPUT Newline      // This goes to the next line. It is 
like pressing "enter" or using "\n" in Python. 

    NumberOfSpaces ← NumberOfSpaces - 1 
    NumberOfCharacters ← NumberOfCharacters + 2 
UNTIL NumberOfCharacters > MaxNumberOfCharacters 

INPUT MyName 
LengthOfName ← LENGTH(MyName) 
PositionOfSpace ← LOCATE(MyName, '< Space >') 

FirstWord ← LEFT(MyName, PositionOfSpace) 
RestOfName ← RIGHT(MyName, (LengthOfName - PositionOfSpace - 1)) 

OUTPUT RestOfName & '< Space >' & FirstWord 

1 
1  

DECLARE MyList: ARRAY[0:6] of INTEGER 

In [12]: # Flips name 
# Type your code here
MyName = input() 
LengthOfName = len(MyName) 
PositionOfSpace = MyName.find(" ") 
FirstWord = MyName[:PositionOfSpace] 
RestOfName = MyName[-(LengthOfName - PositionOfSpace - 1):] 
 
print(RestOfName + ' ' + FirstWord) 



FOR Index ← 0 TO 6 
    INPUT MyList[Index] 
ENDFOR 

MaxIndex ← 6 
INPUT SearchValue 
Found ← FALSE 
Index ← 0 

REPEAT 
    IF MyList[Index] = SearchValue 
        THEN 
            Found ← TRUE 
    ENDIF 
    Index ← Index + 1
UNTIL FOUND = TRUE OR Index > MaxIndex 

IF Found = TRUE 
    THEN 
        OUTPUT "Value found at location:" Index 
    ELSE 
        OUTPUT "Value not found" 
ENDIF 

CALL SetValues
REPEAT 
    CALL OutputSpaces
    CALL OutputCharacters 
    CALL AdjustValuesForNextRow 
UNTIL NumberOfCharacters > MaxNumberOfCharacters 

PROCEDURE SetValues 
    INPUT Character 
    CALL InputMaxNumberOfCharacters // We called yet another 
procedure which we need to define. 
    NumberOfSpaces ← (MaxNumberOfCharacters - 1)/2 
    NumberOfCharacters ← 1 
ENDPROCEDURE 

PROCEDURE InputMaxNumberOfCharacters 
    REPEAT 
        INPUT MaxNumberOfCharacters
    UNTIL MaxNumberOfCharacters MOD 2 = 1 
ENDPROCEDURE 



PROCEDURE OutputSpaces 
    FOR Count ← 1 TO NumberOfSpaces
        OUTPUT '< Space >' 
    ENDFOR 
ENDPROCEDURE 

PROCEDURE OutputCharacters 
    FOR Count ← 1 TO NumberOfCharacters 
        OUTPUT Character 
    ENDFOR 
    OUTPUT Newline 
ENDPROCEDURE 

PROCEDURE AdjustValuesForNextRow 
    NumberOfSpaces ← NumberOfSpaces - 1 
    NumberOfCharacters ← NumberOfCharacters + 2 
ENDPROCEDURE 

FUNCTION InputOddNumber() RETURNS INTEGER 
    REPEAT 
        INPUT "Enter an odd number: " Number 
    UNTIL Number MOD 2 = 1 
    RETURN Number 
ENDFUNCTION 

FUNCTION SumAP(FirstTerm: INTEGER, LastTerm: INTEGER) RETURNS 
INTEGER
DECLARE Sum, CurrTerm : INTEGER 
    Sum ← 0 
    FOR CurrTerm ← FirstTerm TO LastTerm 
        Sum ← Sum + CurrTerm
    ENDFOR 
    RETURN Sum
ENDFUNCTION 

In [16]: # Input odd number and returns it 
# Type your code here
def InputOddNumber(): 
    Number = 0 
    while Number % 2 != 1: 
        Number = int(input("Enter an odd number: ")) 
    return Number 



OutputCharacters

AdjustValuesForNextRow

PROCEDURE OutputCharacters(BYVAL NumberOfCharacters : INTEGER, 
BYVAL Character: CHAR) 
DECLARE Count : INTEGER 
    FOR Count ← 1 TO NumberOfCharacters 
        OUTPUT Character 
    ENDFOR 
    OUTPUT Newline 
ENDPROCEDURE 

PROCEDURE AdjustValuesForNextRow(BYREF Spaces : INTEGER, BYREF 
Characters : INTEGER)
    Spaces ← Spaces - 1 
    Characters ← Characters + 2 
ENDPROCEDURE 

CALL SetValues
REPEAT 
    CALL OutputSpaces
    CALL OutputCharacters 
    CALL AdjustValuesForNextRow(NumberOfSpaces, 
NumberOfCharacters) 
UNTIL NumberOfCharacters > MaxNumberOfCharacters 

In [22]: def sumAP(FirstTerm, LastTerm): 
    Sum = 0 
    for CurrTerm in range(FirstTerm, LastTerm+1): 
        Sum = Sum + CurrTerm 
    return Sum 

In [ ]: def OutputCharacters(NumberOfCharacters, Character): 
    for Count in range(NumberOfCharacters): 
        print(Character, end='') 
    print() 
 
OutputCharacters(5, 'A') 



FUNCTION Factorial(n : INTEGER) RETURNS INTEGER 
    IF n = 0 
        THEN 
            Result ← 1 
        ELSE 
            Result ← n * Factorial(n-1) 
    ENDIF 
    RETURN Result 
ENDFUNCTION 

In [ ]: def AdjustValuesForNextRow(Spaces, Characters): 
    Spaces = Spaces - 1 
    Characters = Characters + 1 
    return Spaces, Characters 
 
NumberOfSpaces = int(input()) 
NumberOfCharacters = int(input()) 
NumberOfSpaces, NumberOfCharacters = AdjustValuesForNextRow(NumberOfSpaces, Nu
print(NumberOfSpaces) 
print(NumberOfCharacters) 









In [ ]: # Type your answer below. 
 
# Pre-order  : a, b, d, c, e, f 
     
# In-order   : b, d, a, e, c, f 
     
# Post-order : d, b, e, f, c, a 



In [ ]: class Node: 
    def __init__(self, data): 
        self.data = data    # primitive data type, e.g. integer, string 
        self.left = None    # this shall point to the left child node in the B
        self.right = None   # this shall point to the right child node in the 



In [ ]: class BST: 
    # The BST is empty when initialised 
    def __init__(self): 
        self.root = None 
 
    # Inserts a new node with the given data to the BST 
    def insert(self, data): 
        def insert_helper(cur, data): 
            if data < cur.data: 
                # If there exists a left child, traverse to the left child via
                if cur.left: 
                    insert_helper(cur.left, data) 
                # Else, create a new node as the left child 
                else:



                    cur.left = Node(data) 
            else: 
                # If there exists a right child, traverse to the right child 
                if cur.right: 
                    insert_helper(cur.right, data) 
                # Else, create a new node as the left child 
                else:
                    cur.right = Node(data) 
                     
        # If the tree is empty, create a new node as the root 
        if self.root == None: 
            self.root = Node(data) 
        # Else, start to traverse the tree by calling the helper function 
        else: 
            insert_helper(self.root, data) 
 
    # Searches for a node with the given data in the BST 
    # Returns True when found, and False otherwise 
    def search(self, data): 
        def search_helper(cur, data): 
            if cur == None: 
                return False 
            elif data == cur.data: 
                return True 
            elif data < cur.data: 
                return search_helper(cur.left, data) 
            else: 
                return search_helper(cur.right, data) 
         
        return search_helper(self.root, data) 
 
    # Prints out the result of pre-order traversal of the BST 
    def pre_order(self): 
        def pre_order_helper(cur): 
            print(cur.data, end=' ') 
            if cur.left: 
                pre_order_helper(cur.left) 
            if cur.right: 
                pre_order_helper(cur.right) 
 
        # If the tree is empty 
        if self.root == None: 
            print("Tree is empty!") 
        else: 
            pre_order_helper(self.root) 
 
    # Prints out the result of in-order traversal of the BST 
    def in_order(self): 
        def in_order_helper(cur): 
            if cur.left: 
                in_order_helper(cur.left)
            print(cur.data, end=' ') 
            if cur.right: 
                in_order_helper(cur.right) 
                
        # If the tree is empty 
        if self.root == None: 
            print("Tree is empty!") 
        else: 
            in_order_helper(self.root) 
 
    # Prints out the result of post-order traversal of the BST 
    def post_order(self): 
        def post_order_helper(cur): 
            if cur.left: 



                post_order_helper(cur.left) 
            if cur.right: 
                post_order_helper(cur.right) 
            print(cur.data, end=' ') 
             
        # If the tree is empty 
        if self.root == None: 
            print("Tree is empty!") 
        else: 
            post_order_helper(self.root) 
     
    # Extension:
    # Instead of printing out the result of a traversal, 
    # we can also put the elements in a list and return it 
    # e.g. for post-order traversal: 
    def post_order_list(self): 
        def post_order_list_helper(cur): 
            if cur.left: 
                post_order_list_helper(cur.left) 
            if cur.right: 
                post_order_list_helper(cur.right) 
            result.append(cur.data) 
         
        result = [] 
         
        if self.root: 
            post_order_list_helper(self.root) 
             
        return result 
     
# Test case
bst1 = BST() 
bst1.insert(40) 
bst1.insert(20) 
bst1.insert(60) 
bst1.insert(10) 
bst1.insert(30) 
bst1.insert(50) 

In [ ]: class Array: 
     
    # The array has indices 0 to n-1 (inclusive). 
    # Each entry in the array is a node, which will be a list of three elemen
     
    def __init__(self, n): 
        self.Array = [] 
        for i in range(n-1): 
            node = ["", i+1, None] 
             
            # node[0] the data, which we initialise using an empty string 
            # node[1] is the left pointer 
            # node[2] is the right pointer 
             
            self.Array.append(node) 
         



n=5

FreeListPointer = 0 

Array: 
    +------+--------------+---------------+ 
    | Data | Left Pointer | Right Pointer | 
    +------+--------------+---------------+ 
[0] |  ""  |       1      |      None     | 
[1] |  ""  |       2      |      None     | 
[2] |  ""  |       3      |      None     | 
[3] |  ""  |       4      |      None     | 
[4] |  ""  |     None     |      None     | 
    +------+--------------+---------------+ 

MyTree

MyTreePointer = None 
FreeListPointer = 0 

Array: 
    +------+--------------+---------------+ 
    | Data | Left Pointer | Right Pointer | 
    +------+--------------+---------------+ 
[0] |  ""  |       1      |      None     | 
[1] |  ""  |       2      |      None     | 
[2] |  ""  |       3      |      None     | 
[3] |  ""  |       4      |      None     | 
[4] |  ""  |     None     |      None     | 
    +------+--------------+---------------+ 

"Tom" MyTree

MyTreePointer = 0 
FreeListPointer = 1

Array: 
    +-------+--------------+---------------+ 
    | Data  | Left Pointer | Right Pointer | 
    +-------+--------------+---------------+ 
[0] | "Tom" |     None     |      None     | 
[1] |  ""   |       2      |      None     | 
[2] |  ""   |       3      |      None     | 
[3] |  ""   |       4      |      None     | 
[4] |  ""   |     None     |      None     | 
    +-------+--------------+---------------+ 
</pre> 
We insert "Sue" as a left child of "Tom".

MyTreePointer = 0 
FreeListPointer = 2

        self.Array.append(["", None, None]) 
         
        self.FreeListPointer = 0 # head pointer of free list 



Array: 
    +-------+--------------+---------------+ 
    | Data  | Left Pointer | Right Pointer | 
    +-------+--------------+---------------+ 
[0] | "Tom" |       1      |      None     | 
[1] | "Sue" |     None     |      None     | 
[2] |  ""   |       3      |      None     | 
[3] |  ""   |       4      |      None     | 
[4] |  ""   |     None     |      None     | 
    +-------+--------------+---------------+ 
</pre> 
We insert "Bob" as a right child of "Tom".

MyTreePointer = 0 
FreeListPointer = 3

Array: 
    +-------+--------------+---------------+ 
    | Data  | Left Pointer | Right Pointer | 
    +-------+--------------+---------------+ 
[0] | "Tom" |       1      |        2      | 
[1] | "Sue" |     None     |      None     | 
[2] | "Bob" |     None     |      None     | 
[3] |  ""   |       4      |      None     | 
[4] |  ""   |     None     |      None     | 
    +-------+--------------+---------------+ 
</pre> 
We delete "Tom" and make "Bob" the new parent of "Sue":

MyTreePointer = 2 
FreeListPointer = 0

Array: 
    +-------+--------------+---------------+ 
    | Data  | Left Pointer | Right Pointer | 
    +-------+--------------+---------------+ 
[0] |  ""   |       3      |      None     | 
[1] | "Sue" |     None     |      None     | 
[2] | "Bob" |       1      |      None     | 
[3] |  ""   |       4      |      None     | 
[4] |  ""   |     None     |      None     | 
    +-------+--------------+---------------+ 
</pre> 
In this way, the abstract tree structure is maintained by use of 
pointers, even though the order in which the data appears in the 
tree may be completely different from the order in which it 
appears in the array.



INPUT FirstTerm 
INPUT CommonDiff 
INPUT NoOfTerms 

Sum ← 0
CurrTerm ← FirstTerm 

FOR Count ← 1 TO NoOfTerms 
    Sum ← Sum + CurrTerm 
    CurrTerm ← CurrTerm + CommonDiff 
ENDFOR 

OUTPUT Sum 

INPUT FirstTerm 
INPUT CommonDiff 
INPUT NoOfTerms 

Sum ← (NoOfTerms / 2)*(2*FirstTerm + (NoOfTerms - 1)*CommonDiff) 

OUTPUT Sum 



INPUT n
Result ← TRUE 

IF n = 1 
    THEN 
        Result ← FALSE 
    ELSE 
        IF n > 2         // What happens when n is 2? 
            THEN 
                FOR x ← 2 TO n-1 
                    Remainder = n MOD x 
                    IF Remainder = 0 
                        THEN
                            Result ← FALSE
                    ENDIF 
                ENDFOR 
        ENDIF 
ENDIF 

OUTPUT Result 

INPUT n
Result ← TRUE 

IF n = 1 
    THEN 
        Result ← FALSE 
    ELSE 
        x ← 2 
        REPEAT
            Remainder = n MOD x 
            IF Remainder = 0
                THEN 
                    Result ← FALSE 
            ENDIF 
            x ← x+1 
        UNTIL x > n-1 OR Result = FALSE 
ENDIF 

OUTPUT Result 



INPUT n
Result ← TRUE 

IF n = 1 
    THEN 
        Result ← FALSE 
    ELSE 
        SQUAREROOT = SQRT(n)
        x ← 2 
        REPEAT
            Remainder = n MOD x 
            IF Remainder = 0
                THEN 
                    Result ← FALSE 
            ENDIF 
            x ← x+1 
        UNTIL x > SQUAREROOT OR Result = FALSE 
ENDIF 

OUTPUT Result 

In [ ]: def checkcommon(lis1, lis2): 
    for item in lis1: 
        if item in lis2: 
            return True 
    return False 



INPUT List1 
INPUT List2 

Length1 ← LENGTH(List1) 
Length2 ← LENGTH(List2) 

Result ← FALSE

Index1 ← 0 
Index2 ← 0 

REPEAT 
    item1 ← List1[Index1] 
    REPEAT 
        item2 ← List1[Index2] 
        IF item1 = item2 
            THEN 
                Result ← TRUE 
        ENDIF 
        Index2 ← Index2 + 1 
    UNTIL Result = TRUE OR Index2 >= Length2 
UNTIL Result = TRUE OR Index1 >= Length1 

OUTPUT Result 

x\*\*n \*\*

INPUT x
INPUT n

Result ← 1 

FOR count ← 1 TO n 
    Result ← Result*x
ENDFOR 

OUTPUT Result 

FUNCTION Dec_to_Bin(n : INTEGER) RETURNS STRING 
    Result ← '' // There is no standard way to express the empty 



string in pseudocode. Sometimes ∅ is used as well. 
    Temp ← n 

    REPEAT 
        IF Temp MOD 2 = 0 
            THEN 
                Result ← Result & '0' 
            ELSE 
                Result ← Result & '1' 
        ENDIF 
        Temp ← Temp DIV 2 
    UNTIL Temp = 0 

    RETURN Result 
ENDFUNCTION 

Dec_to_Bin
x^n

INPUT x
INPUT n

Str ← Dec_to_Bin(n) 
Temp ← x 
Result ← 1 
Length = LENGTH(Str) // Can you find what is Length in terms of 
n? 

FOR i ← 1 TO Length 
    Temp ← Temp*Temp 
    IF MID(Str, Length-i, 1) = 1 
        THEN 
            Result ← Result*Temp 
    ENDIF 
ENDFOR 

OUTPUT Result 

Dec_to_Bin
Str Dec_to_Bin

Length





[25, 34, 98,  7, 41, 19,  5] // START: 
[25, 34, 98,  7, 41, 19,  5] // smallest element is 5 
                          ^ 
[ 5, 34, 98,  7, 41, 19, 25] // swap it with list[0] 
[ 5, 34, 98,  7, 41, 19, 25] // smallest element in list[1:] is 
7 
              ^ 
[ 5,  7, 98, 34, 41, 19, 25] // swap it with list[1] 
[ 5,  7, 98, 34, 41, 19, 25] // smallest element in list[2:] is 
19 
                      ^ 
[ 5,  7, 19, 34, 41, 98, 25] // swap it with list[2] 
[ 5,  7, 19, 34, 41, 98, 25] // smallest element in list[3:] is 
25 
                          ^ 
[ 5,  7, 19, 25, 41, 98, 34] // swap it with list[3] 
[ 5,  7, 19, 25, 41, 98, 34] // smallest element in list[4:] is 
34 
                          ^ 
[ 5,  7, 19, 25, 34, 98, 41] // swap it with list[4] 
[ 5,  7, 19, 25, 34, 98, 41] // smallest element in list[5:] is 
41 
                          ^ 
[ 5,  7, 19, 25, 34, 41, 98] // swap it with list[5] 
                             // since list[5] is also the 
                             // second last element, we are done 

[ 5,  7, 19, 25, 34, 41, 98] // END: list is sorted 



i j n - i
i

(n - 1) + (n - 2) + (n - 3) + ... + 2

n - 1

n - 1

[25, 34, 98,  7, 41, 19,  5] // START: 
[25, 34, 98,  7, 41, 19,  5] // no swap since 25 < 34 
[25, 34, 98,  7, 41, 19,  5] // no swap since 34 < 98 
[25, 34,  7, 98, 41, 19,  5] // swap 98 and 7 
[25, 34,  7, 41, 98, 19,  5] // swap 98 and 41 
[25, 34,  7, 41, 19, 98,  5] // swap 98 and 19 
[25, 34,  7, 41, 19,  5, 98] // swap 98 and 5 
                             // end of first pass
                             // 98 is in the last position 

[25, 34,  7, 41, 19,  5, 98] // no swap since 25 < 34 
[25,  7, 34, 41, 19,  5, 98] // swap 7 and 34 
[25,  7, 34, 41, 19,  5, 98] // no swap since 34 < 41 
[25,  7, 34, 19, 41,  5, 98] // swap 41 and 19 
[25,  7, 34, 19,  5, 41, 98] // swap 41 and 5 
                             // end of second pass 

In [ ]: def selectionsort(lis): 
    n = len(lis) 
    for i in range(n-1): 
        smallest = i            # to get the index of the smallest element in 
        for j in range(i+1, n): 
            if lis[j] < lis[smallest]:   # find the smallest element and get i
                smallest = j 
        lis[i], lis[smallest] = lis[smallest], lis[i]   # swap the smallest el
 
mylist = [25, 34, 98, 7, 41, 19, 5] 
selectionsort(mylist) 
print(mylist) 



                             // 41 is in the second last 
position 

[ 7, 25, 34, 19,  5, 41, 98] // swap 25 and 7 
[ 7, 25, 34, 19,  5, 41, 98] // no swap since 25 < 34 
[ 7, 25, 19, 34,  5, 41, 98] // swap 34 and 19 
[ 7, 25, 19,  5, 34, 41, 98] // swap 34 and 5 
                             // end of third pass
                             // 34 is in the third last position 

[ 7, 25, 19,  5, 34, 41, 98] // no swap since 7 < 25 
[ 7, 19, 25,  5, 34, 41, 98] // swap 25 and 19 
[ 7, 19,  5, 25, 34, 41, 98] // swap 25 and 5 
                             // end of fourth pass 
                             // 25 is in the fourth last 
position 

[ 7, 19,  5, 25, 34, 41, 98] // no swap since 7 < 19 
[ 7,  5, 19, 25, 34, 41, 98] // swap 19 and 5 
                             // end of fifth pass
                             // 19 is in the fifth last position 

[ 5,  7, 19, 25, 34, 41, 98] // swap 7 and 5 
                             // end of sixth pass
                             // 7 is in the sixth last position

[ 5,  7, 19, 25, 34, 41, 98] // END: list is sorted 

INPUT MyList 
MaxIndex ← LENGTH(MyList) 

n ← MaxIndex 
FOR i ← 1 TO (MaxIndex - 1) 
    FOR j ← 1 TO n 
        IF MyList[j] > MyList[j+1] // Remember, in Pseudocode, 
                                   // the first element of the 
                                   // list has index 1, not 0. 
            THEN                   // This carries out the swap. 
                Temp ← MyList[j] 
                MyList[j] ← MyList[j+1] 
                MyList[j+1] ← Temp 
         ENDIF
     ENDFOR 
     n ← n - 1 // The next time you do the inner loop, 
               // we do not need to go all the way to the end, 
               // since the largest numbers are already in 
order. 
ENDFOR 

In [31]: lis = [25, 34, 98, 7, 41, 19, 5] 
 
def bubblesort(lis): 
    n = len(lis) - 1 
    for i in range(n): 
        for j in range(n): 



[5, 7, 19, 25, 34, 41, 98]

(n - 1) + (n - 2) + (n - 3) + ... + 2 + 1

^
^

^ ^

[25, 34, 98,  7, 41, 19,  5] // START: 
      ^                      // The sorted part is [25],
                             // and the unsorted part is [34, 
98,  7, 41, 19,  5]. 
                             // We now try to insert 34 into the 
sorted part. 
                             // Since 25 < 34, we do not need to 
do anything. 

[25, 34, 98,  7, 41, 19,  5] // The sorted part is [25, 34], 
          ^                  // and the unsorted part is [98,  
7, 41, 19,  5]. 
                             // We now try to insert 98 into the 

            if lis[j] > lis[j+1]: 
                lis[j], lis[j+1] = lis[j+1], lis[j] 
        n -= 1 
    return lis 
 
bubblesort(lis) 

Out[31]:



sorted part. 
                             // Since 34 < 98, we do not need to 
do anything. 

[25, 34, 98,  7, 41, 19,  5] // The sorted part is [25, 34, 98], 
              ^              // and the unsorted part is [7, 41, 
19,  5]. 
                             // We now try to insert 7 into the 
sorted part. 
                             // We do this by swapping 7 with 
the element 
                             // before it until it is in the 
right place, 
                             // i.e. the element before 7 is 
smaller than it. 
                             // In this case, 7 will swap all 
the way
                             // to the beginning of the list. 

[ 7, 25, 34, 98, 41, 19,  5] // The sorted part is [7, 25, 34, 
98], 
                  ^          // and the unsorted part is [41, 
19,  5]. 
                             // We now try to insert 41 into the 
sorted part. 
                             // We do this by swapping 41 with 
the element 
                             // before it until it is in the 
right place, 
                             // i.e. the element before 41 is 
smaller than it. 
                             // In this case, 41 will swap with 
98 and stop. 

[ 7, 25, 34, 41, 98, 19,  5] // The sorted part is [7, 25, 34, 
41, 98], 
                      ^      // and the unsorted part is [19, 
5]. 
                             // We now try to insert 19 into the 
sorted part. 
                             // We do this by swapping 19 with 
the element 
                             // before it until it is in the 
right place, 
                             // i.e. the element before 19 is 
smaller than it. 
                             // In this case, 19 will swap with 
98, 
                             // then with 41, 32 and 25,
                             // until it ends up between 7 and 
25. 

[ 7, 19, 25, 34, 41, 98,  5] // The sorted part is [7, 19, 25, 
34, 41, 98], 
                          ^  // and the unsorted part is [5]. 
                             // We now try to insert 5 into the 
sorted part. 



                             // We do this by swapping 5 with 
the element 
                             // before it until it is in the 
right place, 
                             // i.e. the element before 5 is 
smaller than it. 
                             // In this case, 5 will swap all 
the way
                             // to the beginning of the list. 

[ 5,  7, 19, 25, 34, 41, 98] // The unsorted list is now empty.
                             // END: list is sorted 

INPUT MyList 
MaxIndex ← LENGTH(MyList) 

FOR i ← 2 TO MaxIndex // Remember, in Pseudocode,
                      // the first element of the
                      // list has index 1, not 0.
    Key ← MyList[i] 
    CompareWithKey ← i-1 // We start comparing with the 
                         // element immediately before Key, 
i.e., 
                         // the largest element in the sorted 
part. 
    WHILE (MyList[CompareWithKey] > Key) AND (CompareWithKey > 
0) // The swapping 
                                                                  
// happens inside 
                                                                  
// this loop 

        MyList[CompareWithKey + 1] ← MyList[CompareWithKey] // 
Swap CompareWithKey 
                                                            // 
with the element 
                                                            // 
after it 

        CompareWithKey ← CompareWithKey - 1 // 
MyList[CompareWithKey] moves
                                            // to the previous 
item 

    ENDWHILE // We have reached an element smaller than Key, 
             // or all elements in the sorted part are larger 
than Key 

    MyList[CompareWithKey + 1] ← Key // Insert Key 
ENDFOR   

In [9]: lis = [25, 34, 98, 7, 41, 19, 5] 
 
def insertionsort(lis): 
    for i in range(1, len(lis)): 



[5, 7, 19, 25, 34, 41, 98]

i - 1

1 + 2 + 3 + ... + (n - 1)

Temp

        key = lis[i] 
        compare = i-1 
        while lis[compare] > key and compare >= 0: 
            lis[compare+1] = lis[compare] 
            compare -= 1 
        lis[compare+1] = key 
    return lis 
         
insertionsort(lis) 

Out[9]:



[25, 34, 98,  7, 41, 19,  5]     // START 
       ↓              ↓ 
[23, 34, 98,  7] [41, 19,  5]    // Divide
   ↓        ↓        ↓      ↓ 
[23, 34] [98,  7] [41, 19] [5]   // Divide
  ↓   ↓    ↓    ↓   ↓    ↓   ↓ 
[23] [34] [98] [7] [41] [19] [5] // Divide. All lists are of 
length 1. 
  ↓   ↓    ↓    ↓   ↓    ↓   ↓ 
[23, 34] [ 7, 98] [19, 41] [5]   // Combine 
   ↓        ↓        ↓      ↓ 
[ 7, 23, 34, 98] [ 5, 19, 41]    // Combine 
       ↓              ↓ 
[ 5,  7, 19, 23, 34, 41, 98]     // END: list is sorted 



FUNCTION MergeSort(MyList: LIST) RETURNS LIST 
    MaxIndex ← LENGTH (MyList) 

    IF MaxIndex > 1 
        THEN 
            Half ← MaxIndex DIV 2 
            LeftList ← LEFT(MyList, Half) 
            RightList ← RIGHT(MyList, Half) 

            SortedLeftList ← MergeSort(LeftList) 
            SortedRightList ← MergeSort(RightList) 

            Result ← Merge(SortedLeftList, SortedRightList) 

        ELSE 
            Result ← MYLIST 
    ENDIF 

    RETURN Result 
ENDFUNCTION 

Merge

FUNCTION Merge(MyList1 : LIST[0:M-1], MyList2 : LIST[0:N-1]) 
RETURNS LIST 
    Length1 ← LENGTH(MyList1) 
    Length2 ← LENGTH(MyList2) 
    TotalLength ← Length1 + Length2

    DECLARE Result : LIST[0:M+N-1] // We are going to RETURN 
Result.
                                   // It is a list of length M+N 
    Pos1 ← 0 
    Pos2 ← 0 
    PosResult ← 0 

    WHILE Pos1 < M AND Pos2 < N 
        IF MyList1[Pos1] <= MyList2[Pos2] 



            THEN 
                Result[PosResult] ← MyList1[Pos1]
                Pos1 ← Pos1 + 1 
                PosResult ← PosResult + 1 
            ELSE 
                Result[PosResult] ← MyList1[Pos2]
                Pos2 ← Pos2 + 1 
                PosResult ← PosResult + 1 
        ENDIF 
    ENDWHILE 

    IF Pos1 = M 
        THEN 
            FOR X ← Pos2 TO N-1 
                Result[PosResult] ← MyList2[X] 
                PosResult ← PosResult + 1 
            ENDFOR 
        ELSE 
            FOR X ← Pos1 TO M-1 
                Result[PosResult] ← MyList1[X] 
                PosResult ← PosResult + 1 
            ENDFOR 
    ENDIF 

    RETURN Result 
ENDFUNCTION 

[5, 7, 19, 25, 34, 41, 98]

In [16]: lis = [25, 34, 98,  7, 41, 19,  5] 
 
def merge(lis1, lis2):   # Assume lis1 and lis2 are already sorted
    result = [] 
 
    while len(lis1) > 0 and len(lis2) > 0: 
        if lis1[0] <= lis2[0]: 
            result.append(lis1.pop(0)) 
        else: 
            result.append(lis2.pop(0)) 
             
    if not lis1: 
        result.extend(lis2) 
    else: 
        result.extend(lis1) 
         
    return result 
         
def mergesort(lis): 
    if len(lis) > 1: 
        half = len(lis) // 2 
        left, right = lis[:half], lis[half:] 
        sleft, sright = mergesort(left), mergesort(right) 
        result = merge(sleft, sright) 
    else: 
        result = lis 
    return result 
 
mergesort(lis) 

Out[16]:



Partition

0
i

j

In [ ]: lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18] 
 
def quicksort(lis): 
    n = len(lis) 
    if n == 0 or n == 1: 
        return lis 
    else: 
        lolist = [] 
        hilist = [] 
        pivot = lis[0] 
        for i in range(1, n): 
            if lis[i] < pivot: 
                lolist.append(lis[i]) 
            else: 
                hilist.append(lis[i]) 
        return quicksort(lolist) + [pivot] + quicksort(hilist) 
 
print(quicksort(lis))        



i j j

j

i
i j

j n-
1

i

MyList
n-1 n

FUNCTION Partition(L : INTEGER, R : INTEGER, MyList : LIST) 
RETURNS INTEGER 
    Pivot ← MyList[R]
    i ← L 
    j ← L 

    REPEAT 
        IF MyList[j] > Pivot
            THEN 
                j ← j + 1 
            ELSE // swap elements with index i and j 
                Temp ← MyList[j] 
                MyList[j] ← MyList[i] 
                MyList[i] ← Temp 
                i ← i + 1 
                j ← j + 1 
        ENDIF 
    UNTIL j = R 

    MyList[R] ← MyList[i] // swap elements with index i and R 
(the pivot) 
    MyList[i] ← Pivot

    RETURN i 
ENDFUNCTION 



PROCEDURE Quicksort(L : INTEGER, R : INTEGER, MyList : LIST) 
    IF R-L >= 1 // if the list has 0 or 1 element (R - L < 1), 
                // then it is automatically already sorted. 
        THEN 
            PivotPos = Partition(L, R, MyList) 
            CALL Quicksort(L, PivotPos - 1, MyList) 
            CALL Quicksort(PivotPos + 1, R, MyList) 
    ENDIF 
ENDPROCEDURE 

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 

i j n

i j
i j

j i j > i j j < i j

In [8]: lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18] 
 
def partition(lis, L, R): 
    pivot = lis[R] 
    left, right = L, L 
 
    while right != R: 
        if lis[right] <= pivot: 
            lis[left], lis[right] = lis[right], lis[left] 
            left += 1 
        right += 1 
    lis[R], lis[left] = lis[left], pivot 
    return left 
 
def quicksort(lis, L = None, R = None): 
    if None in (L, R): 
        L, R = 0, len(lis) - 1 
    if R - L >= 1: 
        pivot = partition(lis, L, R) 
        quicksort(lis, L, pivot - 1) 
        quicksort(lis, pivot + 1, R) 
    return lis 
 
lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18] 
print(quicksort(lis)) 



j i

i j

FUNCTION Partition(L : INTEGER, R : INTEGER, MyList : LIST) 
RETURNS INTEGER 
    i ← L 
    j ← R 
    REPEAT 
        IF j > i 
            THEN 
                IF MyList[j] < MyList[i] 
                    THEN 
                        // swap MyList[j] and MyList[i] 
                        Temp ← MyList[j] 
                        MyList[j] ←  MyList[i] 
                        MyList[i] ← Temp 

                        // swap j and i 
                        Temp ← j 
                        j ← i 
                        i ← Temp 

                        // now j < i, so to move j closer to i, 
add 1 
                        j ← j + 1 
                    ELSE 
                        j ← j - 1 
                ENDIF
            ELSE // when j < i 
                IF MyList[j] > MyList[i] 
                    THEN 
                        // swap MyList[j] and MyList[i] 
                        Temp ← MyList[j] 
                        MyList[j] ←  MyList[i] 
                        MyList[i] ← Temp 

                        // swap j and i 
                        Temp ← j 
                        j ← i 
                        i ← Temp 

                        // now j > i, so to move j closer to i, 
subtract 1 
                        j ← j - 1 
                    ELSE 
                        j ← j + 1 
                ENDIF
        ENDIF 
    UNTIL j = i 
    RETURN i 
ENDFUNCTION 



[3, 4, 5, 5, 6, 7, 8, 9]

In [30]: lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18] 
 
def partition(lis, L, R): 
    i, j = L, R 
    while j != i: 
        if j > i: 
            if lis[j] < lis[i]: 
                lis[i], lis[j] = lis[j], lis[i] 
                i, j = j, i + 1 
            else: 
                j -= 1 
        else: 
            if lis[j] > lis[i]: 
                lis[i], lis[j] = lis[j], lis[i] 
                i, j = j, i - 1 
            else: 
                j += 1 
    return i 
 
def quicksort(lis, L = None, R = None): 
    if None in (L, R): 
        L, R = 0, len(lis) - 1 
    if R - L >= 1: 
        ppos = partition(lis, L, R) 
        quicksort(lis, L, ppos - 1) 
        quicksort(lis, ppos + 1, R) 
    return lis 
 
quicksort([3, 4, 5, 5, 6, 7, 8, 9]) 

Out[30]:



sort sorted

https://csfieldguide.org.nz/en/interactives/sorting-algorithms/
https://visualgo.net/en/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://classic.csunplugged.org/sorting-algorithms/
https://www.toptal.com/developers/sorting-algorithms
http://computationaltales.blogspot.com/2011/04/why-tailors-use-insertion-sort.html
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=yIQuKSwPlro
https://www.youtube.com/watch?v=lyZQPjUT5B4
https://www.youtube.com/watch?v=6Gv8vg0kcHc
https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=pcJHkWwjNl4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=KF2j-9iSf4Q
https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=XE4VP_8Y0BU
https://www.youtube.com/watch?v=SLauY6PpjW4
https://www.youtube.com/watch?v=kgBjXUE_Nwc


MyList

MaxIndex

SearchValue

Found TRUE
FALSE

Index

INPUT SearchValue 
MaxIndex ← LENGTH(MyList) 
Found ← FALSE 
Index ← 0 

REPEAT 
    Index ← Index + 1
    IF MyList[Index] = SearchValue 
        THEN 
            Found ← TRUE 
    ENDIF 
UNTIL FOUND = TRUE OR Index >= MaxIndex 

IF Found = TRUE 
    THEN 
        OUTPUT "Value found at location:" Index 
    ELSE 
        OUTPUT "Value not found" 
ENDIF 

REPEAT...UNTIL
Found FALSE



TRUE

Index
MaxIndex

(True, 4) 
(True, 8) 
False
0.0004279613494873047 
(True, 4) 
(True, 7) 
False
0.0002028942108154297 

In [37]: import time 
 
MyList = [1, 6, 3, 2, 7, 8, 4, 9, 5] 
 
def linear_search(item, lst): 
    index = 0 
    while index < len(lst): 
        if lst[index] == item: 
            return True, index 
        index += 1 
    return False 
 
def linear_search_2(item, lst): 
    index = 0 
    lst.append(item) 
    while True: 
        if lst[index] == item: 
            break 
        index += 1 
    del lst[index] 
    if index == len(lst): 
        return False 
    else: 
        return True, index 
 
start = time.time() 
print(linear_search(7, MyList)) 
print(linear_search(5, MyList)) 
print(linear_search(0, MyList)) 
print(time.time()-start) 
 
start = time.time() 
print(linear_search_2(7, MyList)) 
print(linear_search_2(5, MyList)) 
print(linear_search_2(0, MyList)) 
print(time.time()-start) 



INPUT SearchValue 
Found ← FALSE 
SearchFailed ← FALSE 
Left ← 1 
Right ← MaxIndex 

WHILE NOT Found AND NOT SearchFailed 
    Middle ← (Left + Right) DIV 2 
    IF MyList[Middle] = SearchValue
        THEN 
            Found ← TRUE 
        ELSE 
            IF Left >= Right
                THEN 
                    SearchFailed ← TRUE 
                ELSE 
                    IF MyList[Middle] > SearchValue 
                        THEN
                            Right ← Middle - 1 
                        ELSE
                            Left ← Middle + 1 
                    ENDIF 
            ENDIF 
    ENDIF 
ENDWHILE 

IF Found = TRUE 
    THEN 
        OUTPUT "Value found at location:" Middle 
    ELSE 
        OUTPUT "Value not found" 
ENDIF 

In [6]: MyList = [1, 2, 3, 4, 5, 6, 7, 8, 9] 
 
def binary_search(item, lst): 
    found, failed = False, False 
    left, right, middle = 0, len(lst), None 
    while (not found) and (not failed): 
        middle = (left + right) // 2 
        if lst[middle] == item: 
            found = True 
        elif left >= right: 
            failed = True 
        elif lst[middle] > item: 
            right = middle - 1 
        else: 
            left = middle + 1 
    if found == True: 
        return True, middle 



(True, 6) 
(True, 4) 
False

FUNCTION Hash(Key) RETURNS INTEGER 
    Address ← Key MOD 10 
    RETURN Address 
ENDFUNCTION 

    elif failed == True: 
        return False 
 
print(binary_search(7, MyList)) 
print(binary_search(5, MyList)) 
print(binary_search(0, MyList)) 



0 Max

PROCEDURE Insert(NewRecord) 
    Index ← Hash(NewRecord.Key) 
    WHILE HashTable[Index] IS NOT empty  // in the event of 
collision(s) 
        Index ← Index + 1                // go to next slot in 
the array 
        IF Index > Max                   // at the end of the 
array, 
            THEN                         // wrap around to the 
beginning 
                Index ← 0 
        ENDIF 
    ENDWHILE 
    HashTable[Index] ← NewRecord         // insert the record 
ENDPROCEDURE 

FUNCTION FindRecord(SearchKey) RETURNS Record 
    Index ← Hash(SearchKey) 
    WHILE (HashTable[Index].Key <> SearchKey) AND 
(HashTable[Index] IS NOT empty) 
        Index ← Index + 1                // go to next slot 
        IF Index > Max                   // at the end of the 
array, 
            THEN                         // wrap around to the 
beginning 
                Index ← 0 
        ENDIF 
    ENDWHILE 
    IF HashTable[Index] IS NOT empty     // if the record found
        THEN 
            RETURN HashTable[Index]      // return the record 
    ENDIF 
ENDFUNCTION 



{ }
:

In [ ]: dic = {'sun':'hari', 'moon':'bulan', 'fire':'api', 'water':'air', 'wind':'angi
print(dic) 

In [ ]: print(dic['moon'])       # look up a value using the key 

In [ ]: dic['sky'] = 'langit'    # add a new key-value pair
print(dic) 

In [ ]: dic['long'] = 'panjang'  # change or update a value 
print(dic) 

In [ ]: demo = {2:['a','b','c'], (2,4): 27, 'x':{1:2.5, 'a':3}} # the value can be ano
print(demo) 

In [ ]: print(demo[2])          # look up values using the keys 
print(demo[(2,4)]) 
print(demo['x']) 

In [ ]: print(demo['x'][1])     # look up a value inside the inner dictionary using i

In [ ]: print('a' in demo)      # do these keys exist? 
print('x' in demo) 

In [ ]: print(len(demo))        # get the number of key-value pairs 

In [ ]: for key in demo:        # iterates through the keys 
    print(key)          # and display them  
 
for key in demo:        # iterates through the keys 
    print(demo[key])    # and display the values 

In [ ]: items = demo.items())   # get all the key-value pairs 
keys = demo.keys())     # get all the keys as a list 
values = demo.values()) # get all the values as a list 
 
print(tuple(items))     # display all the key-value pairs as a tuple 
print(list(keys))       # display all the keys as a list 
print(list(values))     # display all the values as a list 



1 
 

2021 JC2 H2 Computing 9569 
24. Relational Database: SQL 
 
 
Introduction 
 
Imagine a situation where you are part of the school administration team in the olden days, 
having to manage hundreds and thousands of physical files of staff and student records in 
multiple cabinets.  
 
What are some of the issues that you may encounter? 
 

 
 

 
 
With the advancement of technology, we no longer have to keep and manage physical records. 
 
A database is a collection of data stored in an organised or logical manner. Storing data in a 
database allows us to access and manage the data. Some examples of databases in real-life 
include student records, supermarket inventory and contact list. 
 
In general, there are two types of databases: relational and non-relational. In this chapter, 
we shall look into the former. 
 
A relational (SQL) database is a collection of relational tables with a fixed schema, which is 
the precise description of the data to be stored and the relationships between them. In this 
model, the data are stored in relational tables and represented in the form of tuples as follows.  
 

<TableName>(<Field1>, <Field2>, …) 
 
 
 
 
 
 



2 
 

Attributes of Relational Database 
 
A table is a two-dimensional representation of data stored in rows and columns. Each table is 
made up of records and fields. 
 
Below is an example of a table called StudentMD10, showing data of students from an 
imaginary form class MD10. 
 

RegNo Name Gender MobileNo 
1 Adam M 92313291 
2 Adrian M 92585955 
3 Agnes F 83324112 
4 Aisha F 88851896 
5 Ajay M 94191061 
6 Alex M 98675171 
7 Alice F 95029176 
8 Amy F 98640883 
9 Andrew M 95172444 
10 Andy M 95888639 

 
A record is a complete set of data about a single entity in the table. In the table above, there 
are 10 records, each referring to the complete set of data of a particular student. 
 
A field or column refers to one type of data about the entities in the table. In the table above, 
there are 4 fields: RegNo, Name, Gender and MobileNo. 
 
Quick Check 
Express the table StudentMD10 using the tuple representation mentioned in the previous 
page. 
 
StudentMD10(RegNo, Name, Gender, MobileNo) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

Keys in Relational Database 
 
A candidate key is a minimal set of fields that can uniquely identify each record in a table. It 
should never be empty. 
 
A primary key is a candidate key that is most appropriate to become the main key for a table. 
It uniquely identifies each record in a table and should not change over time. That is, a primary 
key tells a particular record apart from another record.  
 
Quick Check 
Which of the fields in the table StudentMD10 is a suitable primary key? 
 
RegNo 
 
 

 
A secondary key is a candidate key that is not selected as a primary key. 
 
A composite key is a combination of two or more fields in a table that can be used to uniquely 
identify each record in a table. Uniqueness is only guaranteed when the fields are combined. 
When taken individually, the fields do not guarantee uniqueness. 
 
Quick Check 
A table called StudentMD1011 is shown below. 
 

RegNo Name Gender FormClass 
1 Adam M MD10 
2 Adrian M MD10 
3 Agnes F MD10 
4 Aisha F MD10 
5 Ajay M MD10 
6 Alex M MD10 
7 Alice F MD10 
8 Amy F MD10 
9 Andrew M MD10 
10 Andy M MD10 
1 Adam M MD11 
2 Bala M MD11 
3 Bee Lay F MD11 
4 Ben M MD11 
5 Boon Kiat M MD11 
6 Boon Lim M MD11 
7 Chee Seng M MD11 
8 Colin M MD11 
9 Daniel M MD11 
10 Eleanor F MD11 

 
Which two fields form the composite key for the table? RegNo and FormClass 
 

 



4 
 

A foreign key is a field in one table that refers to the primary key in another table.  
 
To illustrate this concept, take a look at another table below called ClassInfo with 
FormClass chosen to be the primary key. 
 

FormClass FormTutor BaseClass 
MD10 Peter Lim F3.1 
MD11 Susan Tan F3.2 

 
Notice that the primary key (PK) in the table ClassInfo is related or linked to the FormClass 
field in table StudentMD1011. This makes FormClass in the table StudentMD1011 a foreign 
key (FK). 
 

 
 
Data Redundancy 
 
Data redundancy refers to the same data being stored more than once.  
 
Take a look at the table below. 
 

RegNo Name Gender FormClass FormTutor 
1 Adam M MD10 Peter Lim 
2 Adrian M MD10 Peter Lim 
3 Agnes F MD10 Peter Lim 
4 Aisha F MD10 Peter Lim 
5 Ajay M MD10 Peter Lim 
6 Alex M MD10 Peter Lim 
7 Alice F MD10 Peter Lim 
8 Amy F MD10 Peter Lim 
9 Andrew M MD10 Peter Lim 
10 Andy M MD10 Peter Lim 

 
As we can see, the data for FormClass and FormTutor are repeated for students who are 
in the same form class. This may lead to potential issues on insertion, updating and deletion 
of data, such as:  
 
Insertion 
 

A new student cannot be inserted unless a form class and a form tutor have been 
assigned. 

Update 
 

Should Mr Peter Lim quit the school, all the records in the table would need to 
be updated. Should we miss any record, it would lead to inconsistent data. 

Deletion Should all the records in the table be deleted, information on form class and form 
tutor would be lost. 



5 
 

Data Dependency 
 
Suppose we have the following table: 
 

Student(MatricNo, Name, Gender, FormClass, FormTutor)  
 
MatricNo is a unique number assigned to every student in the college. 
 
Functional dependency 
 
Attribute Y is functionally dependent on attribute X (usually the primary key), if for every 
valid instance of X, the value of X uniquely determines the value of Y, i.e. X  Y. 
 
MatricNo uniquely identifies Name because if we know the MatricNo, we can know the 
Name associated with it. Therefore, we can say Name is functionally dependent on MatricNo, 
i.e. 
 

MatricNo  Name 
 
Transitive dependency 
 
A functional dependency is said to be transitive if it is indirectly formed by two functional 
dependencies. Z is transitively dependent on X if Y is functionally dependent on X, but X is 
not functionally dependent on Y, and Z is functionally dependent on Y. In other words, X  Z 
is a transitive dependency if the following hold true: 

 X  Y 
 Y does not  X 
 Y  Z 

 
FormClass is functionally dependent on MatricNo, but MatricNo is not functionally 
dependent on FormClass, i.e. 

 
MatricNo  FormClass 

 
On the other hand, FormTutor is functionally dependent on FormClass, i.e. 
 

FormClass  FormTutor 
 
Therefore, we can conclude that FormTutor is transitively dependent on MatricNo, i.e. 
 

MatricNo  FormTutor 
 
Normalisation 
 
Normalisation is the process of organising the tables in a database to reduce data 
redundancy and prevent inconsistent data. There are at least three normal forms:  

 first normal form (1NF) 
 second normal form (2NF) 
 third normal form (3NF)  

 
 
 
 



6 
 

First Normal Form (1NF) 
 
For a table to be in 1NF, all columns must be atomic, i.e. the information cannot be broken 
down further. 
 
Consider the following table. 
 
MatricNo Name Gender Form

Class 
Form 
Tutor 

Base
Class 

CCAInfo 

1 Adam M MD10 Peter Lim F3.1 Tennis 
Teacher IC = Adrian Tan 

2 Adrian M MD10 Peter Lim F3.1 Choir 
Teacher IC = Sanjay Vittal, 
Art Club 
Teacher IC = Nur Fauziah 

3 Adam M MD11 Susan Tan F3.2 Rugby 
Teacher IC = Zoe Lim 

4 Bala M MD11 Susan Tan F3.2 Tech Council 
Teacher IC = Lilian Phua 

5 Bee 
Lay 

F MD11 Susan Tan F3.2 Choir 
Teacher IC = Sanjay Vittal, 
Chess 
Teacher IC = Edison Poh 

 
For this example, assume that every form class has only one form tutor, and each CCA has 
only one teacher IC. 
 
The table above is not in 1NF because the CCAInfo column contains multiple values.  
 
In order for the table to be in 1NF, we can split CCAInfo into two single-value columns: 
CCAName and CCATeacherIC. Notice that the students with MatricNo 2 and 5 have multiple 
CCAs. We keep this information intact by splitting their records into multiple records, each 
corresponding to a different CCA. The resulting table is shown below. 
 
Matric
No 

Name Gender Form
Class 

Form 
Tutor 

Base
Class 

CCA 
Name 

CCA 
TeacherIC 

1 Adam M MD10 Peter Lim F3.1 Tennis Adrian Tan 
2 Adrian M MD10 Peter Lim F3.1 Choir Sanjay Vittal 
2 Adrian M MD10 Peter Lim F3.1 Art Club Nur Fauziah 
3 Adam M MD11 Susan Tan F3.2 Rugby Zoe Lim 
4 Bala M MD11 Susan Tan F3.2 Tech Council Lilian Phua 
5 Bee Lay F MD11 Susan Tan F3.2 Choir Sanjay Vittal 
5 Bee Lay F MD11 Susan Tan F3.2 Chess Edison Poh 

 
The values for CCAName and CCATeacherIC are now atomic for each record. 
 
The primary key for the above table shall be the composite key formed by MatricNo and 
CCAName. 
 
 



7 
 

Second Normal Form (2NF) 
 
For a table to be in 2NF, it must satisfy two conditions: 

 The table should already be in 1NF. 
 Every non-key attribute must be fully dependent on the entire primary key. This means 

no attribute can depend on part of the primary key only. 
 
Name, Gender, FormClass, FormTutor and BaseClass is dependent on only part of the 
primary key, MatricNo. 
 
CCATeacherIC, on the other hand, is dependent only on CCAName.  
 
Thus, we decompose the 1NF table into three tables shown below. 
 
Student 
MatricNo Name Gender FormClass FormTutor BaseClass 
1 Adam M MD10 Peter Lim F3.1 
2 Adrian M MD10 Peter Lim F3.1 
2 Adrian M MD10 Peter Lim F3.1 
3 Adam M MD11 Susan Tan F3.2 
4 Bala M MD11 Susan Tan F3.2 
5 Bee Lay F MD11 Susan Tan F3.2 
5 Bee Lay F MD11 Susan Tan F3.2 

 
StudentCCA 
MatricNo CCA 

Name 
1 Tennis 
2 Choir 
2 Art Club 
3 Rugby 
4 Tech Council 
5 Choir 
5 Chess 

  

CCAInfo 
CCA 
Name 

CCA 
TeacherIC 

Tennis Adrian Tan 
Choir Sanjay Vittal 
Art Club Nur Fauziah 
Rugby Zoe Lim 
Tech Council Lilian Phua 
Choir Sanjay Vittal 
Chess Edison Poh 

 
Quick Check 
What should be the primary or composite key for each of the three tables above? 
 
The primary key for table Student should be MatricNo.  
 
The composite key for table StudentCCA should be MatricNo and CCAName. 
 
The primary key for table CCAInfo should be CCAName. 
 
 
 
 
 
 



8 
 

Third Normal Form (3NF) 
 
For a table to be in 3NF, it must satisfy two conditions: 

 The table should already be in 2NF. 
 The table should not have transitive dependencies. 

 
Quick Check 
Explain the transitive dependency found in the Student table. 
 
FormTutor and BaseClass are dependent on FormClass and FormClass is dependent 
on MatricNo. Therefore, FormTutor and BaseClass are transitively dependent on 
MatricNo.  
 
 
To remove the transitive dependency, we decompose the 2NF Student table into two tables 
shown below. 
 
Student 
MatricNo Name Gender Form 

Class 
1 Adam M MD10 
2 Adrian M MD10 
3 Adam M MD11 
4 Bala M MD11 
5 Bee Lay F MD11 

FormInfo 
Form 
Class 

Form 
Tutor 

Base 
Class 

MD10 Peter Lim F3.1 
MD11 Susan Tan F3.2 

 
 
 

  
MatricNo remains the primary key for the Student table. 
FormClass shall be the primary key of the newly formed table called FormInfo. 
 
The final design after normalisation is represented below. 
 
Student(MatricNo, Name, Gender, FormClass) 
 
FormInfo(FormClass, FormTutor, BaseClass) 
 
StudentCCA(MatricNo, CCAName) 
 
CCAInfo(CCAName, CCATeacherIC) 
 
The primary key for each table is indicated by underlining one or more attributes.  
 
Each foreign key is indicated by using a dashed underline. 
 
 
Note: 
In the H2 Computing 9569 syllabus, candidates are required to reduce data redundancy to 
3NF only. Nevertheless, going through 1NF and 2NF may help in some situations. 
 
 
 
 
 



9 
 

Entity-Relationship (E-R) Diagram 
 
An entity-relationship (E-R) diagram is a data modelling technique that illustrates the entities 
of a database and the relationships among those entities. It is useful in the planning of the 
design of relational databases.  
 
For the purpose of the syllabus, we shall only cover a simplified convention for the drawing of 
E-R diagrams using crow’s foot notation. 
 
An entity is a specific object of interest. Nouns are usually used to name entities. Entities are 
represented by rectangles.  
 
e.g. 
 
 
A relationship describes the link between two entities. One of the following relationships can 
exist between two entities: 
 

 one-to-one 
 

 
 
 
For example, at a concert with reserved seating, each ticket entitles someone to a 
particular seat and each seat is linked to only one ticket. 
 
 
 
 
 

 one-to-many 
 

 
 
 
For example, a form class can have many students, but a student can belong to only 
one form class. 
 
 
 
 
 

 many-to-many 
 
 

 
 
For example, a CCA can have many students, and a student can join many CCAs. 

 
 
 

 
 

Student 

Ticket Seat 

Entity 1 Entity 2 

Entity 1 Entity 2 

Form Class Student 

Entity 1 Entity 2 

Student CCAInfo 



10 
 

To implement a many-to-many relationship in a relational database, we usually 
decompose a many-to-many relationship into two (or more) one-to-many relationships.  
 
e.g. 
 
  

 
 
 
Other symbols used to describe relationships include: 
 

 
 
Quick Check 
Refer to the following normalised tables covered earlier. 
 
Student(MatricNo, Name, Gender, FormClass) 
 
FormInfo(FormClass, FormTutor, BaseClass) 
 
StudentCCA(MatricNo, CCAName) 
 
CCAInfo(CCAName, CCATeacherIC) 
 
Draw an E-R diagram to model the simple school database described above.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Student StudentCCA CCAInfo 

FormInfo Student Student 
CCA 

CCAInfo 



11 
 

Quick Check 
A school library contains books that can be on loan to borrowers. 
 
 A borrower can take one or more loans. 
 Each loan record belongs to only one borrower. 
 A book can be loaned many times. 
 A publisher publishes one or more books. 
 A book can be published by zero or one publisher.  
 (e.g. exam papers and lecture notes are not published by an official publishing house.)  
 
Draw an E-R diagram to model the school library database described above. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Structured Query Language (SQL) 
 
Structured Query Language (SQL) is a standard computer language for the operation and 
management of relational databases. It is a language used to query, insert, update and modify 
data. 
 
SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of 
the International Organisation for Standardisation (ISO) in 1987. Since then, the standard was 
updated several times. Most major relational databases support this standard, but have their 
own proprietary extensions. 
 
There are many types of SQL database engines. A database engine is the software that a 
database management system (DBMS) uses to create, read, update and delete (CRUD) data 
from a database.  
 
We are going to use SQLite, a widely used database engine, for the purpose of the syllabus. 
It is a popular choice as embedded database software for local/client storage in application 
software, such as web browsers.  
 
Python’s IDLE comes with a built-in module for SQLite3. 
 
To visualise the databases that we are going to encounter throughout the course of this study, 
we shall make use of DB Browser for SQLite. 
 

 
 
 
 

Publisher 
 

Borrower 
 
 

Loan 
 
 

Book 
 
 



12 
 

Database Operations 
 
In industry-based database applications, all four categories of SQL commands listed below 
are required. 
 

 Data Definition Language (DDL) defines database schemas.  
 

 Data Manipulation Language (DML) is used to retrieve and modify data.  
 

 Data Control Language (DCL) is used to control access to a database. 
 

 Transaction Control Language (TCL) is used to manage changes to a database, 
usually at transactional level. 
 

 
 
 
 
 
 
 
 
 

CREATE INSERT GRANT COMMIT 
ALTER SELECT REVOKE SAVEPOINT 
DROP UPDATE  ROLLBACK 

RENAME DELETE   
TRUNCATE MERGE   
COMMENT CALL   

 EXPLAIN PLAN   
 LOCK TABLE   

 
Some of the more advanced commands under DCL and TCL are more relevant to industry-
specific roles, such as database administrators.  
 
For the purpose of our learning, we only need to be able to understand and apply these basic 
CRUD database operations: 
 

Operation SQL Command 

CREATE INSERT 

READ  SELECT 

UPDATE UPDATE 

DELETE DELETE 

 
 
 
 
 
 
 

DDL 
SELECT 

DML 
 

DCL 
 

TCL 
 

SQL Commands 



13 
 

SQL Data Types 
 
Each field in an SQL table has to be associated with one data type. The following table shows 
some of the common data types. 
 
Data Type SQL Syntax Description 
String CHAR(x) Fixed length characters (x can be from 1 to 255) 

VARCHAR(x) Variable length characters (x can be from 1 to 65535) 
TEXT Equivalent to VARCHAR(65535) 

Numeric INTEGER Integers 
REAL Real numbers 

Boolean BOOL True or False 
 
Creating and Manipulating SQL Database 
 
Refer to the school library database that we have discussed earlier on Page 11. 
 
Open sql_lecture.db in DB Browser for SQLite. Three tables - Book, Publisher and 
Unused (which shall be deleted later on), have been defined.  
 
The summary of the tables required in this particular database, together with the fields and 
their constraints, are shown below. 
 
Borrower 
Field Data Type Constraint 
BorrowerID Numeric PRIMARY KEY, AUTOINCREMENT 
FirstName String NOT NULL 
Surname String NOT NULL 
ContactNum Numeric  

 
Loan 
Field Data Type Constraint 
LoanID Numeric PRIMARY KEY, AUTOINCREMENT 
BorrowerID Numeric FOREIGN KEY to BorrowerID in Borrower table 
BookID Numeric FOREIGN KEY to BookID in Book table 
DateBorrowed String (Desired format: YYYYMMDD) 

 
Book 
Field Data Type Constraint 
BookID Numeric PRIMARY KEY, AUTOINCREMENT 
BookTitle String NOT NULL 
PublisherID Numeric FOREIGN KEY to PublisherID in Publisher table 
Damaged Numeric NOT NULL 

(0 means undamaged, 1 means damaged) 
 
Publisher 
Field Data Type Constraint 
PublisherID Numeric PRIMARY KEY, AUTOINCREMENT 
PublisherName String NOT NULL 

 



14 
 

DDL: CREATE 
 
The CREATE command allows us to make a new table. 
 
CREATE TABLE <table_name> ( 

<column1_name COLUMN1_TYPE COLUMN1_CONSTRAINT(S)>, 
<column2_name COLUMN2_TYPE COLUMN2_CONSTRAINT(S)>, 
… 
PRIMARY KEY (<column1_name>, <column2_name>, …), 
FOREIGN KEY (<column_name>) REFERENCES <table_name>(<column_name>) 

) 
 
The field constraints that we need to know are as follows: 
 

 PRIMARY KEY 
 FOREIGN KEY … REFERENCES … 
 NOT NULL 

A value must be inserted into the field. 
 UNIQUE 

No two records can repeat the same value within the field. 
 AUTOINCREMENT 

The integer value is automatically given by the database when not specified (+1). 
 
The following SQL statements, separated by a semi-colon, create the Borrower and Loan 
tables respectively in the database. 
 
CREATE TABLE Borrower ( 
 BorrowerID INTEGER PRIMARY KEY AUTOINCREMENT, 
 FirstName  VARCHAR(30) NOT NULL, 
 Surname VARCHAR(30) NOT NULL, 
 Contact INTEGER 
); 
 
CREATE TABLE Loan ( 
 LoanID  INTEGER PRIMARY KEY AUTOINCREMENT, 
 BorrowerID  VARCHAR(30) NOT NULL, 
 BookID  VARCHAR(30) NOT NULL, 
 DateBorrowed VARCHAR(30) NOT NULL 
) 
 
DDL: DROP 
 
The DROP command allows us to delete an entire table and all the records inside. 
 
DROP TABLE <table_name> 
 
e.g. DROP TABLE Unused 
 
 
 
 
 
 
 



15 
 

DML: INSERT 
 
The INSERT command allows us to insert a new record in a table. 
 
INSERT INTO <table_name>(<column1_name, column2_name, …>) 
VALUES (<column1_value, column2_value, …>) 
 
Refer to the Publisher table below. 
 
PublisherID PublisherName 
1 NPH 
2 Unpop 
3 Appleson 
4 Squirrel 
5 Yellow Flame 

 
e.g. INSERT INTO Publisher VALUES (6, 'BigBooks') 

OR 
INSERT INTO Publisher(PublisherName) VALUES ('BigBooks') 
 
Either statement inserts a new publisher named 'BigBooks' with PublisherID = 
6. It is not necessary to specify PublisherID in this case since it is incremented 
automatically. 

 
As a quick exercise, insert the following records into the Borrower and Loan tables. 
 
Borrower 
BorrowerID FirstName Surname ContactNum 
1 Peter  Tan 999 
2 Sarah Lee 81111123 
3 Kumara Ravi 94456677 
4 Some User  

 
Loan 
LoanID BorrowerID BookID DateBorrowed 
1 3 2 20190220 
2 3 1 20181215 
3 2 3 20181231 
4 1 5 20190111 

 
 
 
 
 
 
 
 
 
 
 
 



16 
 

DML: SELECT 
 
The SELECT command allows us to retrieve data from the database. 
 
SELECT <column1_name, column2_name, …>  
FROM <table_name>  
WHERE <condition(s)> 
ORDER BY <column_name> ASC/DESC 
 
Refer to the Book table below. 
 
BookID BookTitle PublisherID Damaged 
1 The Lone Gatsby 5 0 
2 A Winter’s Slumber 4 1 
3 Life of Pie 4 0 
4 A Brief History of Primates 3 0 
5 To Praise a Mocking Bird 2 0 
6 The Catcher in the Eye 1 1 
7 H2 Computing Ten Year Series  0 

 
To select all fields from a table, we use *. 
 
e.g. SELECT * FROM Book 
 
To select only one or a subset of fields, we use the field names separated by commas. 
 
e.g. SELECT BookTitle FROM Book 
 SELECT BookID, BookTitle FROM Book 
 
To select only rows meeting certain conditions, we use WHERE. 
 
e.g. SELECT BookTitle from Book WHERE Damaged = 1 
 This statement returns the titles of all the damaged books. 
    

SELECT * from Book WHERE PublisherID IS NOT NULL 
 This statement returns all the books with PublisherID. 
  

SELECT * from Book WHERE PublisherID = 4 AND Damaged = 0  
This statement returns all the books published by a certain publisher with ID no. 4 and 
are not damaged. 

 
To order the selected records according to some field values in ascending or descending order, 
we use ORDER BY … ASC/DESC. 
 
e.g. SELECT BookID, BookTitle FROM Book ORDER BY PublisherID ASC 

This statement returns all the book IDs and titles arranged in an ascending order of 
PublishedID. 

 
 
 
 
 



17 
 

DML: UPDATE 
 
The UPDATE command allows us to edit the data values in a database. One or more records 
may be updated at the same time. 
 
UPDATE <table_name> 
SET <column1_name = column1_value, column2_name = column2_value, …>  
WHERE <condition(s)> 
 
e.g. UPDATE Book SET Damaged = 1  

WHERE BookTitle = 'To Praise a Mocking Bird' 
This statement updates the condition of the book titled ‘To Praise a Mocking Bird’ to 
damaged. 

 
UPDATE Book SET BookTitle = 'Book: ' || Title 
This statement updates the values of BookTitle such that each book title now starts 
with ‘Book: ‘. Note the use of || for string concatenation.  

 
DML: DELETE 
 
The DELETE command allows us to delete existing records in a table. 
 
DELETE FROM <table_name> 
WHERE <condition(s)> 
 
e.g. DELETE FROM Publisher WHERE PublisherID = 6 
 This statement deletes the record having PublisherID = 6. 
 

DELETE FROM Publisher  
 This statement deletes all the records in the Publisher table. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18 
 

Quick Check 
For the Book table, write an SQL statement to insert an undamaged book titled “Eleventh 
Night” with BookID no. 8 and PublisherID no. 2 
 
INSERT INTO Book 
VALUES (8, 'Eleventh Night', 2, 0) 
 
 
For the Book table, write an SQL statement to update the condition of the book titled 
“Eleventh Night” to damaged. 
 
UPDATE Book 
SET Damaged = 1 
WHERE BookTitle = 'Eleventh Night' 
 
 
For the Book table, write an SQL statement to retrieve the titles of all the books with 
publishers and are damaged. 
 
SELECT BookTitle FROM Book  
WHERE PublisherID IS NOT NULL AND Damaged = 1 
 
 
For the Borrower table, write an SQL statement to delete all the records without contact 
numbers. 
  
DELETE FROM Borrower  
WHERE ContactNum IS NULL 
 
 
What is the difference between the two commands below? 
 
DROP TABLE Table1 
 
DELETE FROM Table2 
 
DROP TABLE deletes the table and all the records inside. Since the table has been deleted, 
it is no longer possible to add records into Table1 anymore. 
 
DELETE FROM does not delete the table, but only all the records inside. That means it is 
possible to add records again into Table2. 
 
 

 
 
 
 
 
 
 
 
 
 
 



19 
 

JOIN 
 
The JOIN command allows us to combine data from two tables.  
 
Inner join returns the Cartesian product of rows from the tables, i.e. it combines each row in 
the first table with each row in the second table. 
 
For example, to check the name of the publisher of each of the books in the library database, 
we can write the following SQL statement. 
 
SELECT * FROM Book, Publisher 
 

BookID BookTitle PublisherID Damaged PublisherID PublisherName 

1 The Lone Gatsby 5 0 1 NPH 

1 The Lone Gatsby 5 0 2 Unpop 

1 The Lone Gatsby 5 0 3 Appleson 

1 The Lone Gatsby 5 0 4 Squirrel 

1 The Lone Gatsby 5 0 5 Yellow Flame 

2 A Winter’s Slumber 4 1 1 NPH 

2 A Winter’s Slumber 4 1 2 Unpop 

2 A Winter’s Slumber 4 1 3 Appleson 

2 A Winter’s Slumber 4 1 4 Squirrel 

2 A Winter’s Slumber 4 1 5 Yellow Flame 

3 Life of Pie 4 0 1 NPH 

3 Life of Pie 4 0 2 Unpop 

3 Life of Pie 4 0 3 Appleson 

3 Life of Pie 4 0 4 Squirrel 

3 Life of Pie 4 0 5 Yellow Flame 

4 A Brief History Of Primates 3 0 1 NPH 

4 A Brief History Of Primates 3 0 2 Unpop 

4 A Brief History Of Primates 3 0 3 Appleson 

4 A Brief History Of Primates 3 0 4 Squirrel 

4 A Brief History Of Primates 3 0 5 Yellow Flame 

5 To Praise a Mocking Bird 2 0 1 NPH 

5 To Praise a Mocking Bird 2 0 2 Unpop 

5 To Praise a Mocking Bird 2 0 3 Appleson 

5 To Praise a Mocking Bird 2 0 4 Squirrel 

5 To Praise a Mocking Bird 2 0 5 Yellow Flame 

6 The Catcher in the Eye 1 1 1 NPH 

6 The Catcher in the Eye 1 1 2 Unpop 

6 The Catcher in the Eye 1 1 3 Appleson 

6 The Catcher in the Eye 1 1 4 Squirrel 

6 The Catcher in the Eye 1 1 5 Yellow Flame 

7 H2 Computing Ten Year Series  0 1 NPH 

7 H2 Computing Ten Year Series  0 2 Unpop 

7 H2 Computing Ten Year Series  0 3 Appleson 

7 H2 Computing Ten Year Series  0 4 Squirrel 

7 H2 Computing Ten Year Series  0 5 Yellow Flame 



20 
 

The resulting table is a big table having many records with inconsistent data for PublisherID. 
In order to retrieve only the useful records, we can add a condition as follows. 
 
SELECT * FROM Book, Publisher 
WHERE Book.PublisherID = Publisher.PublisherID 
 

BookID BookTitle PublisherID Damaged PublisherID PublisherName 

1 The Lone Gatsby 5 0 5 Yellow Flame 

2 A Winter’s Slumber 4 1 4 Squirrel 

3 Life of Pie 4 0 4 Squirrel 

4 A Brief History Of Primates 3 0 3 Appleson 

5 To Praise a Mocking Bird 2 0 2 Unpop 

6 The Catcher in the Eye 1 1 1 NPH 

 
The table above is more meaningful as it links the book titles to the correct publishers. 
However, notice that H2 Computing Ten Year Series has been omitted as it has no 
PublisherID. 
 
In such a case, we need to use left outer join, which takes into consideration all the records 
from one table and records from the other that meet the join conditions. 
 
SELECT <column1_name, column2_name, …>  
FROM <Table_A> 
INNER / LEFT OUTER JOIN <Table_B> 
ON <condition(s)> 
 

 
 
SELECT * FROM Book 
LEFT OUTER JOIN Publisher 
ON Book.PublisherID = Publisher.PublisherID 
 

BookID BookTitle PublisherID Damaged PublisherID PublisherName 

1 The Lone Gatsby 5 0 5 Yellow Flame 

2 A Winter’s Slumber 4 1 4 Squirrel 

3 Life of Pie 4 0 4 Squirrel 

4 A Brief History Of Primates 3 0 3 Appleson 

5 To Praise a Mocking Bird 2 0 2 Unpop 

6 The Catcher in the Eye 1 1 1 NPH 

7 H2 Computing Ten Year Series  0   

 
 



21 
 

Quick Check 
Write an SQL statement to retrieve the titles of all the books that are not damaged with their 
publisher names.  
 
SELECT BookTitle, PublisherName FROM Book, Publisher 
WHERE Book.PublisherID = Publisher.PublisherID AND Book.Damaged = 0 
 
 

 
AGGREGATE FUNCTIONS 
 
There are a few aggregate functions that we can use in SQL statements to calculate results 
from a given database: 

 MIN (minimum value) 
 MAX (maximum value) 
 SUM (sum of all values) 
 COUNT (number of values) 

 
OPERATORS 
 
We have seen some operators being used in the examples earlier. These operators are often 
used in the SELECT statements, but can be used in other statements like UPDATE. The 
following are the three types of operators that we are expected to know. 
 
Comparison Operators 
 

= < > 
!= <= >= 

 
Logical Operators 
 

OR IS ||  
(string concatenation) AND IS NOT 

 
Arithmetic Operators 
 

+ * % 
- /  

 
 
 
 
 
 
 
 
 
 
 



22 
 

Python and SQLite 
 
DB Browser for SQLite is a convenient program for us to experiment with SQL statements and 
examine the results. However, it is not an appropriate program to use if we want to customise 
or restrict how the contents of a database are modified or presented. 
 
Suppose we have a database that stores information about the books in a library. We should 
not use DB Browser for SQLite for users to search the database as not everyone is familiar 
with SQL statements. That aside, malicious users may run harmful statements, e.g. DROP 
TABLE to delete the database. 
 
As such, a developer typically write a custom program to control how users interact with a 
database, which has an interface that is easy to understand and use. Based on the users’ 
inputs, the program would then generate the appropriate SQL statements in the background 
and run them to produce the intended results. In this way, the users are prevented from 
modifying the database. 
 
We shall learn how to write Python programs that can interact with SQLite databases using 
the built-in sqlite3 module. 
 
Quick Check 
Which of the following is not a valid reason why DB Browser for SQLite should not be 
accessible to the users of a public library? 
 
A Users may use the program to insert fake data into the database. 

 
B Users may use the program to drop tables from the database. 

 
C Users may use the program to perform a query that returns nothing. 

 
D Users may not know how to perform the query using the program. 
 

 
Loading a Database 
 
Program 1: load_example.py 
 
1 
2 
3 
4 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
connection.close() 
 

 
The connect() method (line 3) takes in a string that contains the path and filename of a 
database file and returns a Connection object. If no path is included, the file is assumed to 
be in the same directory as the Python file. Furthermore, if the specified file does not exist, an 
empty file will be created with the given filename instead. 
 
After all operations with the database are complete, the close() method (line 4) of the 
Connection object should then be called. This ensures that the database file is closed 
properly, but does not save any modifications that have been made to the data. 
 



23 
 

Executing SQL Statements 
 
Program 2: create_example.py 
 
1 
2 
3 
4 
5 
6 
7 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
connection.execute("CREATE TABLE Book " + 
                   "(ID INTEGER PRIMARY KEY, Title TEXT)") 
connection.commit() 
connection.close() 
 

 
The execute() method (line 4) takes in a string containing the SQL statement we wish to 
run. 
 
The commit() method (line 6) saves the change(s) made to the database. 
 
After running the program above, we can use DB Browser for SQLite to check that a table 
called Book has indeed been created. 
 
However, if we try to run the program again, we will get the following error: 
 
Traceback (most recent call last): 
  File "create_example.py", line 5, in <module> 
    "(ID INTEGER PRIMARY KEY, Title TEXT)") 
sqlite3.OperationalError: table Book already exists 
 

 
This demonstrates that calling execute() is just like running regular SQL statements in the 
"Execute SQL" tab of DB Browser for SQLite. Any errors caused by running SQL statements 
are reported as Python exceptions. 
 
Committing Changes and Rolling Back 
 
Program 3: insert_example_incomplete.py 
 
1 
2 
3 
4 
5 
6 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(0, 'Example Book')") 
connection.close() 

 
The program above runs with no errors. However, if we open library.db using DB Browser 
for SQLite, we can see that the inserted data is missing from the Book table. 
 
A transaction is a unit of work that is performed against a database. Using INSERT, UPDATE 
or DELETE command opens a transaction that can either be committed or rolled back. 



24 
 

Program 4: insert_example.py 
 
1 
2 
3 
4 
5 
6 
7 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(0, 'Example Book')") 
connection.commit() 
connection.close() 

 
With a call to commit() added on line 6, the data are inserted and saved correctly. 
 
Program 5: rollback_example.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(1, 'Rollback Book')") 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(2, 'Also Rollback Book')") 
connection.rollback() 
 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(3, 'Committed Book')") 
connection.commit() 
 
connection.close() 

 
The rollback() method (line 9) discards any changes done by the preceding SQL 
statements. In the example shown above, the first two INSERT statements are rolled back so 
that they have no effect on the database. On the other hand, the last INSERT statement is 
committed so it does affect the database. 
 
This behaviour of SQLite is useful as sometimes we may wish to discard any modifications 
since the last transaction was opened. For instance, in our library example, we may start the 
process of placing a book on loan, but discover partway that the borrower has already reached 
his limit of borrowed books. We can discard all the changes made since the transaction was 
opened by calling the Connection object's rollback() method. 
 
Warning: Starting with Python 3.6, commands that control the structure of the database, such 
as CREATE TABLE and DROP TABLE, do not open a transaction and will generally take effect 
immediately. This means that, by default, it is not possible to roll back such changes 
automatically. 
 
 



25 
 

Parameter Substitution 
 
Program 6: delete_example.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
 
# Insert some rows first so we have something to delete 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(4, 'Extra Book')") 
connection.execute("INSERT INTO Book(ID, Title) " + 
                   "VALUES(5, 'Also Extra Book')") 
connection.commit() 
 
# Ask for ID and delete the corresponding row 
book_id = input("Enter Book ID to delete: ") 
connection.execute("DELETE FROM Book WHERE ID = ?", (book_id,)) 
connection.commit() 
 
connection.close() 

 
We often need to include some data that are provided by the user. For instance, we may want 
the user to enter the ID of a book to delete from the database. This requires us to generate a 
DELETE statement with the entered ID in its WHERE clause. 
 
We may be tempted to use string concatenation to generate the required SQL statement, 
 
e.g. connection.execute("DELETE FROM Book WHERE ID = " + book_id) 
 
Unfortunately, this is insecure as special characters or keywords in the user's input are not 
escaped, thus malicious users can use this loophole to inject his own SQL statements. 
 
We should use parameter substitution to safely include data that is provided by the user. To 
do this, we use the question-mark character ? as placeholders for any data provided by the 
user. We then provide a second argument to execute() that is a tuple of values to fill in the 
placeholders. 
 
Parameter substitution follows the same order in which the placeholders appear in the SQL 
statement. This is illustrated by the following diagram: 
 
 
 
 
 
 
 
 
 

execute("DELETE FROM Book WHERE ID > ? AND ID < ?", (2, 4)) 

1st tuple item replaces 
1st placeholder 

2nd tuple item replaces 
2nd placeholder 



26 
 

Quick Check 
As mentioned previously, the following string concatenation is not safe. 
 
connection.execute("DELETE FROM Book WHERE ID = " + book_id) 
 
Suggest an input for book_id that will delete all the rows in the Book table. 
 
1 or 1 
 

 
Retrieving Data from a Database 
 
As we have already learned, the SELECT command is used to select data from the database. 
When we run a SELECT command in DB Browser for SQLite, the selected rows are usually 
displayed in a table. 
 
In Python, however, we must access the selected rows using a Cursor object that is returned 
by the execute() method. This cursor can go through the selected rows, one by one, using 
either a for loop or the fetchone() method. Each iteration returns a tuple of the columns 
in the current row.  
 
The two programs below print out all the book titles in the Book table. 
 
Program 7: forloop_example.py 
 
1 
2 
3 
4 
5 
6 
7 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
cursor = connection.execute("SELECT ID, Title FROM Book") 
for row in cursor: 
    print(row[1])    # Title is the second item in the tuple 
connection.close() 

 
Program 8: fetchone_example.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
cursor = connection.execute("SELECT ID, Title FROM Book") 
row = cursor.fetchone() 
while row is not None: 
    print(row[1])    # Title is the second item in the tuple 
    row = cursor.fetchone() 
connection.close() 

 
The fetchone() method (Program 8 line 5) will advance the cursor to the next row, so calling 
it repeatedly will iterate through the selected rows until the cursor reaches the end and returns 
None. 



27 
 

Program 9: fetchall_example.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
cursor = connection.execute("SELECT ID, Title FROM Book") 
rows = cursor.fetchall() 
for row in rows: 
    print(row[1])    # Title is the second item in the tuple 
connection.close() 

 
Alternatively, instead of going through the rows one by one using a cursor, we may wish to 
fetch all the rows at once and keep them in a list.  
 
The fetchall() method (line 5) returns a list of tuples with each tuple containing the 
selected columns for a single row. 
 
Program 10: row_factory_example.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
 

import sqlite3 
 
connection = sqlite3.connect("library.db") 
connection.row_factory = sqlite3.Row 
cursor = connection.execute("SELECT ID, Title FROM Book") 
for row in cursor: 
    print(row["Title"])    # row is now a dictionary 
connection.close() 

 
Yet another alternative is to configure the SQLite connection so that each row is retrieved as 
a dictionary that maps column names to field values instead. To do this, we set the 
connection object's row_factory attribute to the built-in sqlite3.Row class (line 4). This 
lets us change the ordering of columns in the SELECT statement without having to modify the 
code for extracting individual column values. 
 
Quick Check 
Refer to Program 10. 
 
The SQL statement on line 5 is replaced with one of the following options. Which option 
would cause an error on line 7 when the program is run? 
 
A SELECT * FROM Book 

 
B SELECT ID FROM Book 

 
C SELECT Title FROM Book 

 
D SELECT Title, ID FROM Book 
 



28 
 

sqlite3 Module Summary 
 
connect(filename) Creates a Connection object using SQLite file with 

the given filename 
 

Row Can be used as a Connection object’s 
row_factory so that fetchone() returns a 
dictionary that maps column names to field values 
instead of returning a tuple of values 
 

 
Connection Class Summary 
 
commit() Saves changes to (but does not close) SQLite file 

 
close() Closes (but does not save changes to) SQLite file 

 
execute(sql) Runs the given SQL statement on the database and 

returns a Cursor object 
 

execute(sql, values_tuple) Runs the given SQL statement (first argument) after 
substituting question mark(s) with the corresponding 
value(s) in the given tuple (second argument) and 
returns a Cursor object 
 

rollback() Undoes any changes made since the last call to 
commit() 
 

row_factory Can be set to Row so that fetchone() returns a 
dictionary that maps column names to field values 
instead of returning a tuple of values 
 

 
Cursor Class Summary 
 
fetchone() Returns a tuple of values from next row of the query 

result or None if there are no more values (or a 
dictionary that maps column names to field values 
if row_factory is set to Row) 
 

fetchall() Calls fetchone() repeatedly until it returns None 
and returns a list of the non-None results 
 

 



1 
 

2021 JC2 H2 Computing 9569 
25. Non-Relational Database: MongoDB 
 
 
Introduction 
 

 
 

In the previous chapter, we have learnt about relational (SQL) database involving fixed 
schema, which works well with structured data. However, with the increasing number of 
ways to generate and gather data, we often need to deal with unstructured data.  
 
A non-relational (NoSQL) database uses a storage model optimised for the specific 
requirements of the types of data being stored in it instead of using tabular schema of rows 
and columns found in a relational database. 
 

 
 
For the purpose of the syllabus, we shall focus on MongoDB, a type of document database, 
which deals with JSON (JavaScript Object Notation) documents. 
 
Recall that in a hash table, each key points to a single value or data item. Python 
dictionary is implemented using a hash table, so that the values stored can be accessed 
directly by hashing the relevant keys. A document in MongoDB is akin to dictionary. 
 
Here are the terms used in MongoDB with the corresponding terms in SQL for comparison. 
 

MongoDB Term SQL Term 
Database Database 
Collection Table 
Document Row 
Field Field / Column 



2 
 

SQL VS NoSQL Databases 
 

SQL 
 

NoSQL 

Has fixed, predefined schema 
 

No predefined schema, thus dynamic and 
can change easily 
 

Data are stored in tables with a fixed data 
type in each field 
 

Data are stored as collections of documents 
with no fixed data types 

Joins are used to get data across tables, 
thus easier to use for complex queries 
 

No join operations 

 
The choice of database to use depends on the types of data being stored, as well as the 
nature of the tasks that the database is required to perform. 
 
SQL databases should be used if: 
 

 the data stored has a fixed schema with the atomicity, consistency, isolation and 
durability (ACID) properties critical to the database 
 

 complex and varied queries will be frequently performed 
 

 a high number of simultaneous transactions will be performed 
 
Atomicity A transaction takes place completely or does not happen at all. 

 
Consistency Integrity constraints are maintained at all times. 

 
Isolation Multiple transactions can occur concurrently without leading to the 

inconsistency of database state. 
 

Durability Once a transaction has been completed, the updates and modifications to 
the database are saved even if the system fails or restarts. 
 

 
NoSQL databases should be used if: 
 

 the data stored has a dynamic schema, i.e. unstructured data with flexible data types 
 

 data storage needs to be performed quickly 
 

 simple queries are often made due to better performance speed 
 

 there will be an extremely large amount of data, i.e. big data 
 
 
 
 
 
 
 
 



3 
 

NoSQL databases address the shortcomings of SQL databases as follows: 
 

 SQL databases have predefined schemas that are difficult to change. Should we 
wish to add a field to only a small number of records, we need to include the field for 
the entire table. 
 
Therefore, it can be difficult to support the processing of unstructured data using SQL 
databases, unlike in NoSQL databases where data are stored in documents that 
need not be of the same format. 
 
 

 Unlike NoSQL databases, relational databases do not usually support hierarchical 
data storage where less frequently used data are moved to cheaper, slower storage 
devices.  
 
This means that the cost of storing the same amount of data in an SQL database is 
more expensive than in a NoSQL database. 
 
 

 An SQL database is stored in one server, which makes the database unavailable 
when the server fails.  
 
NoSQL databases, on the other hand, are designed to take advantage of multiple 
servers so that if one server fails, the other servers can continue to support 
applications. 
 
 

 SQL databases are mainly vertically scalable, which means that improving the 
performance usually requires upgrading the existing server with faster processors 
and more memory space. Such high-performance components can be expensive and 
upgrades are limited by the capacity of a single machine. 
 
On the other hand, NoSQL databases are horizontally scalable, which means that 
the performance can be improved by simply increasing the number of servers. This is 
relatively cheaper as mass-produced average-performance computers are easily 
available at low prices. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



4 
 

Python and MongoDB 
 
To interact with MongoDB databases, we need to first connect to the MongoDB server. The 
server window should remain open as long as we are accessing the database. 
  

 
 
Just like how Python can interact with SQLite databases, it can also do the same with 
MongoDB databases. For the purpose of the latter, we use the built-in pymongo module. 
 
Connecting to a Database 
 
Program 1: access.py 
 
1 
2 
3 
4 
5 
6 
7 
8 

import pymongo 
client = pymongo.MongoClient("127.0.0.1", 27017) 
databases = client.database_names() 
 
print("The databases in the MongoDB server are:") 
print(databases) 
 
client.close() 
 

 
The MongoClient() method (line 3) connects to the local MongoDB database, which is at 
port 27017 by default. The port number can be seen when we start the MongoDB server. 
The IP address 127.0.0.1 is the localhost IP address. 
 
The database_names() method (line 4) retrieves the names of the databases as a list. 
 
The close() method (line 9) closes the connection to the server. 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 
 

Inserting Documents 
 
Program 2: insert.py 
 
1 
2 
3 
4 
5 
6 
7 
 
8 
 
9 
10 
11 
12 
 
13 
 
14 
 
15 
 
16 
 
17 
18 
19 
20 
21 
22 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
coll.insert_one({"_id":1, "title":"Johnny Math", 
"genre":"comedy"}) 
coll.insert_one({"title":"Star Walls", "genre":"science 
fiction"}) 
coll.insert_one({"title":"Detection"}) #no genre 
 
list_to_add = [] 
list_to_add.append({"title":"Badman", "genre":"adventure", 
"year":2015})  
list_to_add.append({"title":"Averages", "genre":["science 
fiction","adventure"], "year":2017}) 
list_to_add.append({"title":"Octopus Man", 
"genre":"adventure", "year":2017}) 
list_to_add.append({"title":"Fantastic Bees", 
"genre":"adventure", "year":2018}) 
list_to_add.append({"title":"Underground", "genre":"horror", 
"year":2014}) 
coll.insert_many(list_to_add) 
 
c = db.collection_names("entertainment") 
print("Collections in entertainment database: ", c) 
 
client.close() 
 

 
Program 2 above demonstrates two ways of inserting documents. 
 
The get_database() method (line 4) and get_collection() method (line 5) allows us 
to access a specific database and a collection respectively. They are created when not 
already available in the server. 
 
The insert_one() method (lines 7-9) allows the insertion of one document at a time. 
 
The insert_many() method (line 17) allows the insertion of multiple documents in a list. 
 
Note that MongoDB assigns a unique _id to each document inserted. The value of _id can 
be customised during the insertion process (line 7), but in so doing, we cannot run Program 
2 again until we remove this document. Otherwise, the program will produce an error as we 
cannot have more than one document of the same _id. When we run Program 2 again with 
line 7 commented out, duplicates of the other documents will be created. 



6 
 

It is possible to write a program to read data from a delimited text file and insert the 
documents into the database. An input file (with each row containing the name and the age 
of a user) and parts of the program are given below. 
 
Input File: input.txt 
 
Amanda,45 
Bala,28 
Charlie,33 
Devi,29 
 

 
Fill in the blanks below. 
 
Program 3: insert_from_txt.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

import pymongo, csv 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("users") 
 
with open('input.txt') as csv_file: 
    csv_reader = csv.reader(csv_file, delimiter=',') 
    for row in csv_reader: 
        coll.insert_one({"name":row[0], "age":int(row[1])}) 
 
client.close() 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 

Retrieving Documents 
 
The following is a list of commonly used query operators. 
 
$eq Equal to 

 
 
 
 
 
 

{'field': {'$op': …}} 

$ne Not equal to 
 

$gt Greater than 
 

$gte Greater than or equal to 
 

$lt Less than 
 

$lte Less than or equal to 
 

$or Logical OR 
 
{'$or': [{'field1': …}, {'field2': …}, …]} 
 

$and Logical AND 
 
{'$and': [{'field1': …}, {'field2': …}, …]} 
 

$not Logical NOT (also retrieve documents that do not have field) 
 
{'field': {'$not': {…}}} 
 

$exists Retrieve documents that have the named field 
 
{'field': {'$exists': True/False}} 
 

$in Retrieve documents that have at least one of the items in the list 
 
{'field': {'$in': ['item1', 'item2', …]}} 
 

$nin Retrieve documents that do not have at least one of the items in the list 
 
{'field': {'$nin': ['item1', 'item2', …]}} 
 

 
 
 
 
 
 
 
 
 



8 
 

Program 4: view1.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
result = coll.find() 
print("All documents in movies collection: ") 
for document in result: 
    print(document) 
print("Document count in movies collection:", result.count()) 
print() 
 
query = {'genre':'adventure','year': {'$gt': 2016}} 
result = coll.find(query) 
print("All movie titles with adventure genre after 2016:") 
for document in result: 
    print(document['title']) 
print("There are", result.count(), "such movies.") 
print() 
 
result = coll.find_one({'genre':'adventure'}) 
print("One movie with adventure genre:", result) 
 
client.close() 
 

 
The find() method (lines 7 and 15) returns a Cursor of the documents in the movies 
collection. When a query is not supplied as an argument, it returns all the documents 
available in the collection. The result can then be printed by means of a loop. Each 
document is in the form of dictionary in Python. 
 
The find_one() method (line 22) retrieves only one document according to the order of 
insertion into the collection. 
 
The count() method (lines 11 and 19) returns the number of documents. 
 
 
 
 
 
 
 
 
 
 
 
 



9 
 

Program 5: view2.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
result = coll.find({'genre':{'$in':['adventure','comedy']}}) 
print("All movies with adventure or comedy genre:") 
for document in result: 
    print(document) 
print() 
 
query = {'genre':{'$exists':False}} 
result = coll.find(query) 
print("All movies without genre:") 
for document in result: 
    print(document['title']) 
 
client.close() 

 
 
Quick Check 
Modify the program above to print out: 

- all movies without ‘adventure’ and ‘comedy’ as their genres in lines 7-11 
- the movie title and how many years ago was the movie released for all movies with 

year given in lines 13-17 
 

result = coll.find({'genre':{'$nin':['adventure', 'comedy']}}) 
print("All movies without adventure and comedy genres:") 
 
### 
 
query = {'year': {'$exists':True}} 
result = coll.find(query) 
print("All movies with year given:") 
for document in result: 

age = 2021 - document['year'] 
print(" - Title: ", document['title'], 
      ", no. of year(s) since release: ", age) 

 
 
 
 
 
 

 
 

 



10 
 

Updating Documents 
 
Program 6: update.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
result = coll.find() 
print("All documents in movies collection:") 
for document in result: 
    print(document) 
print() 
 
search = {'year':{'$gt':2016}} 
update = {'$set':{'year':2015}} 
coll.update_one(search, update) 
 
result = coll.find() 
print("All documents in movies collection after 1st update:") 
for document in result: 
    print(document) 
print() 
 
search = {'year':{'$eq':2015}} 
update = {'$unset':{'year':0}} 
coll.update_many(search, update) 
 
result = coll.find() 
print("All documents in movies collection after 2nd update:") 
for document in result: 
    print(document) 
print() 
 
client.close() 
 

 
The $set operator (line 13) is called to edit the value(s) of key(s). 
 
The update_one() method (line 15) updates the first document that matches the given 
criteria. 
 
The $unset operator (line 24) is called to remove key-value pair(s). 
 
The update_many() method (line 25) updates all the documents that match the given 
criteria. 
 



11 
 

Deleting Documents 
 
Program 7: delete.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
16 
17 
18 
 
19 
20 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
result = coll.count() 
print("Document count in movies collection:", result) 
 
coll.delete_one({'year':2017}) 
 
result = coll.count() 
print("Document count in movies collection after 1st deletion 
one:", result) 
 
coll.delete_many({'year':{'$exists':'false'}}) 
 
result = coll.count() 
print("Document count in movies collection after 2nd deletion 
one:", result) 
 
client.close() 
 

 
The delete_one() method (line 10) deletes the first document that matches the given 
criteria. 
 
The delete_many() method (line 15) deletes all the documents that match the given 
criteria. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



12 
 

Dropping a Collection 
 
Program 8: drop_collection.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
coll = db.get_collection("movies") 
 
result = coll.count() 
print("Document count in movies collection:", result) 
 
db.drop_collection("movies") 
 
result = coll.count() 
print("Document count in movies collection after dropping:", 
result) 
 
client.close() 
 

 
The drop_collection() method (line 10) removes the collection with all the documents 
inside it. 
 
 
Dropping a Database 
 
Program 9: drop_database.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 

import pymongo 
 
client = pymongo.MongoClient("127.0.0.1", 27017) 
db = client.get_database("entertainment") 
 
client.drop_database("entertainment") 
 
databases = client.database_names() 
print("The databases in the MongoDB server are:", databases) 
 
client.close() 
 

 
The drop_database() (line 6) method removes the entire database with all the collections 
and the documents inside it. 
 
 
 
 
 



13 
 

pymongo Module Summary 
 
MongoClient(IP, port) Creates a MongoDB Client object via connection 

to the given IP address and port number 
 
Client Class Summary 
 
database_names() Shows all the databases in a list 
get_database(name) Declares a Database object of the given name 
drop_database(name) Deletes a Database object of the given name 
close() Closes the connection to MongoDB 
 
Database Class Summary 
 
collection_names() Shows all the collections in a list 
get_collection(name) Declares a Collection object of the given name 
drop_collection(name) Deletes a Collection object of the given name 
 
Collection Class Summary 
 
insert_one(nosql) Inserts one document given the nosql statement 

 
insert_many(list_of_nosql) Inserts multiple documents given the 

list_of_nosql statements 
 

find() Returns a Cursor of documents 
 

find_one(nosql) Returns the first document that matches the given 
nosql statement 
 

update_one(nosql1, nosql2) Finds the first document that matches the given 
nosql1 statement and updates it given the 
nosql2 statement 
 

update_many(nosql1, nosql2) Finds all documents that match the given nosql1 
statement and updates them given the nosql2 
statement 
 

delete_one(nosql) Deletes the first document that matches the given 
nosql statement 
 

delete_many(nosql) Deletes all documents that match the given nosql 
statement 
 

count() Returns the number of documents 



14 
 

 



1 
 

2021 JC2 H2 Computing 9569 
26. Data Management and Privacy 
 
 
Introduction 
 
Data management is an administrative process that involves acquiring, validating, storing, 
protecting and processing required data to ensure their integrity, accessibility and privacy for 
the users. 
 
The value of physical equipment is often far less than that of the data it contains. The loss of 
data can be costly, even more so if they fall into the hands of unauthorised individuals. With 
more data handled across the globe, data protection and privacy is now more crucial than 
ever. 
 
 
Backup and Archive 
 
Backup and archive are two terms that are often mentioned in the same breath. On the 
surface, they may seem almost analogous, but are not the same. The table below highlights 
the key differences between the two. 
 
 Backup Archive 

 
Nature of data Live data that are frequently 

overwritten 
 
e.g.  
Drafts of newspaper articles 
before publication are crucial 
should the computer encounter 
an error. 
 

Data that will not be subjected to 
any more changes 
 
e.g.  
Old newspaper articles, going as 
far back as the very first 
publication.  
 

Data retention Short-term 
 
e.g. 
Drafts of newspaper articles can 
be deleted as soon as the final 
version is published. 
 

Long-term 
 
e.g. 
Old newspaper articles are 
retained indefinitely for future 
reference. 

Retrieval speed Should be fast 
 
e.g. 
Since the author of a newspaper 
article is still working on it, 
retrieval of previous drafts 
should not take long to restore 
should an error happen. 

Can be slow 
 
e.g.  
Since old newspaper articles are 
not likely to be used as frequently 
as the recent ones, they could be 
stored in an inconvenient 
location. Preservation of the 
information is more important 
than making it readily accessible. 
 

 
 



2 
 

Version Control and Naming Convention 
 
Version control is the practice of tracking and managing changes to data.  
 
More often than not, several people are involved in a project over an extended period of time. 
Without proper controls, this can quickly lead to confusion as to which version is the most 
recent. 
 
The usefulness of version control is as follows: 
 

 Along with proper documentation, it allows for tracking of changes made to a particular 
project. A version control table can be maintained, noting the changes and their dates.  
 
For instance, in the case of a software, the members of the development team will 
have a clear idea of what are the features that have been implemented and others that 
still require implementation. 
 

 It provides an efficient mechanism for backup with the ability to roll back to previous 
versions. Should serious issues be discovered in the current version, developers can 
roll back to the previous functioning version. 

 
Naming convention should be established along with version control. For file names to be 
meaningful and easily retrievable, they have to be consistent with agreed vocabulary, 
numbering, punctuation, date format, etc. in a specific order. 
 
As a simple example: 
 

 Any major changes to a file can be indicated by: 
‘v01’ refers to the first version,  
‘v02’ refers to the second version, etc. 

 
 Any minor changes can be indicated by: 

‘v01.01’ refers to the first minor change made to the first version 
‘v03.02’ refers to the second minor change made to the third version, etc. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 
 

Data Privacy 
 
Data privacy is the requirement for data to be accessed by or disclosed to authorised 
individuals only. It is crucial that unauthorised people do not have access to data they are not 
supposed to have. Unfortunately, in today’s digitised society, it is easier than ever to gather 
someone else’s personal data. 
 
For instance, data on which websites you frequently visit can reveal which products you are 
more likely to purchase as a shopper. This information can be highly valuable to an advertiser. 
As more services become available online, the risk of fraudulent use of data increases. 
Nowadays, with a photo of your identity card, a person can impersonate you and register for 
a new phone line on a telco website. Previously such a transaction would have required the 
person to personally register over the counter with the physical identity card. As technology 
becomes increasingly more powerful, machines can gather information on a person easily, 
like performing facial recognition on surveillance videos to track down the whereabouts of an 
individual in a particular area. 
 
 
Personal Data Protection Act 
 
In Singapore, personal data1 is protected under the Personal Data Protection Act (PDPA), 
a law comprising various rules that govern the collection, use, disclosure and care of personal 
data. It recognises both the rights of individuals to protect their personal data, including rights 
of access and correction, as well as the needs of organisations to collect, use or disclose 
personal data for legitimate and reasonable purposes. 
 
It takes into account the following: 
 

 Consent – Organisations must obtain an individual's knowledge and consent to collect, 
use or disclose his/her personal data (with some exceptions). 
 

 Notification – Organisations must inform individuals of the purposes for collecting, 
using or disclosing their personal data. 

 
 Appropriateness – Organisations may collect, use or disclose personal data only for 

purposes that would be considered appropriate to a reasonable person under the given 
circumstances. 

 
 Accountability – Organisations must make information about their personal data 

protection policies available on request. They should also make available the business 
contact information of the representatives responsible for answering questions relating 
to the organisations’ collection, use or disclosure of personal data. 

 
To administer and enforce the PDPA, the government set up the Personal Data Protection 
Commission (PDPC) in 2013. 
 
 
 
 
 
 

                                                
1 Personal data refers to data, whether true or not, about an individual who can be identified from that 
data; or from that data and other information to which the organisation has or is likely to have access. 



4 
 

Organisations are required to abide by the following main personal data obligations: 
 
1. Consent Obligation 
Only collect, use or disclose personal data for purposes for which an individual has given his 
or her consent. 
 
2. Purpose Limitation Obligation 
An organisation may collect, use or disclose personal data about an individual for the purposes 
that a reasonable person would consider appropriate in the circumstances and for which the 
individual has given consent. 
 
3. Notification Obligation 
Notify individuals of the purposes for which your organisation is intending to collect, use or 
disclose their personal data on or before such collection, use or disclosure of personal data. 
 
4. Access and Correction Obligation 
Upon request, the personal data of an individual and information about the ways in which his 
or her personal data has been or may have been used or disclosed within a year before the 
request should be provided. However, organisations are prohibited from providing an 
individual access if the provision of the personal data or other information could reasonably 
be expected to cause harmful effects. Organisations are also required to correct any error or 
omission in an individual’s personal data that is raised by the individual.  
 
5. Accuracy Obligation 
Make reasonable effort to ensure that personal data collected by or on behalf of your 
organisation is accurate and complete, if it is likely to be used to make a decision that affects 
the individual, or if it is likely to be disclosed to another organisation. 
 
6. Protection Obligation 
Make reasonable security arrangements to protect the personal data that your organisation 
possesses or controls to prevent unauthorised access, collection, use, disclosure or similar 
risks. 
 
7. Retention Limitation Obligation 
Cease retention of personal data or remove the means by which the personal data can be 
associated with particular individuals when it is no longer necessary for any business or legal 
purpose. 
 
8. Transfer Limitation Obligation 
Transfer personal data to another country only according to the requirements prescribed under 
the regulations, to ensure that the standard of protection provided to the personal data so 
transferred will be comparable to the protection under the PDPA, unless exempted by the 
PDPC. 
 
9. Accountability Obligation 
Make information about your data protection policies, practices and complaints process 
available on request. Designate a Data Protection Officer to ensure that your organisation 
complies with the PDPA. 
 
More information on PDPA are available at the PDPC website: http://www.pdpc.gov.sg/  
 
 
 
 
 

http://www.pdpc.gov.sg/


5 
 

Example: Use of NRIC/FIN 
 
The Singapore National Registration Identification Card (NRIC) number is a unique 
identifier assigned to Singapore citizens and permanent residents. Similarly, the Foreign 
Identification Number (FIN) is a unique identifier that is assigned to foreigners living in 
Singapore. The NRIC/FIN contains personal information about the individual, such as his/her 
date of birth and residential address. As unique identifiers like NRIC and FIN are permanent, 
irreplaceable and often used in a variety of government transactions, we need to be careful 
with such data.  
 
Individuals should not readily provide their NRIC/FIN and personal particulars to other people 
or companies. Consent is required before organisations can obtain a person’s data. Under the 
PDPA, from 1 September 2019, organisations2 are generally not allowed to collect, use or 
disclose NRIC numbers (or copies of NRIC), except in the following circumstances: 
 

 Collection, use or disclosure of NRIC numbers (or copies of NRIC) is required under 
the law (or an exception under the PDPA applies), or 
 

 Collection, use or disclosure of NRIC numbers (or copies of NRIC) is necessary to 
accurately establish or verify the identities of the individuals to a high degree of fidelity. 

 
For example, a medical clinic needs to see the NRIC of a patient to identify the person. The 
clinic will need to keep the NRIC number, name, residential address and contact number of 
the person with the medical notes for future reference. The PDPA allows for that. However, a 
shopping mall cannot collect the photographs of NRICs of all the shoppers that want to 
participate in their lucky draw. It is unnecessary to collect the photographs to verify the lucky 
draw participant. Instead, the participants can be identified with their mobile number or be 
asked to give the last 4 characters of the NRIC (i.e. partial NRIC) for verification purposes. 
This reduces the security risks if the data collected is unintentionally revealed. 
 
Imagine that you work for a telephone company. 

 When can you ask for someone’s NRIC? 
 What should the company do to ensure that personal data of customers are protected? 

 
 
A handphone company can ask for your NRIC to verify your identify (e.g. to check that you 
are indeed the person registering for a new mobile phone). The company may obtain the NRIC 
number to run necessary checks. For example, by law, each person is allowed to register up 
to 3 prepaid cards. The company uses your NRIC number to check that you have not 
exceeded the limit. 

 
The company should ensure that the data is stored securely, for example, encrypted and 
stored in an intranet rather than on the Internet. There should be user authentication required 
before someone is allowed to access the data. 
 
 
 
 
 
                                                
2 Note that PDPA does not apply to public agencies and organisations acting on behalf of them, thus, 
for example, the police can collect your personal information, including NRIC/FIN. Data collected by 
public agencies are protected by other acts. 



6 
 

Example: Do Not Call Registry 
 
Have you ever received calls from unknown companies who seem to know your name and 
perhaps try to sell products to you? Your telephone number could have been gathered from 
unexpected sources, such as a lucky draw form that you filled up long ago. With technology, 
companies can easily gather and consolidate personal information. It can even automate the 
making of such calls. 
 
To prevent you from getting unnecessary marketing calls, you can register in the Do Not Call 
(DNC) Registry to opt out of marketing messages and calls. The PDPA prohibits 
organisations from sending marketing messages to Singapore telephone numbers, including 
mobile, fixed-line, residential and business numbers that are registered with the DNC Registry. 
 
There are three DNC registers that individuals can choose to register in: 

 No Voice Call Register 
 No Text Message Register 
 No Fax Message Register 

 
Registering the phone number in each register is to opt out of receiving marketing messages 
through voice calls, text messages and fax messages. 
 
Note that organisations that have an ongoing relationship with a subscriber or user of a 
Singapore telephone number may send marketing messages on similar or related products, 
services and memberships to that Singapore telephone number via text or fax without 
checking against the DNC Registry. However, each exempt message must also contain an 
opt-out facility that the recipient may use to opt out from receiving such telemarketing 
messages. If a recipient opts out, organisations must stop sending such messages to his/her 
Singapore telephone number after 30 days. 
 
 
 
You can take various measures to protect your personal data. Do not reveal your personal 
data to unknown sources. For phone calls, ensure that the caller is who he or she is before 
giving your personal information. For websites and applications, read the privacy or data 
protection policies of the website to understand how your data are used before agreeing with 
the terms. 
 

 
If you have queries on personal data, or to withdraw consent, you can contact the data 
protection officer (DPO). Under PDPA, companies are required to appoint one or more 
persons to be DPO to oversee the data protection responsibilities within the organisation and 
ensure compliance with the PDPA. 
 
Also be careful when throwing away papers containing your personal data, such as application 
forms or letters from schools, banks etc. Tear or shred them so that people cannot use them 
to obtain personal data about yourself. 
 



7 
 

Let’s Apply! 
Read the following excerpt, which is an adaptation of an actual case, and answer the 
questions that follow. 
 
- - - 
 
A pre-school organised a school trip for interested students and their parents. To verify that 
only authorised parents turned up for the school trip, the pre-school teacher collected the 
parent’s personal data (like identity card numbers). 
 
A few days before the school trip, the teacher sent a file of the consolidated name list to the 
parents’ WhatsApp chat group to remind those who signed up about the school trip. The file 
contained a table that included the names of the students, along with the contact number 
and identity card numbers of the parents attending. 
 
- - - 
 
(a)  In what way was the PDPA breached in the scenario above? 
 
The teacher released the personal data of some parents to other parents without their 
permission. 
 
 
 
(b)  What precautions can a teacher take to prevent a similar accident from happening? 
 
The teacher should have messaged each parent directly to remind the parents of the school 
trip rather than messaging everyone in a group chat to minimise the possibility of accidental 
leakage of personal data.  
 
 
 
(c)  What should the teacher do to the personal data obtained after the school trip? 
 
The teacher should delete the personal data if they are not required after the school trip. 
Any printed copy of the data should be shredded to prevent leakage of personal data. 
 
 
 

 



1 

2021 JC2 H2 Computing 9569 
27. Hypertext Markup Language (HTML)  
 
 
Introduction 
 
Open a web browser, such as Google Chrome, and visit www.example.com. You should see 
a simple web page as shown in the following screenshot. 
 

 
 
How do you think web pages like this one are made? 
 
Just like how programs are written in a programming language, such as Python, web pages 
are written using the Hypertext Markup Language (HTML). Unlike programming languages 
that are specialised for describing step-by-step instructions, HTML is used to describe the 
structure of web pages. It provides control over how contents (e.g. words, images, sounds, 
etc.) are displayed on the website. 
 
To view the HTML source code of a web page in Chrome, we can press Ctrl-U. Alternatively, 
we can do a right-click and select “View page source”. Try this now for the web page on 
www.example.com. 
 
Examine the HTML source code on the web browser. Do you see that the contents of the web 
page are surrounded by text enclosed in angle brackets (i.e. < and >)? The text surrounded 
by angle brackets are special processing instructions for the web browser called tags. 
 
You may also notice that there is a portion in the HTML document that does not include tags. 
That is written in the Cascading Style Sheets (CSS) language that controls the appearance 
of the web page. We shall cover CSS in the next chapter. 
 
 
 
 
 
 
 
 

http://www.example.com/
http://www.example.com/


2 

Anatomy of an HTML Document 
 
Most tags consist of a start tag and an end tag. This is unlike Python that uses indentation to 
represent the start and the end of a block of code. Start tags may also have one or more 
attributes. 
 

 

Example 1 
 
 
<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Tab title</title> 
    </head> 
    <body> 
        <h1>This is my 1st header.</h1> 
    </body> 
</html> 
 
<!-- Add your comments here. --> 
 

 
 

Tag Purpose 

<!DOCTYPE> Declares the type and the version of the 
document.  
 
<!DOCTYPE html> indicates that it is 
written in HTML5 

<html> Contains the entire document 

<head> Contains the metadata of a document 

<body> Contains the visible elements of a 
document 

<title> Adds a title to the web page 

<h1>, <h2>, <h3>, <h4>, <h5>, <h6> Six levels of headings 

<!-- comments --> Comments 

 
 

<a href="/example">More information...</a>

Attribute

Start Tag Contents End Tag



3 

A start tag that comes with a matching end tag, such as <body> and <h1>, corresponds to a 
normal element that may contain a combination of text and others. On the other hand, a start 
tag that does not have a matching end tag, such as <!DOCTYPE> and <img>, corresponds to 
a void element that does not have any contents. 
 
HTML tags are used to describe the structure of a web page by organising its contents into a 
tree of elements. In general, each start tag corresponds to a single element. Take a look at 
how the following HTML snippet is represented as a tree. 
 
 
<body> 
    <h1>Mood Tracker</h1> 
    <p> 
        Today's Mood: 
        <img src="happy.jpg" alt="happy"> 
    </p> 
</body> 
 

 

 
 
Header Tags 
 
Example 2 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <h1>This is my 1st header.</h1> 
        <h2>This is my 2nd header.</h2> 
        <h3>This is my 3rd header.</h3> 
        <h4>This is my 4th header.</h4> 
        <h5>This is my 5th header.</h5> 
        <h6>This is my 6th header.</h6> 
    </body> 
</html> 
 
 
Notice how the headers are arranged in descending order of size from h1 to h6. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

body

h1 p

Today’s Mood: imgMood Tracker



4 

Text Formatting Tags 
 
Example 4 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <h1>This is my 1st header.</h1> 
        <p><u>This is my 1st paragraph.</u></p> 
        <p>This is my 1st statement <br> and 2nd statement.</p> 
        <hr> 
        <p>This is my <b><i>last statement.</i></b></p> 
    </body> 
</html> 
 
 
 

Tag Purpose 

<p> Adds a new paragraph 

<b> Bolds texts 

<i> Italicises texts 

<u> Underlines texts 

<br> Adds a line break 

<hr> Adds a horizontal line and line break 

 
Note that some characters have special meanings in HTML. To display them as texts, they 
need to be escaped using character references that start with an ampersand (&) and end with 
a semi-colon (;). 
 

Character & < > " 

Character 
reference &amp; &lt; &gt; &quot; 

 
Some browsers may be able to interpret the above characters correctly and display them as 
intended without using the character references. However, it is best practice to use the 
character references to avoid ambiguity.  
 
 
 
 
 
 
 
 



5 

Quick Check 
1. Underline the tags having normal elements and circle the tags having void elements. 
 
 
<!DOCTYPE html> 
 
<html> 
  
 <head><title>Welcome Page</title></head> 
  
 <body> 
  
   <h1>Welcome to our Computing department!</h1> 
    
   <img src="welcome.png" alt="Welcome"> 
    
   <p>Feedback:</p> 
    
   <textarea name="feedback">Type here.</textarea> 
    
   <p><input type="submit"></p> 
 
 </body> 
  
</html> 
 
 
 
2. Create the following web page. Save your file as quiz.html. 
 

 



6 

Unordered and Ordered Lists 
 
Can you spot the difference in the next two examples? 
 
Example 5 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <h1><u>About me</u></h1> 
        <p>I am a student studying in ACJC.</p> 
        <p>The following are my hobbies:</p> 
        <ul> 
            <li>Eating</li> 
            <li>Sleeping</li> 
            <li>Watching TV</li> 
        </ul> 
    </body> 
</html> 
 
 
 
Example 6 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <h1><u>About me</u></h1> 
        <p>I am a student studying in ACJC.</p> 
        <p>The following are my hobbies:</p> 
        <ol> 
            <li>Eating</li> 
            <li>Sleeping</li> 
            <li>Watching TV</li> 
        </ol> 
    </body> 
</html> 
 
 
 

Tag Purpose 

<ul> Creates an unordered list where items are marked with bullet points 

<ol> Creates an ordered list where items are marked with numbers 

<li> Marks the individual items in a list 
 
 
 



7 

Tables 
 
Example 7 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <h1>About me</h1> 
        <p>I am a student studying in ACJC.</p> 
 
        <h2>Here are my O-Level results:</h2> 
        <table> 
            <th>Subject</th> 
            <th>Grade</th> 
            <tr> 
                <td>English Language</td> 
                <td>A1</td> 
            </tr> 
            <tr> 
                <td>Mathematics</td> 
                <td>A1</td> 
            </tr> 
        </table> 
    </body> 
</html> 
 
 
 

Tag Purpose 

<table> Creates a table 

<th> Table header 

<tr> Table row 

<td> Table data within a row 

 
Note that CSS is required to show table borders. 
 
 
 
 
 
 
 
 
 
 
 
 
 



8 

Images and Links 
 
Search for a picture of a dog from the Internet and save it as dog1.jpeg. Afterwards, create 
the following HTML document and put it in the same directory as the image file. 
 
Example 8 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
    <img src="dog1.jpeg" alt='Image of a dog'> 
    <br> 
    <img src="cat1.jpeg" alt='Image of a cat'> 
    <br> 
    <a href="http://www.google.com">Go to google.com</a> 
    </body> 
</html> 
 
 
 

Tag Purpose 

<img> Displays an image 
 
src= is followed by the (path of the) filename in quotation marks 
alt= is followed by a text to be displayed if there is an issue with the file 
 

<a> Anchor tag to create a link 
 
href= is followed by the URL in quotation marks 
 
When creating a link to an external website, the link provided must be an 
absolute URL. It is necessary to include the “http://” to ensure that the 
browser does not interpret it as something that resides in our file system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



9 

Example 9 
 
Create a directory with the following structure and include the necessary files. The following 
HTML code is to be included in a HTML document named url1.html. 
 

 
 
 
<!DOCTYPE html> 
 
<html> 
    <head> 
    <title>URL1</title> 
    </head> 
    <body> 
    <img src="dog1.jpeg" alt='Image of a dog'> 
    <br> 
    <img src='images/cat1.jpeg' alt='Image of a cat'> 
    <br> 
    <img src='../master_images/monkey.jpeg' alt=''> 
    </body> 
</html> 
 
 
If the path is not specified, it is assumed that the image file is in the same folder as the HTML 
document. 
 
If the image file is located in a sub-folder inside the same folder as the HTML file, the path 
should be specified in the following format: “folder_name/image_name” 
 
If the image is located in a folder that is outside of the one where the HTML file resides in, we 
can use the “..” to go to the parent directory, i.e. one level up. 
 
 
 
 
 
 
 
 
 
 
 



10 

Example 10 
 
To the directory in Example 9, let us now include a folder named URL2. Create a new HTML 
document to your liking and name it hello.html. The following HTML code is to be included 
in a HTML document named url2.html. 
 

 
 
 
<!DOCTYPE html> 
 
<html> 
    <head> 
    <title>URL2</title> 
    </head> 
    <body> 
    <a href="http://www.google.com">This is a link to Google</a> 
    <br> 
    <a href="hello.html">This links to hello.html</a> 
    <br> 
    <a href="../URL1/url1.html">This links to url1.html</a> 
    </body> 
</html> 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 

Forms 
 
A form on a web page allows users to enter data that are sent to a server for processing. An 
example of a simple form is shown below. 
 

 
 
Example 11 
 
 
<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Form 1</title> 
    </head> 
    <body> 
        <form action='http://www.example.com'> 
  <h1>Feedback Form</h1> 
    
  <p>Name: <input name="username" type="text" value=""></p> 
    
  <p>Did you enjoy the event?</p> 
  <input type="radio" name="choice1" value="yes">Yes 
  <input type="radio" name="choice1" value="no">No<br> 
    
  <p>Which activities went well?</p> 
  <input type="checkbox" name="choice2" value="act1">1st 
  <input type="checkbox" name="choice2" value="act2">2nd 
  <input type="checkbox" name="choice2" value="act3">3rd<br> 
 
  <p>Feedback:</p> 
  <textarea name="feedback">Enter feedback here.</textarea> 
    
  <p>Upload file: <input name="some_file" type="file"><br> 
    
  <p><input type="submit" value="Submit"></p> 
        </form> 
    </body> 
</html> 



12 

Each form is contained in a separate <form> tag with an action attribute set to the URL 
where the submitted data will be sent to. In future practical tasks, we will learn how to write a 
Python program that runs on a web server to process the submitted data.  
 
Inside the <form> tag, each <input> and <textarea> tag represents an input control 
with a unique name attribute to allow the server to retrieve these inputs.  
 

Tag Purpose 

<input type = 'text'> Creates a text field 

<input type = 'checkbox'> Creates a checkbox 

<input type = 'radio'> Creates a radio button 

<input type = 'file'> Creates a field for the uploading of file 

<input type = 'submit'> Creates a submit button 

<input type = 'hidden'> Creates a hidden text field, which is typically used to 
include information not to be seen by the user, e.g. 
which database to update the submitted information into 

<textarea> Creates a multi-line text box 
 
rows=x and cols=y can be used to specify the number 
of rows and columns respectively 

 
 
Grouping of HTML Code 
 
The example below shows how <div> can be used to organise HTML code into blocks, which 
is particularly useful when we want to add a style to one part of our web page. 
 
Example 12 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <div style="color:red"> 
            <h1>This is my 1st division.</h1> 
            <p>I have some words here.</p> 
        </div> 
        <div style="color:green"> 
            <h1>This is my 2nd division.</h1> 
            <p>I have more words here.</p> 
        </div> 
    </body> 
</html> 
 
 
 



13 

Example 13 
 
Another tag, <span>, achieves a similar outcome, but it is typically used to separate a line of 
code into multiple parts. 
 
 
<!DOCTYPE html> 
 
<html> 
    <body> 
        <p>Span is used to break up <span style="color:red"> a long  
           line of code</span> into multiple portions, 
           <span style="color:green"> each with their own  
           styling.</span></p> 
    </body> 
</html> 
 
 
 
References 
 
HTML tags: https://www.w3schools.com/tags/default.asp 
HTML special characters: https://www.w3schools.com/html/html_entities.asp 

https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/html/html_entities.asp


1 

2021 JC2 H2 Computing 9569 
28. Cascading Style Sheets (CSS) 
 
 
Introduction 
 
We have been able to create simple web pages using HTML such as the one shown below. 
 

     
 

While it is possible to add styles directly into our HTML code, it makes the code long and 
difficult to read. With the help of Cascading Style Sheets (CSS), we can improve the 
appearance of web pages greatly with almost no change to the HTML code. 
 

 
 

Just like how abstraction is useful when we do Python programming, a computer science 
principle called separation of concerns applies here, where a program is divided into distinct 
sections such that each section only deals with one aspect of the final product and has minimal 
knowledge of the other parts. 
 
Take a look at www.csszengarden.com. Click on any of the available designs to see how 
changing CSS can dramatically affect the appearance of a web page without modifying its 
HTML. You may view the source code to check that the HTML code is exactly the same for 
each design. 
 
 
 
 

http://www.csszengarden.com/


2 

Anatomy of CSS 
 
CSS is made up of multiple rules. Each rule starts with one or more selectors separated by 
commas, followed by curly braces surrounding a number of declarations. Each declaration is 
made of two parts: a property name and one or more values separated by spaces. Multiple 
declarations in a rule are separated by semicolons.  
 

 
Example 1 
 
Use Notepad++ to type the CSS code below and save it in a folder as style1.css. 
 
 
h1 { 

background: red; 
color: blue; 
text-align: right; 

} 
 
h2, h3 { 

font-family: sans-serif; 
font-style: italic; 
font-size: 36px; 

} 
 

 
We also need a HTML code in the same folder that uses the CSS file above. 
 
 
<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Example 1</title> 
        <link rel='stylesheet' href='style1.css'> 
    </head> 
    <body> 
        <h1>This is my 1st header.</h1> 
        <h2>This is my 2nd header.</h2> 
        <h3>This is my 3rd header.</h3> 
    </body> 
</html> 
 

 
Notice that we have added a <link> tag under the head element. The rel attribute (short 
for ‘relationship’) has a value of 'stylesheet', which indicates that the hyperlink a CSS file.  

h1, h2, h3 {
font-family: sans-serif;
font-style: italic;

}

Selectors

Rule

Property Value

Declarations



3 

Colours 
 
As seen in the Example 1, background and color properties to set the background and text 
colour of elements respectively. 
 
The following are some of the colour names that can be used for the two properties 
 

red orange yellow green blue purple 
      

black gray silver white transparent 
    (no colour) 

 
If a desired color does not match any of the above names, we can also specify a colour in 
terms of its RGB (red, green and blue) components. Each component is expressed as an 
integer between 0 to 255 (inclusive) and the color is written as rgb(R, G, B). For example, 
the following CSS code sets the page background to a shade of pale yellow. 
 
 
body { background: rgb(255, 255, 128); } 
 

 
The same color can be expressed as three hexadecimal numbers of two digits each (including 
a leading zero if needed). The color can thus be written as #RRGGBB, where RR is the red 
component, GG is the green component and BB is the blue component, all in hexadecimal. For 
example, the same shade of pale yellow can also be written as follows. 
 
 
body { background: #ffff80; } 
 

 
Notice that ff is the integer 255 in hexadecimal, while 80 is the integer 128 in hexadecimal. 
Also note that the hexadecimal digits are not case sensitive. 
 
For convenience, if each of the three hexadecimal numbers is made of repeated digits (e.g. 
00, 11, 22, ..., FF), then the colour can be shortened to #RGB. For example, while #FFFF80 
cannot be shortened, the color #00FFCC can be shortened to #0FC. 
 
 
Typography 
 

CSS Result 
 
p { font-family: serif; } 
  
 
p { font-family: sans-serif; } 
  

 
The font-family property specifies which typeface is used to display the text. A serif font 
such as ‘Times New Roman’ has lines extending from the ends of each letter stroke. Such fonts 
are traditionally used for long pieces of printed text. A sans-serif font such as ‘Arial’, however, 
does not have these additional lines. The browser will use the first font in the list that is 
installed. A specific font name can also be specified. In such a case, it must be enclosed in 
quotation marks, e.g. ‘Comic Sans MS’. 



4 

CSS Result 
 
p { font-size: 24px; } 
  

 
The font-size property can be used to specify text size in pixels. 
 

CSS Result 
 
p { font-style: italic; } 
  
 
p { font-weight: bold; } 
  
 
p {  
  font-style: italic; 
  font-weight: bold; 
} 
 

 

 
The font-style property specifies whether an italic font is used (i.e. normal or italic). 
On the other hand, the font-weight property specifies whether a bold font is used (i.e. 
normal or bold). 
 

CSS Result 
 
p { text-align: left; } 
 

This is an example of a paragraph with enough 
content to see how text-align works. 

 
p { text-align: center; } 
 

This is an example of a paragraph with enough 
content to see how text-align works. 

 
p { text-align: right; } 
 

This is an example of a paragraph with enough 
content to see how text-align works. 

 
p { text-align: justify; } 
 

This is an example of a paragraph with enough 
content to see how text-align works. 

 
The text-align property specifies how the text is aligned. 
 

CSS Result 
 
p { text-decoration: underline; } 
  
 
p { 
  text-decoration: line-through; 
} 
 

 

 
The text-decoration property specifies whether additional elements of the font are 
displayed. The most common values of this property are none, underline and line-
through. 



5 

Box Model 
 
Notice that some HTML tags such as <h1> and <p> always start on a new line and force the 
following element to also start on a new line. On the other hand, tags such as <b> and <i>, 
do not. This is because the former have a block appearance by default, while the latter have 
an inline appearance by default. 
 
The box model is illustrated below. 
 

 
 

Property Name Description 
border Specifies the thickness of the optionally-coloured border around the 

element 
 

margin Specifies the thickness of the transparent space surrounding the 
border 
 

padding Specifies the thickness of the space between the content and the 
border that is filled with the element's background colour or pattern 
 

width Specifies the element content's width, regardless of the surrounding 
margin, border and padding 
 

height Specifies the element content's height, regardless of the 
surrounding margin, border and padding 
 

 
When setting a box's width and height or the thickness of its margin, border and padding, we 
must specify a unit of measurement, commonly in pixels. 
 
 
 
 
 

Cascading Style 
Sheets control the 
appearance of HTML 
elements.

margin
border

padding

height
(includes content only)

width
(includes content only)



6 

CSS Result 
 
p { border: 5px solid red; } 
  

 
To specify that a border should be drawn with a solid colour, we use the value of a thickness, 
followed by a space, the word solid, another space and finally the colour we wish to use for 
the border. 
 

CSS Result 
 
p { border-bottom: 1px solid gray; } 
 

 

 
p { border-left: 1px solid gray; } 
 

 

 
p { border-top: 1px solid gray; } 
 

 

 
p { border-right: 1px solid gray; } 
 

 

 
By default, the margin, border and padding properties control the appearance for all four sides 
of the element's box. However, we can append -bottom, -left, -top or -right to any of 
these properties so that we control the appearance for only one side of the box. 
 

CSS Result 
 
p { 

background: silver; 
margin-left: auto; 
margin-right: auto; 
width: 100px; 

} 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

Example 2 
 
Use Notepad++ to type the CSS code below and save it in a folder as styles2.css. 
 

 
table { 
    border: 1px solid black; 
    width: 50%; 
    height: 30px; 
    border-collapse: collapse;        <!-- What is this used for? --> 
} 
 
th,td { 
    border: 1px solid red; 
    text-align: center; 
} 
 

 
By using the CSS code above, we can create proper tables defined by the following HTML 
code. 
 
 
<!DOCTYPE html> 
 
<html> 

<head> 
        <title>Example 2</title> 
        <link rel='stylesheet' href='style2.css'> 
    </head> 
    <body> 
        <h2>O-Level Results</h2> 
        <table> 
            <th>Subject</th> 
            <th>Grade</th> 
            <tr> 
                <td>English Language</td> 
                <td>A2</td> 
            </tr> 
            <tr> 
                <td>Mathematics</td> 
                <td>A1</td> 
            </tr> 
            <tr> 
                <td>Computing</td> 
                <td>A1</td> 
            </tr> 
        </table> 
    </body> 
</html> 
 

 
 
 



8 

Types of Selectors 
 
The elements that are affected by each CSS rule are determined by the selectors at the start 
of that rule. We shall look at four types of selectors. 
 
Element Selector 
 
An element selector picks out all elements of a particular type from the HTML document. We 
have been using this particular selector in the examples thus far. An example is shown below. 
 
 
p { color: blue; font-style: italic; } 
 

 
Based on this rule, all p elements on the web page will appear as blue italic text. 
 
What if we only want selected parts to be stylised? There is a way in which we can fine-tune 
our selection by making use of two special attributes that are valid for all HTML tags.  
 
Id Selector 
 
An id selector picks out the unique element that has a particular value for its id attribute. To 
use an id selector, we enter a hex symbol (#) followed immediately by the desired element's 
id attribute value. Since id attributes on a web page cannot be repeated, an id selector will 
always pick out exactly one element if it exists. 
 
For instance, suppose we have the following HTML and CSS files in the same folder. 
 
 
id-example.html 
 
<!DOCTYPE html> 
 
<html> 
  <head> 
    <title>ID Selectors Example</title> 
    <link rel="stylesheet" href="id-example.css"> 
  </head> 
  <body> 
    <p>This is a normal paragraph.</p> 
    <p id="special">This paragraph is special.</p> 
    <p>This is a normal paragraph.</p> 
  </body> 
</html> 
 
 
id-example.css 
 
#special { color: red; } 
 

 
If we open id-example.html, we see that only the second p element with an id of 
"special" is formatted as red. 
 



9 

Class Selector 
 
A class selector picks out all elements that are associated with a particular class. To use a 
class selector, we enter a period (.) followed immediately by the class name we wish to 
reference.  
 
For instance, suppose we have the following HTML and CSS files in the same folder. 
 
 
class-example.html 
 
<!DOCTYPE html> 
 
<html> 
  <head> 
    <title>Class Selectors Example</title> 
    <link rel="stylesheet" href="class-example.css"> 
  </head> 
  <body> 
    <p>This is the main paragraph.</p> 
    <p class="info">This is the first information.</p> 
    <p class="info">This is the second information.</p> 
  </body> 
</html> 
 
 
class-example.css 
 
.info { color: silver; } 
 

 
If we open class-example.html, we see that only the second and third p elements with a 
class of info are formatted as silver. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



10 

Descendent Selectors 
 
Sometimes, it is necessary to select an element only if it has a parent element that matches 
another selector. This can be achieved using the descendent selector. To use a descendent 
selector, separate any two selectors using a space: the corresponding rule will only be applied 
for elements that match the selector on the right and have a parent element that matches the 
selector on the left. 
 
For instance, suppose we have the following HTML and CSS files in the same folder. 
 
 
descendent-example.html 
 
<!DOCTYPE html> 
 
<html> 
  <head> 
    <title>Descendent Selectors Example</title> 
    <link rel="stylesheet" href="descendent-example.css"> 
  </head> 
  <body> 
    <h1>Heading with <i>Italics</i></h1> 
    <p>This paragraph has <i>italics</i>.</p> 
    <i>Bare italics</i> 
</body> 
</html> 
 
 
descendent-example.css 
 
p i { color: red; } 
 

 
If we open descendent-example.html, we should see the following.  
 

 
 

Only the p element has its italics portion formatted as red. The other i elements remain 
unformatted as they do not match the specific requirements of the selector, which requires the 
i element to be a descendent of a p element. 
 
 
References 
 
CSS properties: https://www.w3schools.com/cssref/default.asp 
CSS selector: https://www.w3schools.com/cssref/css_selectors.asp 
 

https://www.w3schools.com/cssref/default.asp
https://www.w3schools.com/cssref/css_selectors.asp


1 
 

29 Computer Networks 
 
Introduction 

 
A computer does not need to be a stand-alone device. It can be connected with other 
computers. For example, computers in a classroom can be connected to each other to share 
files. When this is done, they form a network. 
 
A network allows computers to 

 communicate with one another 
 share information centrally 
 share copies of software 
 give access to data and program files to multiple users. 

 
On the other hand, because it is more difficult to control access to a network, the files stored 
on a network are also less secure than files stored on a standalone computer. Network security 
will be discussed in a future chapter. 
 
Local Area Networks (LANs)  
 
In a LAN, the computers are usually in the same building, or even the same room. In addition 
to sharing files, they can also share hardware such as printers, scanners, and other 
peripherals. 
 
Typically, computers in the LAN are connected using cables or wireless signals. As electrical 
signals deteriorate as they travel along a cable, there is a maximum length for the cable (about 
300m). For a wireless LAN, there needs to be a central router that broadcasts a signal to which 
all computers on the network connect. Security systems need to be put in place to ensure that 
unauthorised computers do not connect to the wireless network. 
 
A device is also needed for the central storage of files. This is carried out by a computer that 
controls the network, which is known as a server. The server plays additional roles as well. 

 A file server is responsible for storing program files, the network operating system, and 
users’ data files 

 A domain controller server is responsible for the authentication of user log-ons. 
 A print server is responsible for managing shared devices. 

In a small network with a few computers, these functions may be carried out by a single 
network server. If the server fails, then all work has to be stopped across the LAN. This makes 
the server a vulnerability. The other computers in the network are known as clients. 
 
The communications around such a system are difficult to control, therefore all the computers 
in the network must follow a set of instructions. The network operating system provides 
those instructions, carrying out tasks such as 

 controlling access to the network 
 management of the filing system 
 management of all applications and programs available from the server 
 management of all shared peripherals e.g. printers. 

 
  



2 
 

Structure and hardware in a LAN 
The way that computers are connected in a network is called its topology. Each topology has 
its own advantages and disadvantages, and this affects both the hardware components that 
would be used. Two common topologies are the bus and star topologies. Note that the 
pictures illustrate the connections between the computers, and may not reflect how the 
computers are physically placed relative to each other. 
 

 
 
In a bus topology, all the computers are connected to a central communication line, called the 
bus. The bus topology was popularised in the 1990s when Ethernet arose as a standard for 
communication. 
 
Star topologies have been used since the 1970s when the common paradigm was that of a 
large central computer serving many users. As each users’ individual terminal grew into a full 
computer, a star topology emerged naturally. Nowadays, it is common in wireless networks 
where communication is by means of radio broadcast and the central machine, or access 
point, is the focus around which all communication is coordinated. 
 
Bus and star networks may be connected into bigger, more complicated networks. 
 

 
 
A hub or receives all the data from individual computers and broadcasts them back to all the 
devices on it. 
 
A switch is more sophisticated, as it reads the destination label of the data and sends it only 
to the device for which the data is intended. This reduces the amount of traffic on the network. 
It sets up a temporary dedicated circuit between the sender and receiver, and releases the 
circuit once the data is transferred. 
 



3 
 

 
A bridge connects two LAN segments. Each device has a MAC (media access control) 
address (an address or serial number given to it by the manufacturer) and the bridge 
maintains a table showing which MAC addresses are connected to which port. It does not vet 
the data’s content to see whether it should be transferred. 

 
A router is similar to a bridge, but it also exercises a degree of decision making. It can decide, 
based on the sender and the receiver, whether to allow data to be transmitted from one device 
to another. It can therefore be used as a security device. 
 



4 
 

Finally, a gateway connects a LAN to a WAN (possibly the Internet). It ensures that data 
transmitted between one side and the other is appropriate and monitors the usage of the 
connection. It can be considered a single point of entry to a LAN from a larger network. 
 
Wide Area Networks (WANs) 
 
In a WAN, the distances between the computers are much further. A WAN may be spread 
across a country or even internationally. It is thus not possible to connect the computers 
directly using cables or wireless signals. 
 
One way that computers can be connected is by using existing infrastructure such as the 
telephone network.  
 
In the past, the digital electrical signals produced by a computer were different from the 
analog signals transmitted by the telephone lines are different. A device called a modem 
(short for modulator-demodulator) was needed to convert the digital computer signals to 
analog signals for the telephone network. At the receiving end, another modem would convert 
the analog signals back to digital signals for the receiving computer. 
 
The table below shows a comparison between a typical LAN and a typical WAN today. 
 

LAN WAN 
It is used by an organisation or company 
within a site or branch 

It is used by an organisation or company to 
connect sites or branches 

It is owned by the organisation or company It is be owned by the organisation or 
company 

It is one of many individual LANs at one site It is leased from a public switched telephone 
network (PSTN) company 
A dedicated communication link is provided 
by the PSTN 

The transmission medium is twisted pair 
cable or WiFi 

The transmission medium is fibre-optic cable 

The LAN contains a device that allows 
connection to other networks 

Transmission within the WAN is from switch 
to switch 
A switch connects the WAN to each site 

There are end-systems connected which are 
user systems or servers 

There are no end-systems connected to the 
WAN 

 
 
The Internet 
 
One of the WANs developed in the US in the 1970s was known as ARPANET, named after 
the Advanced Research Projects Agency (ARPA) in the US Department of Defense. This 
network comprised mostly computers in military installations and research universities. 
 
In the 1980s, the widespread use of Personal Computers (PCs) led to the creation of the first 
LANs. Over time, many of these networks, which were originally designed as independent, 
stand-alone networks, were eventually linked to each other, creating an inter-networking, 
which was shortened to Internet. 
 
The Internet can be described as a WAN, but this severely understates its size and complexity. 
Furthermore, it is not centrally designed or organised, but evolved organically to arrive and its 
current form and will continue evolving in the future. Therefore, there is no agreed definition 
of its structure. 



5 
 

 
However, a hierarchy does exist within the structure of the Internet. An Internet Service 
Provider (ISP) was originally conceived to give Internet access to an individual or company. 
These are now called access ISPs, and they connect to middle tier or regional ISPs which are 
in turn connected to first tier or backbone ISPs. An ISP is a network and connections between 
ISPs are handled by Internet Exchange Points (IXPs). The first tier ISPs and content 
providers can be considered to be at the top of the hierarchy. 
 

 
 
While it is common in everyday language to talk about the Internet and the World Wide Web 
(WWW) as the same thing, this is not correct. The World Wide Web is a distributed application 
available on the internet. Specifically, it consists of a (very large) collection of websites, each 
of which contains one or more webpages. 
 
The Internet has the following functions: 

 Providing content from the World Wide Web 
 Electronic mail 
 File transfer 

 
Intranets 
 
An intranet is a network offering the same facilities as the Internet but solely from within a 
particular organisation. Information is made available from a web server and clients access 
material using web browser software. 
 
Access to the intranet is usually restricted to people within the organization, and security can 
be ensured by using passwords and secure transmission lines. Different levels of password 
can be used to ensure that only specific people can access specific facilities on the intranet. 
 
As there is a smaller volume of content on an intranet, it is more likely to be relevant to the 
organization. Furthermore, the amount of control means it is more likely to be correct, relevant 
and updated. As membership is restricted (and users could be identified), this means that 
comments are also more likely to be relevant and sensible 
 
Some parts of an intranet may be made available to outside users. This access is called an 
extranet. 
 
 



6 
 

Communication protocols 
 
When data is being transferred in a computer system, rules need to be set up for how the 
transfer is to be done. The set of rules is known as a protocol. 
 
Some items covered by protocols include: 

 The wire connecting two parts of the system, and the type of connections used 
 The bit rate used (the rate at which data is being sent and received) must be the same 

for the sender and receiver 
 The parity used (the system being used to check for mistakes in data transmission) 

 
When two devices communicate with each other, the initial contact is a signal called a 
handshake signal. This is data exchanged so that both devices can establish that they are 
ready for the communication to start and they agree on the rules being used. 
 
Informally, a data transmission between two devices may look something like this: 
 

Sender: “Hello Receiver, I have data for you.” 
Receiver: “Hello Sender, I am ready.” 

Sender: “Here comes the data.” 
Sender: DATA 
Sender: “That was the data. Did you receive it?” 

Receiver: “I received something but I think it’s wrong.” 
Sender: “Here comes the data (again).” 
Sender: DATA 
Sender:  “That was the data. Did you receive it?” 

Receiver: “Yes, it’s correct. I’m ready for more data.” 
etc.  

 
The communication between the sender and the receiver which is not the actual DATA consists 
of handshaking and other overheads. In some networks, as much as 40% or more of the 
transmitted data consists of these overheads. This increases the time needed to move DATA 
through the network, but it is necessary to ensure that the message is received correctly. 
 
Packet switching 
 
When a message is sent from one computer to another (particularly over a WAN), the 
computers may not be directly connected to each other. The message would then have to 
pass through other devices. 
 
For example, the diagram below shows a network. The devices, labelled A to E, are called 
nodes, and are connected via communication lines. 



7 
 

 
It is easy for A to send a message to B or E as A is connected to both B and E directly. 
However, there is no direct connection between A and C, therefore, other nodes are needed 
to relay the message. However, other nodes may also be sending messages to one another 
on the same network at the same time, and each communication line can only be used for one 
message at a time. To ensure that messages to not get confused, garbled or lost, it is 
necessary to have a system to relay messages so that they reach their destination. 
 
Two common methods for doing this are packet switching and circuit switching. 
 
In packet switching, the message is split into a number of equally-sized packets (also called 
datagrams). Each packet is given a label which consists of the address of the destination, 
and a packet sequence number. These packets are sent along the communication lines to the 
destination. Each time a packet reaches a node (an intersection point), the node decides which 
direction to send it on to. 
 
For example, one packet may go from A to E. If E can send it to C directly, E does so. However, 
the connection between them may be used for another message at the same time. In this case, 
E may choose to wait, or send it to D, which can send it to C. 
 
When C receives all the packets, they are likely to be out of sequence. C needs to reassemble 
the original message in the correct order. 
 
In circuit switching (out of syllabus), the network reserves a route from A to C. The message 
is then sent from A to C (via the relay nodes) as one continuous message and does not need 
to be reassembled when it arrives. However, circuit switching means that part of the network 
cannot be used by anyone else for the duration of the transmission. 
 
  



8 
 

TCP/IP protocol suite 
 
A collection of related protocols is known as a protocol suite. The dominant protocol suite for 
Internet use is known as TCP/IP, which can be explained using the diagram of a network 
below. 

 
The figure shows a stack of layers for a protocols where: 

 Each layer except the physical layer represents software installed on an end-system 
or a router 

 The software for each layer must provide the capability to receive and to transmit data 
in full-duplex mode to an adjacent layer. This means that data can be transmitted in 
both directions simultaneously. 

 A protocol in an upper layer is serviced by protocols in the lower layers. 
 
The roles of the layers are summarized as follows: 

 The Physical layer protocols specify details about the transmission medium and 
hardware, e.g. electrical properties, radio frequencies, and signals. 

 The Data Link layer consists of the network software that actually transfers data. It 
must deal with communication details particular to the individual network in which the 
computer resides. Specifications about network addresses, packet size, error reporting, 
protocols used to access the underlying medium, and hardware addressing are here. 

 The Network layer protocols specify details about communication between two 
computers across multiple networks (e.g. across the Internet). The Internet addressing 
structure, the format of the Internet packets, the method of dividing a large Internet 
packet into smaller packets for transmission, and mechanisms for reporting errors are 
here. Examples of Network later protocols are IP, IGMP, ICMP, ARP. 

 The Transport layer protocols provide for communication from an application on one 
end-system to an application on another end-system. Specifications about the 
maximum rate a receiver and accept data, mechanisms to avoid network congestion, 



9 
 

and techniques to ensure data is received in the correct order are here. Examples of 
Transport layer protocols are TCP, UDP, SCTP. 

 The Application layer specify how a pair of applications interact when they 
communicate, such as details about the format and meaning of messages that 
applications can exchange and procedures to be followed. When a programmer builds 
an application to communicate across a network, the programmer is devising a layer 
5 protocol. Specifications for file transfer (FTP), email exchange (SMTP, POP3, IMAP), 
web browsing (HTTP and DNS), voice telephone service, smartphone apps, and video 
teleconferencing are here. 

 
Therefore, an application on one end-system can behave as though there were a direct 
connection with an application running on a different end system. 
 
The TCP/IP protocol suite operates at the top three layers. The lower layers operate with a 
different protocol suite (e.g. Ethernet). A router does not know about the application or 
transport layers. 
 
Some of the protocols in the TCP/IP suite include the following: 

 Application layer: HTTP, SMTP, DNS, DTP, POP3 
 Transport layer: TCP, UDP, SCTP 
 Network layer: IP, IGMP, ICMP, ARP 

The range of protocols encompassed in the TCP/IP suite is very wide and is still evolving. 
 
We will examine some of the protocols – in particular, HTTP, TCP and IP, in more detail. 
 
TCP 
When an application on one end-system sends data to another end-system, the application is 
controlled by an application-layer protocol. The protocol transmits data to the transport layer, 
where the transmission control protocol (TCP) operates. The TCP protocol is responsible 
for ensuring the safe delivery of data to the receiver. It creates packets to hold all the data, 
where each packet consists of the header plus the user data. 
 
TCP also ensures that any response is sent back to the application protocol. For example, 
one item in the header of the data is the port number that identifies the application layer 
protocol (e.g. 80 for HTTP). The packet must also include the port number for the application 
layer protocol at the receiving end-system. If the packet is one of a sequence, the header must 
also include the sequence number to ensure that the data is correctly assembled by the 
receiving end-system. 
 
The TCP protocol is connection-oriented. It establishes an end-to-end connection between 
two host computers using a three-way handshake. The communication goes roughly like this: 

 The sender sends a packet which includes the synchronization sequence bits so that 
all packets will be received in the correct order. 

 The receiver responds by sending back a packet containing an acknowledgement with 
its own synchronization sequence bits. 

 The sender sends an acknowledgement that it received the receiver’s packet 
 The transmission from sender to receiver can now take place. 

 
TCP uses Positive Acknowledgement with Retransmission (PAR), meaning that it 
automatically re-sends a packet if it has not received a positive acknowledgement after a 
certain time interval. This allows missing packets to be identified and re-sent. 
 



10 
 

However, TCP is not concerned with the address of the receiving end-system. 
 
IP addressing 
An IP address is used to define where and to data is being transmitted. The aim is to assign 
a unique, universally recognised address for each device connected to the Internet. 
 
Currently the Internet functions with IP version 4 (IPv4) addressing, which is based on 32 bits 
(four bytes) being used to define an IPv4 address. These 32 bits allow 232, or approximately 
4.3 billion different addresses. IPv4 was devised in the late 1970s, before the advent of the 
PC and, later, smartphones and other networked devices, and therefore did not anticipate the 
sudden growth in the number of networked devices. In fact, not all 4.3 billion addresses are 
available to be used. As the number of internet users in the world grows, and as each person 
has multiple devices, the system will become inadequate very soon. 
 
The original system was designed as a hierarchical address with a group of bits defining a 
network (a netID) and another group of bits defining a host on the network (a hostID). 
 
For example, consider the IP address below. The first 16 bits are the netID and the next 16 
bits are the hostID. 
 

netID hostID

10111110 000011110001100111110000  

 
As 32 bits is very long, it is common to abbreviate the IP address using dotted decimal 
notation. Each set of 8 bits (1 byte) is converted into its denary equivalent. 
 

190 15 25 240

10111110 000011110001100111110000  

 
The IP address above would thus be abbreviated as 190.15.25.240. The netID is 190.15 and 
the hostID is 25.240. 
 
Networks are split into five different classes, as shown below. The class identifier is the first 
few (1 to 4) bits of the netID. This also tells you how long the netID is. 
 
Network 
class 

IPv4 range Class 
identifier 

Number of 
remaining 
bits in 
netID 

Number 
of bits 
in 
hostID 

Type of 
network 

A 0.0.0.0 to 127.255.255.255 0 7 24 Very large 
B 128.0.0.0 to 191.255.255.255 10 14 16 Medium 
C 192.0.0.0 to 223.255.255.255 110 21 8 Small 
D 224.0.0.0 to 239.255.255.255 1110 – – Multi-cast 
E 240.0.0.0 to 255.255.255.255 1111 – – Experimental 

 
For example, a class A network IP address would be 29.68.0.43. 
 

29 68 0 43

classID hostID
netID

0 001110101000100 00000000 00101011. 

 
 
 



11 
 

A class C network IP address would be 193.15.25.240. 
 

193 15 25 240

classID hostID
netID

110 00001000011110001100111110000 . 

 
Notice that a class A network can have 224 = 16,777,216 possible hosts whereas a class C 
network can only have 28 = 256 possible hosts. 
 
This system does not permit a lot of flexibility. For example, a network with only 300 hosts 
needs to be classified as a class B network, which actually allows for 216 = 65,536 hosts. There 
will be many potential IP addresses left unused. 
 
To address this problem, a system called classless inter-domain routing (CIDR) was 
developed to increase flexibility. A suffix is used with the IP address to indicate how many bits 
are used for the netID. For example, the IP address 195.12.6.14/21 means that the first 21 
bits are the netID. 
 

   

195 612 14 21

suffixnetID 21bits hostID 11bits

1100001100001100 00000110 00001110 / 000101011100001100001100 00000110 00001110 / 00010101 

 
Another possible way to improve efficency in IP address allocation is to use sub-netting. 
Consider an organization with about 150 computers in 7 LANs. 
 
If each LAN connects to the internet using its 
own gateway, it would look like this: 

 
The 150 computers would be spread out 
among 7 class C networks. As each class C 
network can have 256 IP addresses, there 
are a total of 1792 different IP address 
available, but only 150 are used. 
 

If, instead, the entire organization was 
allocated just one class C netID, it would 
only have 256 IP addresses. 

 
Within the organization, it would have to 
work out how to allocate these 256 IP 
addresses between the 7 LANs. (One 
solution is to have the first three bits of the 
hostID indicate the number of the LAN and 
the remaining five bits identify the computer 
in the LAN.) 

 
A third solution is called network address translation (NAT). This connects an intranet to 
the Internet using a NAT box, which has only one IP address which is visible over the internet 
so it can be used as a sending address or receiving address. 
 
Internally, the IP addresses in the intranet come from ranges of IP addresses which are 
reserved for private networks. Each of these addresses occurs once in a network, but can be 



12 
 

used simultaneously by other private networks. There is no knowledge of this on the Internet 
or any other private network. 
The agreed ranges for private networks are 10.0.0.0 to 10.255.255.255, 172.16.0.0 to 
172.31.255.255, and 192.168.0.0 to 192.168.255.255. (You do not need to memorise this.) 
 
In time to come, however, the number of devices connected to the Internet will ultimately 
increase beyond the 4.3 billion unique addresses available under IPv4. A new system, IPv6, 
is being developed to increase the number of available addresses. This is a 128 bit system, 
so there are 2128 = 3.4 × 1038 possible addresses. Because of their length, the 128 bits are 
broken into eight 16-bit chunks, and each chunk is converted into a 4-digit hexadecimal 
number. An example of an IPv6 address is (notice the colon (:) being used as a separator 
instead of the dot (.)) 
 

A8FB:7A88:FFF0:0FFF:3D21:2085:66FB:F0FA. 
 
DNS 
 
When we access a webpage or an email box, we are actually receiving data another device 
via the Internet. This device would have its own IP address. However, we (humans) do not 
want to remember many individual IP addresses using the dotted decimal system. Therefore, 
in 1983, the domain name system (DNS) was introduced, which allocates human-readable 
domain names for Internet hosts and provides a system for finding the IP address for a given 
individual domain name. 
 
The system is stored as a hierarchical distributed database which is installed on a large 
number of domain name servers covering the entire Internet. The domain name servers are 
connected in a hierarchy, with powerful replicated root servers at the top of the hierarchy 
supporting the entire Internet. The DNS name space, the set of possible names, is divided 
into non-overlapping zones. Each zone has a primary name server with the database stored 
on it, and secondary servers get information from the primary server. 
 
There are more than 250 top-level domains which may represent countries (.sg, .my, .uk) or 
generic organizations (.com, .org, .edu, .gov). 
 
The domain is named by the path upward from it. For example, acjc.moe.edu.sg refers to 
the .acjc subdomain within the .moe subdomain in the .edu domain of the .sg top-level domain. 
The domain name is part of a universal resource allocator (URL) which identifies a webpage, 
or an email address. 
 
When a domain name is typed into a web browser, the following steps take place. 

1. The web browser asks the DNS server for the IP address of the website. 
2. If the domain is under the jurisdiction of that server, then the correct IP address can 

be sent back to the user’s computer. 
3. If it is not under the server’s jurisdiction, it may be in the server’s cache of recently 

requested IP addresses. The IP address can still be retrieved and sent back to the 
user’s computer. 

4. If not, the DNS server sends out a request a root server, which provides an address 
for a DNS server with jurisdiction over the top-level domain, which can provide an 
address for a DNS server for the next level domain, and so on, until a server which can 
provide the IP address is found. 

5. The first DNS server adds the IP address and associated URL into its cache, and 
sends it to the user’s computer. 

6. The user’s computer communicates with the website server and the required pages 
are downloaded and displayed on the web browser. 

 



13 
 

Client-server architecture 
In the 1980s, the traditional architecture of a mainframe computer with connected terminals 
was still in common use. As PCs became more common, the client-server architecture was 
developed, in which networked PCs (the clients) had access to one or more devices acting as 
servers. 
 
The essence of the client-server architecture as it was first conceived is a distributed computer 
system where a client carries out part of the processing and a server carries out another part. 
In order for the client and server to cooperate, software called middleware has to be present. 
This basic concept still holds in present-day client-server applications but the language used 
to describe how they operate has changed. 
 
A simple example would be a shared printer. In this case, the printer plays the role of a server 
(the print server) and the other computers are clients which send requests to the printer to 
be carried out – in this case, printing documents. 
 
A summary of the interaction between the client and server is shown below. 
 

Server Application Client Application 
Starts first Starts second 
Does not need to know which client will 
contact it 

Needs to know which server to contact 

Waits passively for contact from a client Initiates contact when communication is 
needed 

Communicates with client by sending and 
receiving data 

Communicates with server by sending and 
receiving data 

Continues to run after servicing one client, 
and waits for next client 

Can terminate after interacting with server 

 
Most instances of applications that follow the client-server paradigm have the following general 
characteristics. 
 
Server software Client software 
Consists of a special-purpose, privileged 
program dedicated to providing a service 

Consists of an arbitrary program that 
becomes a client temporarily whenever 
remote access is needed 

Is invoked automatically when a system 
boots, and continues to execute through 
many sessions 

Is invoked directly by a user, and executes 
for only one session 

Runs on a dedicated computer system Runs locally on a user’s device 
Waits passively for contact from arbitrary 
remote clients 

Actively initiates contact with a server 

Can accept connections from many clients at 
the same time but (usually) offers only one 
service 

Can access multiple services as needed, but 
only contacts one remote server at a time 

Requires powerful hardware and 
sophisticated operating system 

Does not require especially powerful 
hardware 

 
 
The server is now a web server which is a suite of software that can be installed on virtually 
any computer system. A web server provides access to a web application. The client is the 
web browser software. The middleware is now the software that supports the transmission of 
data across a network together with the provision for scripting. 
 



14 
 

It is worth emphasising that the original uses of the web involved a browser displaying web 
pages which contained information. There was provision for downloading of this information 
but the web pages were essentially static. For a client-server application, the web page is 
dynamic which means that what is displayed is determined by the request made by the client. 
In this context, there is almost no limit to the variety of applications that can be supported. The 
only requirement is that the application involves user interaction. 
 
The most obvious examples of a client-server application can be categorised as e-commerce 
where a customer buys products online from a company. Other examples are: e-business, 
email, searching library catalogues, online banking or obtaining travel timetable information. 
Most applications require a web-enabled database to be installed on the server or accessible 
from the server. 
 
Thin and Thick Clients 
 
The client-server model offers thin clients and thick clients. These refer to both hardware 
and software. 
 
 Thin client Thick client 
Description Heavily dependent on having a 

server to allow constant access to 
files and allow applications to run 
uninterrupted 
 
Needs to be connected (via 
LAN/WAN or Internet) to a powerful 
computer or server to allow 
processing to take place, otherwise 
it will not work 
 
Examples: 
 Web browser 
 POS terminal at supermarket 

that needs to be connected to 
the server to find prices, charge 
customers, etc 

Can work offline or online, still able 
to do processing whether it is 
connected to server or not 
 
Examples: 
 Normal PC/laptop/tablet 
 Computer game that can run 

independently or online 

Hardware 
advantages 

Less expensive to expand (low-
powered and cheap devices can be 
used) 
 
All devices are linked to a server 
(data updates and new software 
installation done centrally) 
 
Server offers protection against 
hacking and malware 

More robust (device can carry out 
processing even when not 
connected to server) 
 
Clients have more control (they can 
store their own programs and files) 

Hardware 
disadvantages 

High reliance on the server – if the 
server goes down or if there is a 
break in communications, the 
devices cannot work 
 
Despite cheaper hardware, the 
start-up costs are generally higher 
than for thick clients 

Less secure (relies on clients to 
keep their own data secure) 
 
Each client needs to update data 
and software individually 
 



15 
 

Data integrity issues, since many 
clients access the same data which 
leads to inconsistencies 

Software Always relies on a connection to 
remote server or computer to work 
 
Requires very few local resources 
(such as SSD, RAM or computer 
processing time) 
 
Relies on good, stable and fast 
network connection to work 
 
Data is stored on remote server or 
computer 

Can run some features of the 
software even when not connected 
to a server 
 
Relies heavily on local resources 
 
More tolerant of a slow network 
connection 
 
Can store data on local resources 

 
 
  



1 
 

2021 JC2 H2 Computing 9569 
30. Socket Programming 
 
 
Introduction 
 
Suppose we have two Python programs running at the same time. How can we send data 
from one program to the other and vice versa? Most operating systems provide a powerful 
mechanism to do this called sockets. 
 

 
 

We can picture a socket connection as a pipe between two running programs. The pipe is 
bidirectional and can carry data, represented by bytes, in both directions.  
 
There are many kinds of sockets, but the kind that is most often discussed is called an Internet 
socket. Internally, Internet sockets deliver data using the same Transmission Control 
Protocol and Internet Protocol suite (TCP/IP) that is used to transmit data over the Internet. 
This means that Internet sockets can deliver data between any two programs, even programs 
that that are running on different computers, as long as the two computers can access each 
other over the network. 

 
In reality, however, data that are transmitted through an Internet socket may pass through 
multiple devices before reaching the destination. Any of these devices can steal or modify the 
data that passes through a socket unless we encrypt the data first. An illustration of sockets 
that shows how the data pass through multiple devices is shown below. 
 

 
As networks can become congested, we cannot assume that data sent over Internet sockets 
will be transmitted instantaneously. For instance, a program may receive only the first half of 

Program BProgram A

bytes

bytes

Socket

Program BProgram A

Computer X Computer Y

bytes

bytes

Intermediary 
Device

Intermediary 
Device

bytes

bytes

bytes

bytes



2 
 

a message before the second half arrives some time later. To avoid working with incomplete 
data, we will need to define a protocol so that the start and end of messages can be detected 
unambiguously. 
 
IP Addresses and Port Numbers 
 
Each end of a socket is associated with a running program and is uniquely identified by a 
combined IP address and port number. The IP address identifies which device that end of 
the socket is attached to and the port number identifies which program on that device is using 
the socket. 
 

 
 
Recall that there are two kinds of IP addresses in use today: IPv4 addresses and IPv6 
addresses. Currently, IPv4 addresses are more frequently encountered than IPv6 addresses, 
so to simplify our discussion, we will be working with IPv4 addresses only. 
 
Some IPv4 addresses are reserved for special use and have specific meanings. Two important 
special IPv4 addresses are: 
 

 127.0.0.1  refers to the local computer 
 0.0.0.0  refers to all IP addresses for local computer 

 
On each device, port numbers are used to distinguish between attached sockets. The device 
also keeps track of which program is associated with each port and which port numbers are 
still available for use by new sockets.  
 
Port numbers can range from 0 to 65,535. However, the first 1,024 port numbers are reserved 
for specific kinds of programs and should not be used for other purposes. For instance, port 
80 and port 443 are reserved for use by web server programs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Program BProgram A

IP address: 192.168.1.20 IP address: 192.168.1.17

Port 
4321

Port 
1234



3 
 

Creating a Socket Connection 
 
Creating a socket connection is a multi-step process that requires one program to be the 
server and another program to be the client. The server's IP address and port number for 
accepting connections must also be known ahead of time by the client.  
 
First, the server creates a passive socket, binds it to the pre-chosen port number and listens 
for an incoming connection. A passive socket is not connected and merely waits for an 
incoming connection. 

 
 

Next, the client initiates a connection request using the server's IP address and port number. 
If no server is listening on the chosen port, the connection will be refused. 
 
On the other hand, if the connection request reaches an IP address and port number that a 
server is listening on, the server accepts and creates a new socket for the requesting client 
using a dynamically assigned port number. 
 

 
 

The passive socket goes back to listening for new connections while the client and server can 
now exchange data using the newly-created socket. 
 

 

Server: 192.168.1.20

1234

listeningListening…

Server: 192.168.1.20 Client: 192.168.1.17

43211234

Accepted!



4 
 

Note that the newly-created socket is symmetrical: data sent on one end is received on the 
other end and vice versa. Once a socket is established, it can send data both from the client 
to the server and vice versa. 
 
Unicode and Encodings 
 
Before we can start writing Python code to create our own sockets, we need understand that 
socket work at a very basic level, so they can only send and receive data in the form of raw 
bytes. In other words, we must be able to encode the data into a sequence of 8-bit characters 
using Python's bytes type. 
 
Thankfully, a Python str can be easily converted into bytes using the str.encode() 
method and vice versa using the bytes.decode() method. 
 
This encoding and decoding is necessary as internally, a Python str is actually treated as a 
sequence of numbers called Unicode code points. There are over a million possible code 
points, so it is not always possible to represent each code point using just 8 bits. Instead, the 
Unicode standard defines an encoding called UTF-8, so code points can be represented using 
bytes in a space-efficient and consistent manner. 
 
To enter a sequence of bytes directly in code, we can use a bytes literal that starts with the 
letter b, followed by a sequence of bytes (in the form of ASCII characters) enclosed in 
matching single or double quotation marks. Note that most escape codes that work for str 
literals also work for bytes literals. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b'Raw bytes'

b'Raw bytes'.decode()

'Unicode str'

'Unicode str'.encode()

Converts bytes to str
using UTF-8 encoding

Converts str to bytes
using UTF-8 encoding



5 
 

Using the socket Module 
 
The methods of the socket class are summarised in the table below. 
 
Method Description 

 
bind((host, port)) Binds socket object to the given address tuple, where 

host is an IPv4 address and port is a port number 
 

listen() Enables socket to listen for incoming connections from 
clients 
 

accept() Waits for an incoming connection and returns a tuple 
containing a new socket object for the connection and an 
address tuple (host, port), where host is the IPv4 
address of the connected client and port is its port 
number 
 

connect((host, port)) Initiates a connection to the given address tuple (host, 
port), where host is the IPv4 address of the server and 
port is its port number 
 

recv(max_bytes) Receives and returns up to the given number of bytes from 
the socket 
 

sendall(bytes) Sends the given bytes to the socket 
 

 
We can now create a basic server program. For example, let the program listen for a client on 
port 12345, accepts a connection request, sends b'Hello from server\n' to the client 
through the socket and finally closes the socket. 
 
Program 1: basic_server.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

import socket 
 
my_socket = socket.socket() 
my_socket.bind(('127.0.0.1', 12345)) 
my_socket.listen() 
 
new_socket, address = my_socket.accept() 
print('Connected to: ' + str(address)) 
new_socket.sendall(b'Hello from server\n') 
 
new_socket.close() 
my_socket.close() 
 

 
On line 7, socket.accept() returns a tuple of the newly created socket and a nested 
address tuple. We store both the new socket and the address tuple in two variables named 
new_socket and address respectively. Note that new_socket is the socket that we 
actually use to send and receive data. 



6 
 

If everything is working correctly, the server should appear stuck shortly after it is started. This 
is because the socket.accept() method is blocking1 the program and prevents it from 
continuing until a connection request is received. 
 
To create a client that can connect to this server, start a second copy of Python. For instance, 
if we use IDLE on Windows, open the Start Menu and run IDLE again. Move any windows 
from the first copy of Python to one side so the two copies of Python are clearly separated.  
 

 
Create a new Python program using the second copy of Python. If we use IDLE, select "New 
File" using the shell window that is not running the server. 
 

 
 
 
 
 

                                                
1 A “blocked” process means that it is waiting for an event to occur. 

Copy 1 of Python Copy 2 of Python

Copy 1 of Python Copy 2 of Python



7 
 

We shall now create the following basic client program that asks for the server's IP address 
and port number, requests for a connection, receives and prints at most 1024 bytes from the 
server and finally closes the socket. 
 
Program 2: basic_client.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

import socket 
 
my_socket = socket.socket() 
 
address = input('Enter IPv4 address of server: ') 
port = int(input('Enter port number of server: ')) 
 
my_socket.connect((address, port)) 
print(my_socket.recv(1024)) 
 
my_socket.close() 
 

 
On line 9, the argument for socket.recv() is required and should be set to a relatively small 
power of 2. In this case, we use a value of 210 or 1024. For more information, see: 
https://docs.python.org/3/library/socket.html#socket.socket.recv 
 
Run this program using the second copy of Python, ensuring that the server started previously 
is still running. At this point, the client should be prompting for the address and port number of 
the server. Use the special IPv4 address 127.0.0.1 that refers to the local machine and enter 
12345 as the port number. The client should successfully connect to the server and print out 
the bytes that were received. At the same time, the server program should become unstuck 
and end normally.  
 

 
 
Quick Check 
Modify the code to demonstrate that data can be sent in the opposite direction. The client 
should send b'Hello from client\n' to the server and the server should print out any 
bytes that are received from the client. 
 

 
 

https://docs.python.org/3/library/socket.html%23socket.socket.recv


8 
 

Designing a Protocol 
 
The two programs from the previous section have a hidden flaw: when using the basic server 
program to send longer sequences of bytes, only part of the data may be successfully 
transmitted even if we increase the maximum number of bytes that socket.recv() can 
receive. 
 
To understand why, suppose that the sequence of bytes being sent is long enough that it 
needs to be sent as multiple packets. We can simulate this by breaking the sequence into two 
pieces and calling socket.sendall() twice, once for each piece. To simulate a busy 
network that may delay transport of the second packet, we also import the time module and 
call time.sleep() before sending the second piece. 
 
Program 3: basic_server_split.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

import socket, time 
 
my_socket = socket.socket() 
my_socket.bind(('127.0.0.1', 12345)) 
my_socket.listen() 
 
new_socket, address = my_socket.accept() 
new_socket.sendall(b'Hello fr') 
time.sleep(0.1) 
new_socket.sendall(b'om server\n') 
 
new_socket.close() 
my_socket.close() 
 

 
Run this version of the server, then run the client such that both programs run simultaneously 
on the same machine. This time, the client should receive only the first piece of data. If the 
client has closed the socket, the server may also produce an error when trying to send the 
second piece of data. 
 

 
 
 
 



9 
 

This example illustrates that, in general, we should never assume that socket.recv() will 
receive all the bytes that were sent over at one go. The only way to be certain that any received 
data is complete is to agree beforehand on a protocol or set of rules for how communication 
should take place. For instance, we can agree beforehand that any data we transmit will 
always end with a newline character \n and that the data itself will never contain the \n 
character. This very simple protocol allows us to detect the end of a transmission easily by 
just searching for the \n character. 
 
The following updates the client so that it uses the \n character to detect when the message 
ends. This new client calls socket.recv() continuously and appends the received bytes to 
a variable named data until the \n character is encountered. 
 
Program 4: basic_client_protocol.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

import socket 
 
my_socket = socket.socket() 
 
address = input('Enter IPv4 address of server: ') 
port = int(input('Enter port number of server: ')) 
 
my_socket.connect((address, port)) 
 
data = b'' 
while b'\n' not in data: 
    data += my_socket.recv(1024) 
print(data) 
 
my_socket.close() 
 

 
With this new client, all the data sent by the server up to and including the \n character is 
successfully received and printed. 
 

 
 



10 
 

Iterative and Concurrent Servers 
 
Currently, the server program exits immediately after it finishes working with a client. In reality, 
we often want the server program to run continuously so that it is always listening and available 
for multiple clients to send connection requests. We can do this by putting the code that deals 
with a client in an infinite loop. 
 
Program 5: basic_server_iterative.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

import socket 
 
my_socket = socket.socket() 
my_socket.bind(('127.0.0.1', 12345)) 
my_socket.listen() 
 
while True: 
    new_socket, addr = my_socket.accept() 
    new_socket.sendall(b'Hello from server\n') 
    new_socket.close() 
 

 
To interrupt a program that is running in an infinite loop, press Ctrl-C. In IDLE, we can also 
restart the shell using Ctrl-F6. 
 
Internally, the server's passive socket keeps a queue of connection requests that have been 
received. A request is removed from this queue each time socket.accept() is called to 
create a connection. If the queue is empty, socket.accept() will block the program until a 
connection request is received, as expected. 
 
Since socket.accept() is called each time the infinite loop repeats, our program is able to 
handle multiple clients by processing them one at a time. This means that our program works 
as an iterative server. Iterative servers are easy to write, but limited as they can only handle 
one client at a time. 
 
Alternatively, we could have written our server such that it starts a thread that runs 
simultaneously with the main program each time a client tries to connect. This makes the 
program more complicated to write, but will let it to handle multiple clients at the same time, 
hence making it a concurrent server. We will, however, only work with iterative servers at 
this level. 
 
Example: Chat Program 
 
We now have all the tools needed to write a simple chat client and server such that two users 
can take turns sending single lines of text to each other. One user would be running the server 
and the other user would be running the client. 
 
Since each message is restricted to a single line, we can be certain that the newline character 
\n will never be part of a message. This means that we can adopt a similar protocol of using 
\n to detect the end of a message. 
 



11 
 

Let us use a different port number of 6789 and create the following chat server program that 
repeatedly prompts the user for some text, sends that text to the client (after encoding it into 
bytes), then receives and prints out the client's response. 
 
Program 6: chat_server.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

import socket 
 
listen_socket = socket.socket() 
listen_socket.bind(('127.0.0.1', 6789)) 
listen_socket.listen() 
 
chat_socket, address = listen_socket.accept() 
 
while True: 
    data = input('INPUT SERVER: ').encode() 
    chat_socket.sendall(data + b'\n') 
    print('WAITING FOR CLIENT...') 
    data = b'' 
    while b'\n' not in data: 
        data += chat_socket.recv(1024) 
    print('CLIENT WROTE: ' + data.decode()) 
 

 
The client program is similar, except the order of sending and receiving is reversed. 
 
Program 7: chat_client.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 

import socket 
 
chat_socket = socket.socket() 
 
address = input('Enter IPv4 address of server: ') 
port = int(input('Enter port number of server: ')) 
 
chat_socket.connect((address, port)) 
 
while True: 
    print('WAITING FOR SERVER...') 
    data = b'' 
    while b'\n' not in data: 
        data += chat_socket.recv(1024) 
    print('SERVER WROTE: ' + data.decode()) 
    data = input('INPUT CLIENT: ').encode() 
    chat_socket.sendall(data + b'\n') 
 

 



12 
 

Run the server and client using two different copies of Python. Once again, since the server 
is running on the same machine as the client, we can use 127.0.0.1 as the server's IPv4 
address and 6789 as the port number. 
 

 
 
Quick Check 
Currently, there is no way to exit our chat programs other than to press Ctrl-C or to restart 
the shell (in IDLE). 
 
Modify chat_server.py and chat_client.py so that both programs exit once the 
message 'quit' is sent by any user. Ensure that all sockets are closed properly before 
exiting. 
 

 
Example: Turn-Based Game 
 
So far, we have been responsible for writing both the server and client programs. Sometimes, 
however, both server and protocol designs may be based on an existing standard or 
developed by someone else. To write a client that can communicate with an existing server, 
we need to study its code and follow the expected protocol.  
 
Conversely, sometimes the client may be developed by someone else and we need to write a 
server to communicate with it. In either case, it is important to start by understanding the 
protocol being used. 
 
To demonstrate how to do this, let us examine the server program for a simple turn-based 2-
player game of Tic-Tac-Toe. First, we create a simple library that defines some constants and 
a TicTacToe class to handle the game logic. 
 
 
 
 
 
 
 



13 
 

Program 8: tictactoe.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 

N = 3                       # Size of grid 
WIDTH = len(str(N ** 2))    # Width for each cell 
PLAYERS = ('O', 'X')        # Player symbols 
 
class TicTacToe: 
 
    def __init__(self): 
        self.board = [] 
        for i in range(N): 
            self.board.append([None] * N) 
 
    def render_row(self, row_index): 
        start = row_index * N + 1 
        row = self.board[row_index].copy() 
        for column_index in range(N): 
            if row[column_index] is None: 
                cell = str(start + column_index) 
            else: 
                cell = PLAYERS[row[column_index]] 
            if len(cell) < WIDTH: 
                cell += ' ' * (WIDTH - len(cell)) 
            row[column_index] = ' ' + cell + ' ' 
        return '|'.join(row) + '\n' 
 
    def render_board(self): 
        rows = [] 
        for row_index in range(N): 
            rows.append(self.render_row(row_index)) 
        divider = '-' * ((WIDTH + 3) * N - 1) + '\n' 
        return divider.join(rows) 
 
    def make_move(self, player_index, cell_index): 
        cell_index -= 1 
        self.board[cell_index // N][ 
            cell_index % N] = player_index 
 
    def is_valid_move(self, cell_index): 
        if cell_index < 1 or cell_index > N ** 2: 
            return False 
        cell_index -= 1 
        return self.board[cell_index // N][ 
            cell_index % N] is None 
 
    def is_full(self): 
        for row_index in range(N): 
            for column_index in range(N): 
                if self.board[row_index][ 
                        column_index] is None: 
                    return False 
        return True 
 



14 
 

52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
 

    def get_winner(self): 
        # Check diagonals 
        if self.board[0][0] is not None: 
            found = True 
            for i in range(N): 
                if self.board[0][0] != self.board[i][i]: 
                    found = False 
                    break 
            if found: 
                return self.board[0][0] 
        if self.board[0][N - 1] is not None: 
            found = True 
            for i in range(N): 
                if self.board[0][N - 1] != self.board[i][N - i - 1]: 
                    found = False 
                    break 
            if found: 
                return self.board[0][N - 1] 
 
        # Check rows and columns 
        for i in range(N): 
            if self.board[i][0] is not None: 
                found = True 
                for j in range(N): 
                    if self.board[i][0] != self.board[i][j]: 
                        found = False 
                        break 
                if found: 
                    return self.board[i][0] 
            if self.board[0][i] is not None: 
                found = True 
                for j in range(N): 
                    if self.board[0][i] != self.board[j][i]: 
                        found = False 
                        break 
                if found: 
                    return self.board[0][i] 
 
        # No matching lines were found, so no winner 
        return None 
 

 
 
 
 
 
 
 
 
 
 
 
 



15 
 

The table below summarises the methods in TicTacToe class. 
 
Method Description 

 
render_row(row_index) Returns a string representation of the specified row, 

e.g. 
 
 1 | 2 | 3 
 

render_board() Returns a string representation of the entire board, e.g. 
 
 1 | 2 | 3  
----------- 
 4 | 5 | 6  
----------- 
 7 | 8 | 9 
 

make_move(player_index, 
cell_index) 

Modifies the board such that the specified cell is 
marked with the symbol for the specified player 
 

is_valid_move(cell_index) Returns whether the specified cell is currently blank 
 

is_full() Returns whether the entire board has been filled up 
 

get_winner() Returns winning player for the current board or None if 
there is no winner 
 

 
Using this library, we create a server program that creates a TicTacToe object on line 9 to 
store information about the Tic-Tac-Toe board. 
 
Program 9: game_server.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
 

import socket, tictactoe 
 
listen_socket = socket.socket() 
listen_socket.bind(('127.0.0.1', 3456)) 
listen_socket.listen() 
 
game_socket, addr = listen_socket.accept() 
game = tictactoe.TicTacToe() 
 
while True: 
    # Display current Tic-Tac-Toe board 
    print(game.render_board()) 
 
    # Check if client player won 
    if game.get_winner() is not None: 
        print('Opponent wins!') 
        print() 
        break 
 
 



16 
 

20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
 

    # Check if board is full 
    if game.is_full(): 
        print('Stalemate!') 
        print() 
        break 
 
    # Prompt for move from server player 
    move = -1 
    while move != 0 and not game.is_valid_move(move): 
        move = int(input('Server moves (0 to quit): ')) 
    print() 
    if move == 0: 
        game_socket.sendall(b'END\n') 
        print('You quit, opponent wins!') 
        print() 
        break 
    game.make_move(0, move) 
    game_socket.sendall(b'MOVE' + str(move).encode() + b'\n') 
 
    # Display current Tic-Tac-Toe board 
    print(game.render_board()) 
 
    # Check if server player won 
    if game.get_winner() is not None: 
        print('You win!') 
        print() 
        break 
 
    # Check if board is full 
    if game.is_full(): 
        print('Stalemate!') 
        print() 
        break 
 
    # Receive move from client player 
    received = b'' 
    while b'\n' not in received: 
        received += game_socket.recv(1024) 
    if received.startswith(b'MOVE'): 
        move = int(received[4:]) 
        print('Client moves: ' + str(move)) 
        print() 
        game.make_move(1, move) 
    elif received.startswith(b'END'): 
        print('Opponent quits, you win!') 
        print() 
        break 
 
game_socket.close() 
listen_socket.close() 
 

 
 



17 
 

Analysing this server code, we see that communications with the client is divided into several 
steps that repeat in an infinite loop: 
 

1. Display current Tic-Tac-Toe board. 
2. Check if opponent has won, and if so, end game with opponent winning. 
3. Check if the board is full, and if so, end game with a stalemate. 
4. Prompt for input from player; if player makes a valid move, update game board 

accordingly, then send b'MOVE' followed by the chosen cell number and b'\n' to 
the opponent; if player chooses to quit, send b'END\n' to the opponent and end game 
with the opponent winning. 

5. Display current Tic-Tac-Toe board again. 
6. Check if player has won, and if so, end game with player winning. 
7. Check if the board is full, and if so, end game with a stalemate. 
8. Receive opponent's action via the socket; if the action is b'MOVE' followed by a cell 

number and b'\n', update game board accordingly; if the action is b'END\n', end 
game with the player winning. 

 
As written, the server player always starts first. This means that our client code should start 
by receiving and processing the server's result. We also know that Tic-Tac-Toe is a 
symmetrical game (other than the choice of starting player), so we deduce that the client code 
should be similar to the server code except that "client" and "server" are exchanged and the 
last step is moved to the front. 
 

1. Receive opponent's action via the socket; if the action is b'MOVE' followed by a cell 
number and b'\n', update game board accordingly; if the action is b'END\n', end 
game with the player winning 

2. Display current Tic-Tac-Toe board. 
3. Check if opponent has won, and if so, end game with opponent winning. 
4. Check if the board is full, and if so, end game with a stalemate. 
5. Prompt for input from player; if player makes a valid move, update game board 

accordingly, then send b'MOVE' followed by the chosen cell number and b'\n' to 
the opponent; if player chooses to quit, send b'END\n' to the opponent and end game 
with the opponent winning. 

6. Display current Tic-Tac-Toe board again. 
7. Check if player has won, and if so, end game with player winning. 
8. Check if the board is full, and if so, end game with a stalemate. 

 
A client program that does this is as follows. 
 
Program 10: game_client.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

import socket, tictactoe 
 
game_socket = socket.socket() 
game_socket.connect(('127.0.0.1', 3456)) 
game = tictactoe.TicTacToe() 
 
while True: 
    # Receive move from server player 
    received = b'' 
    while b'\n' not in received: 
        received += game_socket.recv(1024) 
    if received.startswith(b'MOVE'): 



18 
 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

        move = int(received[4:]) 
        print('Server moves: ' + str(move)) 
        print() 
        game.make_move(0, move) 
    elif received.startswith(b'END'): 
        print('Opponent quits, you win!') 
        print() 
        break 
 
    # Display current Tic-Tac-Toe board 
    print(game.render_board()) 
 
    # Check if server player won 
    if game.get_winner() is not None: 
        print('Opponent wins!') 
        print() 
        break 
 
    # Check if board is full 
    if game.is_full(): 
        print('Stalemate') 
        print() 
        break 
 
    # Prompt for move from client player 
    move = -1 
    while move != 0 and not game.is_valid_move(move): 
        move = int(input('Client moves (0 to quit): ')) 
    print() 
    if move == 0: 
        game_socket.sendall(b'END\n') 
        print('You quit, opponent wins!') 
        print() 
        break 
    game.make_move(1, move) 
    game_socket.sendall(b'MOVE' + str(move).encode() + b'\n') 
 
    # Display current Tic-Tac-Toe board 
    print(game.render_board()) 
 
    # Check if client player won 
    if game.get_winner() is not None: 
        print('You win!') 
        print() 
        break 
 
    # Check if board is full 
    if game.is_full(): 
        print('Stalemate') 
        print() 
        break 
 
game_socket.close() 



19 
 

Run the server and client using two different copies of Python on the same machine to verify 
that the game works as expected. A sample run is also provided below. 
 

 



1 

2021 JC2 H2 Computing 9569 
31. Web Applications 
 
 
Introduction 
 
Web applications are programs that run in web browsers. Examples include webmails (e.g. 
Gmail and Hotmail), Google Docs, Youtube video player and PythonTutor. 
 
Native applications, on the other hand, are programs that are targeted for specific platforms. 
For example, Youtube for Android is only for Android devices and cannot run on their Apple 
counterparts. Microsoft Office for Windows cannot run on Linux. 
 
The table below shows advantages and disadvantages of web applications. 
 
Advantages Disadvantages 

 
No installation required 
 

Users need to be connected to the Internet 
(at least for the first instance) 
 

The application can run on any platform that 
has a web browser 
 

Since web applications are not customized 
for any platform, user experience may not be 
ideal 
 

Easily shared among users via URL 
 

Web applications may not have access to all 
device features (e.g. GPS and camera) 
 

Easier maintenance and update as it makes 
use of a single codebase  
 

Single codebase may not work well across 
the different browsers (e.g. Google Chrome 
and Safari) or even different versions of the 
same browser 
 

 
The table below shows advantages and disadvantages of native applications. 
 
Advantages Disadvantages 

 
May not require connection to the Internet 
(though some native applications do for 
complete functionality) 
 

Users need to download native applications 
and install them 
 

As native applications are customised for 
specific platforms, they are typically faster 
and/or more efficient 
 

Users need to install updates (or allow auto-
updates) 
 

Native applications have easier access to 
device features 

Higher development and distribution costs 
as every platform requires different native 
applications 
 

 
The syllabus requires us to build simple web applications using Python with Flask as a 
framework, SQL, HTML and CSS. 



2 

Flask 
 
Flask is a web application framework that allows us to use Python to serve up web pages. 
While HTML and CSS are used to format and beautify web pages respectively, a programming 
language operates in the background to process user requests. 
 
Program 1: flask_minimal.py 
 
1 
2 
3 
4 
5 
6 
 

import flask 
 
app = flask.Flask(__name__) 
         
if __name__ == '__main__': 
    app.run() 

 
Without any customisations, Flask already provides a basic web server that correctly 
implements Hypertext Transfer Protocol (HTTP), which is the underlying format that is used 
to structure requests and responses for effective communication between a client and a 
server. 
 
To create and run this basic web server, we need to create a flask.Flask object with the 
module’s __name__ as an argument and call the object’s run() method. 
 
When this program is run, we should see some start-up messages that indicate the server can 
be accessed at http://127.0.0.1:5000/. However, as the default web server is not 
configured to recognise any paths yet, we will receive a 404 (Not Found) error when we visit 
that URL using a web browser. 
 
Note that 5000 is the default port number used by Flask. To use another port number, we can 
call the run() method with a different port argument, e.g. app.run(port=12345). 
 
HTTP Requests and Routing 
 
Simply put, HTTP requests are messages sent by clients to servers. One of such request is 
GET, which is used to request data from a specified resource in a server. 
 
Suppose we have a simple web application with only two paths: the root path / and another 
called /hello. As an example, the routing process to get the data associated with the root 
path is summarised in the flowchart below. 
 

 



3 

Program 2: simple_routing.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

from flask import Flask, render_template  
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('index.html') 
 
@app.route('/hello') 
def hello(): 
    return "Hello world!" 
 
app.run() 
 

 
HTML files must be placed in the folder templates. Create the following directory and files. 
 

 
 
To declare a route and associate a path to a Python function, we use a feature called 
decorator, each starting with @ as shown on lines 5 and 9. 
 
Try accessing http://127.0.0.1:5000/ and http://127.0.0.1:5000/hello. 
 
Program 3: complex_routing.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 

from flask import Flask, render_template  
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('index.html') 
 
@app.route('/one') 
@app.route('/one/two') 
def test_multiple(): 
    return "Mic test: one, two..." 
 
@app.route('/string/<s>') 
def string_variable(s): 
    return "You typed a string: {}".format(s) 
 
@app.route('/integer/<int:i>') 
def integer_variable(i): 
    return "You typed an integer: {}".format(i) 
 
app.run() 
 



4 

Lines 9-12 show that two paths can lead to the same function. 
 
Lines 14-20 show that Flask routes can also have variable parts. Each variable has a name 
surrounded by <>, whose associated data can be processed further. 
 
There are times when we want to lead users from an outdated web page to a new one instead. 
This can be done via redirection as shown in the two programs below. 
 
Program 4: redirection1.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 

from flask import Flask, render_template, redirect, url_for 
 
app = Flask(__name__) 
 
@app.route('/') 
def old(): 
    return redirect(url_for('new')) 
 
@app.route('/new') 
def new():  

return render_template('index.html') 
 
app.run() 

 
Program 5: redirection2.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

from flask import Flask, render_template, redirect 
 
app = Flask(__name__) 
 
@app.route('/') 
def old(): 
    return redirect("http://www.google.com") 
 
app.run() 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5 

HTTP Responses and Status Codes 
 
How do the short strings returned in some of the functions shown earlier get displayed without 
any issues in the web browser? The answer is that Flask actually prepends various headers 
behind the scenes to produce valid HTTP responses, which are messages sent by servers 
to clients. 
 

 
 
Notice that Flask assumes that our output has a Content-Type of text/html. This means 
that it actually expects our function to return a full HTML document and not just a plain string. 
However, most browsers are very forgiving and will treat our string as a snippet of HTML 
intended for <body>. 
 
Besides that, notice that Flask also assumes that our responses have a HTTP status code of 
200 (OK) by default. This is usually what we want, but if needed, we can override this by 
returning a tuple instead of just a string. as demonstrated on line 7 of the Python code 
below. 
 
Program 6: status_500.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 

import flask 
 
app = flask.Flask(__name__) 
 
@app.route('/') 
def index(): 
    return ('', 500) 
 
app.run() 

 
A HTTP status code of 500 represents an Internal Server Error. 
 
 
 
 
 
 



6 

Processing Forms 
 
Create the following HTML file. 
 
HTML 1: name_form_get.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 
12 
13 
14 
15 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Name Form</title> 

</head> 
 

    <body> 
        <form action="{{url_for('show')}}" method='GET'> 
            <p>Surname: <input type="text" name="surname"></p> 
            <p>Given name: <input type="text"  
                            name="given_name"></p> 
            <input type="submit" value="Submit!"> 
        </form> 
    </body> 
</html> 
 

 
There are two attributes in the <form> tag shown above. 
 

Attribute Purpose 

action Determines where the input data are submitted to 

method Specifies the HTTP method to be used, i.e. GET (default) or POST 

 
Notice that there is a rather unfamiliar syntax of {{url_for('show')}} in the HTML code 
above. Such is written in Jinja2, a web template language that works in conjunction with Flask.  
 
In Jinja2, {{<statement>}} represents print.  
 
This particular code instructs Python to retrieve the web address associated with the show() 
function in form1a.py shown on the next page when the form is submitted. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



7 

Program 7: form1a.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
 

from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('name_form_get.html') 
 
@app.route('/show') 
def show(): 
    surname = request.args['surname'] 

given_name = request.args['given_name']     
return render_template('show1.html', name1=surname, 

                           name2=given_name) 
 
app.run() 

 
On lines 11-12, request.args are dictionary-like objects that contain the data submitted 
through the form. We can access each piece of data on the query portion of the URL using 
the name of the input field in name_form_get.html. 
 
We also need a second HTML file to display the input name as follows. 
 
HTML 2: show1.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Show Page</title> 
    </head> 
 
    <body> 
        <p>Hello, {{name1}} {{name2}}!</p> 
    </body> 
</html> 

 
On line 8, {{name1}} and {{name2}} correspond to the variable name declared in the 
show() function in form1.py on line 13. 
 
 
 
 
 
 
 
 
 
 
 



8 

Notice on the address bar that you can see the form data submitted. As such, HTTP GET has 
several disadvantages: 
 

 The submitted form data are recorded in the resulting URLs, which allows anyone to 
view our browser history to obtain the data sent. 
 

 Some browsers and server software limit the length of URLs, so there is a risk that 
overly long form data submitted using GET requests may get truncated. 

 
 GET requests are not supposed to make changes to the server's data. If we use data 

submitted with GET requests to add, delete or update data from a database, we are 
not following the HTTP standard.  

 
To overcome these disadvantages, we can use another HTTP request, which is POST. Such 
requests do not remain in the web browser history, cannot be bookmarked and are never 
cached, providing us a secure way of sending sensitive data. 
 
Create a copy of HTML1 and change the method on line 9 to 'POST'. Save the file as 
name_form_post.html.  
 
We also need to modify our Python code in order for the POST request to work. The changes 
required are shown in bold. 
 
Program 8: form1b.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
 

from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('name_form_post.html') 
 
@app.route('/show', methods=['POST']) 
def show(): 
    surname = request.form['surname'] 

given_name = request.form['given_name']     
return render_template('show1.html', name1=surname, 

                           name2=given_name) 
 
app.run() 

 
On line 9, it is necessary to specify the POST request in the decorator. 
 
On lines 11-12, the submitted form data using the POST request are placed in request.form 
dictionary-like object instead of request.args. 
 
 
 
 
 
 
 



9 

Jinja2: FOR Loops 
 
Must we know all the keys to the data stored in the form to retrieve them? It is actually possible 
to loop through the keys using Jinja2. 
 
We will still use name_form_post.html to collect the data, but we shall come up with a new 
Python program and a HTML file to show the data for this purpose. 
 
Program 9: form2.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 

from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('name_form_post.html') 
 
@app.route('/show', methods=['POST']) 
def show(): 
    return render_template('show2.html', data=request.form) 
 
app.run() 

 
HTML 2: show2.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Show Page</title> 
    </head> 
 
    <body> 
     <p>We can arrange the data if we know the keys.<br> 
        {{data['surname']}} {{data['given_name']}}<br> 
        OR<br> 
        {{data['given_name']}} {{data['surname']}}</p> 
 
     <p>Alternatively, we can do a FOR loop.<br> 
        {%for item in data%} 
        {{data[item]}}<br> 
        {%endfor%}</p> 
    </body> 
</html> 

 
As shown above, the Jinja2 syntax for FOR loop is as follows. 
 
{%for <variable1> in <variable2>%} 
... 
 {%endfor%} 
 
 



10 

Jinja2: Conditionals 
 
Conditional statements involving if, else-if and else are supported in Jinja2. 
 
The Python program below is similar to Program 8 using HTTP POST, except on line 13 
where show3.html is to be rendered instead. 
 
Program 10: form3.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
14 
15 
 

from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('name_form_post.html') 
 
@app.route('/show', methods=['POST']) 
def show(): 
    surname = request.form['surname'] 

given_name = request.form['given_name']     
return render_template('show3.html', name1=surname, 

                           name2=given_name) 
 
app.run() 

 
HTML 3: show3.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Show Page</title> 
    </head> 
 
    <body> 
        <p> 
   {{name1}}<br> 
   {{name2}}<br> 
   {%if name1|length > 3%} 
   The surname is longer than three letters. 
   {%elif name1|length > 1%} 
   Surname is entered. 
   {%else%} 
   No surname is entered. 
   {%endif%} 
         </p> 
    </body> 
</html> 

 
On lines 12 and 14, name1|length is the syntax for obtaining the length of the string name1, 
which is the surname entered. 
 



11 

As shown in the example, the Jinja2 syntax for conditionals is as follows. 
 
{%if <statement1>%} 
... 
{%elif <statement2>%} 
... 
{%else%} 
... 
{%endif%} 
 
Even though it is possible to perform input validation using Jinja2 conditionals, it is typically 
better to do that within the Python program.  
 
Jinja2: Displaying HTML Code 
 
It is possible to include snippets of HTML code in a Python program as a string and get it 
rendered using Jinja2. 
 
Program 11: html_ex.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
 

from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    html = "<b>This sentence is bolded.<b>" 
    return render_template('show_html_ex.html', code=html) 
 
app.run() 

 
HTML 4: show_html_ex.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Show Page</title> 
    </head> 
 
    <body> 
        <p>Without using safe: {{code}}</p> 
         <p>Using safe: {{code|safe}}</p> 
    </body> 
</html> 

 
Recall that {{}} represents print in Jinja2. As shown on line 9, to render the HTML code, the 
|safe filter should be used. Otherwise, it will be treated as a normal string. 
 
 
 
 
 



12 

Flask and CSS 
 
Unlike HTML files that are placed in the folder templates, CSS files must be placed in the 
folder static. Create the following directory and files. 
 

 
 
HTML 5: css_ex.html 
 
1 
2 
3 
4 
5 
6 
 
7 
8 
9 
10 
11 
12 
13 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Flask with CSS</title> 
         <link rel='stylesheet'  
         href={{url_for('static',filename='css_ex.css')}}> 
    </head> 
  
    <body> 
         <p id="p1">This is a text.</p> 
         <p id="p2">This text must have a different style.</p> 
    </body> 
</html> 

 
Quick Check 
Write css_ex.py and css_ex.css., ensuring that the two texts in the <body> appear 
differently when rendered. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



13 

File Handling 
 
Forms may ask users to upload certain files. Uploaded files can be stored in the folder static 
or another folder of choice. For this purpose, we shall create the folder uploads. 
 
The following HTML form requests for two files – a text file and an image file – to be submitted. 
 
HTML 6: file_input.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
15 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>File Input Form</title> 
    </head> 
  
    <body> 
         <form action="{{url_for('show')}}" method='POST'  
         enctype='multipart/form-data'> 
             File input: <input type="file" name="file1"><br> 
             Image input: <input type="file" name="file2"><br> 
            <input type="submit" value="Submit!"> 
        </form> 
    </body> 
</html> 

 
On lines 10-11, it is shown that an <input> tag can have type="file". For file uploading 
to work properly, the enclosing <form> on line 9 must also be configured to use HTTP POST 
and include the additional attribute enctype="multipart/form-data". This means that 
one or more sets of data are combined and encoded as a single body. 
 
The following HTML code shows the first line of the text file, as well as the image file uploaded 
by the user. 
 
HTML 7: file_output.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
 
10 
11 
12 
13 
14 
 

<!DOCTYPE html> 
 
<html> 
    <head> 
        <title>Show Output</title> 
    </head> 
 
    <body> 
  <p>First line of the text file:<br> 
     {{line1}}</p> 
  <p>Photo uploaded: 
     <img src="{{url_for('get_file', filename=photo)}}"> 
  </p> 
    </body> 
</html> 

 



14 

The following is the Python code required for this web application to work.  
 
Program 12: file_io.py 
 
1 
2 
 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
 
28 
29 
30 
31 
32 
33 
 

import os 
from flask import Flask, render_template, request,  
                  send_from_directory 
from werkzeug.utils import secure_filename 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('file_input.html') 
 
@app.route('/show', methods=['POST']) 
def show(): 
    # Obtain the text file 
    f1 = request.files['file1'] 
 
    # Decode the byte string into a normal string 
    line1 = f1.readline().decode('ASCII') 
 
    # Obtain the image file 
    photo = request.files['file2'] 
    filename = secure_filename(photo.filename) 
 
    # Save the image in the specified directory 
    photo_path = os.path.join('uploads', filename) 
    photo.save(photo_path) 
     

return render_template('file_output.html', line1=line1,  
                       photo=filename)  

   
@app.route('/uploads/<filename>') 
def get_file(filename): 
    return send_from_directory('uploads', filename) 
 
app.run() 

 
On lines 14 and 20, we can see that submitted files are accessed from request.files 
dictionary instead of request.form. 
 
In general, we should be careful whenever we let users specify filenames for reading or writing 
files on the server's file system as file paths can use special folder names such as, .., to 
access parent folders that may contain source code or our server's configuration files. To 
prevent this from happening, on line 21, we pass the filename through the 
secure_filename() function provided in the werkzeug.utils module first. This function 
returns a modified filename with any special characters replaced so that it can be safely treated 
like a normal filename. We then use this filename on line 24 to form a file path that is 
guaranteed to be in our folder uploads. Lines 29-31 provide the way to view the file from the 
route that we have established. 
 
 



15 

Flask and SQL 
 
SQL database is very often an integral part of a web application to manage all the data 
supplied by users. 
 
In this section, we shall build a web page that allows each user to key in his/her name, class 
and gender. The data are to be stored in an SQL database. 
 
The HTML code is shown below. 
 
HTML 8: sql_form1.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
 

<!DOCTYPE html> 
 
<html> 
  <head> 
   <title>SQL Example</title> 
  </head> 
  
  <body> 
   <form action="{{url_for('store')}}" method='POST'> 
   Name:<input type="text" name="name"><br><br> 
   Class:<input type="text" name="class"><br><br> 
   Gender:<br> 
   <input type="radio" name="gender" value="M"> Male 
   <input type="radio" name="gender" value="F"> Female 
   <br><br> 
   <input type="submit" value="Submit!"> 
   </form> 
  </body> 
</html> 

 
For this simple exercise, we shall assume that all names to be keyed into the database are 
different. 
 
Before looking at the Python code on the next page, can you try to write it on your own to 
serve up the above HTML form? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



16 

Program 13: sql_ex1.py 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
 

import sqlite3 
from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('sql_ex1.html') 
     
@app.route('/store', methods=['POST']) 
def store(): 
    name = request.form['name'] 
    form_class = request.form['form_class'] 
    gender = request.form['gender'] 
     

connection = sqlite3.connect("school.db") 
    connection.execute(''' 
                       CREATE TABLE IF NOT EXISTS school ( 
                       name TEXT PRIMARY KEY, 
                       class TEXT, 
                       gender CHAR(1) 
                       )''') 
 

connection.execute("INSERT INTO school VALUES, (?, ?, ?)", 
                   (name, form_class, gender)) 

     
    connection.commit() 

connection.close() 
 

    return "The data have been saved." 
   
app.run() 

 
We shall now create another two web pages. One of them is to ask users to key in a name, 
and the other is to display the class and the gender if the name exists in the database. 
 
HTML 9: sql_form2.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

<!DOCTYPE html> 
 
<html> 
  <head> 
   <title>SQL Example</title> 
  </head> 
  
  <body> 
   <form action="{{url_for('show')}}" method='POST'> 
   Name:<input type="text" name="name"><br><br> 
   <input type="submit" value="Submit!"> 
   </form> 
  </body> 
</html> 



17 

HTML 10: sql_show2.html 
 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 

<!DOCTYPE html> 
 
<html> 
  <head> 
   <title>SQL Example</title> 
  </head> 
  
  <body> 
   <b>Name</b>: {{data['name']}}<br> 
   <b>Class</b>: {{data['form_class']}}<br> 
   <b>Gender</b>: {{data['gender']}} 
  </body> 
</html> 

 
The Python code is as follows. 
 
Program 14: sql_ex2.py 
 
1 
2 
 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
 
16 
17 
18 
19 
20 
21 
22 
23 
24 
 

import sqlite3 
from flask import Flask, render_template, request 
 
app = Flask(__name__) 
 
@app.route('/') 
def root(): 
    return render_template('sql_form2.html') 
     
@app.route('/show', methods=['POST']) 
def show(): 
    name = request.form['name'] 
     
    connection = sqlite3.connect("school.db") 
    connection.row_factory = sqlite3.Row 
    cursor = connection.execute("SELECT * FROM school WHERE  
                                  name = ?", (name,)) 

result = cursor.fetchone() 
    connection.close() 
 
    if result == None: 
        return "The student data do not exist." 
    else: 
        return render_template('sql_show2.html', data=result) 
   
app.run() 

 
Quick Check 
Combine the two separate web applications in this section into one. In a single Python 
program, use the route '/form' '/check' and '/show' to serve up HTML 8, HTML 9 
and HTML 10 respectively. 
 

 



18 

Usability Principles 
 
We shall try to adhere to certain general principles when building applications to ensure that 
they are user-friendly. 
 

1. Keep users informed of the system’s status, e.g. 
 Download status bar in web browsers 
 Wi-Fi icon on your phone  
 Battery level indicator 

 
2. Match between system and the real world, e.g. 

 Use phrases, icons and concepts understandable by users 
 E-book reader allows users to turn the page by swiping the screen from right 

to left (corresponding to how one flips a physical book) and also add bookmarks 
 Volume control buttons with the top button to increase volume and the bottom 

button to decrease the volume 
 

3. User control and freedom, e.g. 
 Allow users to undo or redo (e.g. on web browsers or word processors) 
 Allow users to return to the previous menu or exit an application easily 

 
4. Consistency and standards, e.g. 

 Follow conventions and use the same term to mean the same thing 
consistently; users should not be put in a position to guess if two terms are 
referring to the same thing 

 In Windows, the close window button is always at the top right-hand corner 
(labelled as X) 

 Most shopping websites have a shopping cart page (with a corresponding 
shopping cart icon) for users to review the items added before paying for them 
 

5. Error prevention, e.g. 
 Include helpful constraints, e.g. 

o Use a calendar to accept birthday input as opposed to using a text box 
o Use a radio button to restrict users to only valid choices 

 Display confirmation dialogues, e.g.  
o “Are you sure you want to delete this record?” 
o “Do you want to exit without saving?” 

 Provide an undo button for people to prevent making an error permanent 
 

6. Recognition rather than recall, e.g. 
 Use common icons 
 Make objects and options clearly visible 
 Shopping websites provide a section on previously bought items for users to 

revisit what they last bought (and probably want to buy again) 
 In Microsoft Word, there are lists of recently opened documents, common 

templates, etc. 
 

7. Flexibility and efficiency of use, e.g. 
 Allow multiple ways of achieving the same result, e.g. copy and paste can be 

done by using Ctrl+C shortcut or using the edit menu, allowing different users 
to choose the method that is most convenient for them 

 In Mac OS, users have the freedom to create their custom keyboard and 
shortcut commands 

 



19 

 
8.  Aesthetic and minimalist design, e.g. 

 Some visuals, such as vibrant colours of food and scenic landscapes with water 
bodies, signal promises of fulfilling human needs, such as food, water, shelter, 
safety, warmth, companionship an community 

 Provide only what is necessary as redundant information clutters the screen 
and competes with useful information, e.g. Google search engine has a very 
simple and clean design 
 

9. Help users recognise, diagnose, and recover from errors, e.g. 
 Provide error messages in simple language, e.g. “Enter a valid e-mail address.” 
 Give specific and constructive advice, e.g. “Your password must contain at 

least one uppercase letter” is much better than “Your password does not meet 
the requirements”. 

 
10. Help and documentation, e.g. 

 Ideally, any applications should be usable without any documentation 
 However, it is still a good idea to provide some documentation, as concise as 

possible to assist users 
 
References 
 
GET vs POST: https://www.w3schools.com/tags/ref_httpmethods.asp 
HTML forms: https://www.w3schools.com/html/html_forms.asp 
Usability principles: https://www.nngroup.com/articles/ten-usability-heuristics/ 
 
Summary 
 
request Object 
 
Attribute request.args 

 
request.form request.files 

Content Dictionary of field 
names and their 
associated values 
from query portion of 
URL 
 

Dictionary of field 
names and their 
associated values 

Dictionary of file 
upload names and 
their associated 
FileStorage 
objects 

HTTP Method Usually GET (but 
also works with 
POST if URL has 
query portion) 
 

POST only POST only  

Use Reads form data 
submitted using GET 
 

Reads form data 
submitted using 
POST 
 

Reads files submitted 
using POST 

<form> Attribute If not specified, it is 
method='GET' by 
default 

Must specify 
method= 
'POST' 

Must specify 
method='POST' 
enctype= 
'multipart/form
-data' 
 

 

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/html/html_forms.asp
https://www.nngroup.com/articles/ten-usability-heuristics/


20 

flask Module 
 
Flask(__name__) Creates a Flask application object 

 
render_template 
(filename, var=value) 

Renders Jinja2 template with the given filename using 
the given variable values 
 

redirect(path) Redirects user to the given path when used as a return 
value of a decorated function 
 

url_for 
(name, var=value) 

Returns the path that is mapped to the given function name 
and given variable values 
 

request Accesses current request object 
 

send_from_directory 
(directory, filename) 

Sends file from the given directory with the given 
filename when used as a return value of a decorated 
function 
 

 
werkzeug Module 
 
secure_filename 
(filename) 
 

Replaces all characters that have special meanings (e.g. 
path separators) in the given filename 

 
os Module 
 
path.join 
(foldername, filename) 

Creates a file path where the filename is to be inside the 
foldername 
 

 
Flask Class 
 
route 
(path, methods=[…]) 

Maps the given path to the decorated function with the 
HTTP methods: 'GET' or 'POST' or both inside the 
list. 
 

run() Runs the Flask application (with optional arguments 
port=<integer> as the port number and/or 
debug=True to enable the debug mode) 
 

 
FileStorage Class 
 
filename Gives the name of the uploaded file 

 
save(path) Saves the uploaded file to the given path 

 
 
 



32 Social, Ethical, Legal and Economic Issues 
Ethics 

There is no standard definition of what ‘ethics’ really is, but the following three sentences give an 
idea: 

 Ethics is the field of moral science. 
 Ethics are the moral principles by which any person is guided. 
 Ethics are the rules of conduct recognised in a particular profession or area of human life. 

For our purposes, the third definition is the most useful. Of course, these rules reflect the moral 
principles that come from the second definition. The following observations come to mind when 
considering moral principles. 

Moral principles concern right or wrong. The concept of virtue is often linked to what is considered 
to be right. Some viewpoints for deciding whether something is right or wrong are the following: 

 Philosophical thinkers such as Aristotle, Confucius, and others are often quoted in this 
context, as they have analysed in great detail why certain thoughts and actions should be 
considered right or wrong, and tried to distil fundamental principles for deciding morality. 

 Religious points of view can incorporate philosophical ones, or introduce their own new 
ones. We will not discuss specific religious beliefs, except to point out that they do have 
to be considered in the working and social environment. 

 Legal frameworks, such as the laws of a particular country, should reflect what is right 
and wrong, and certainly have an impact on working practices, but are rarely the primary 
focus in rules of conduct. 

 Pragmatic consideration can be roughly defined as applying common sense. These, 
together with the philosophical view of right and wrong, usually form the foundation for 
creating rules of conduct. 

Codes of Ethics 

Organizations normally have codes of ethics to guide their members in deciding what is right and 
wrong. For professional organizations, they expect their members to uphold a certain moral 
standard, so that the reputation and integrity of the organization and the profession, are not 
compromised. 

Two American organizations that have a strong global perspective and influence are the 
Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics 
Engineers (IEEE). Their code of ethics1 is therefore one that is often referenced with regards to 
moral considerations for software engineers. 

This code of ethics is not a look-up table that prescribes a certain action in a given situation. 
Rather, it is a set of fundamental principles, and they advocate that a professional software 
engineer should make an ethical judgement based on thoughtful considerations of these 
principles. 

                                                           
1 https://ethics.acm.org/code-of-ethics/software-engineering-code/ 

https://ethics.acm.org/code-of-ethics/software-engineering-code/


The eight principles defined in the code of ethics are the following: 

1. Public – Software engineers shall act consistently with the public interest. 
2. Client and Employer – Software engineers shall act in a manner that is in the best 

interests of their client and employer consistent with the public interest. 
3. Product – Software engineers shall ensure that their products and related modifications 

meet the highest professional standards possible. 
4. Judgment – Software engineers shall maintain integrity and independence in their 

professional judgment. 
5. Management – Software engineering managers and leaders shall subscribe to and 

promote an ethical approach to the management of software development and 
maintenance. 

6. Profession – Software engineers shall advance the integrity and reputation of the 
profession consistent with the public interest. 

7. Colleagues – Software engineers shall be fair to and supportive of their colleagues. 
8. Self – Software engineers shall participate in lifelong learning regarding the practice of 

their profession and shall promote an ethical approach to the practice of the profession. 

Altogether there are 80 clauses. Many of them do not relate specifically to software engineering, 
but actually relate to proper behaviour for any group of professional workers. For example: 

2.03. Use the property of a client or employer only in ways properly authorized, and with the 
client’s or employer’s knowledge and consent. 

5.04. Assign work only after taking into account appropriate contributions of education and 
experience tempered with a desire to further that education and experience. 

5.05. Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and 
outcomes on any project on which they work or propose to work, and provide an 
uncertainty assessment of these estimates. 

6.06. Obey all laws governing their work, unless, in exceptional circumstances, such 
compliance is inconsistent with the public interest. 

Take note, for instance, of the qualifiers in 5.04 and 6.06 (“tempered with”, “unless”). These exist 
in many of the clauses, showing the difficulty of applying a one-size-fits-all guiding principle to all 
possible scenarios. 5.05 is also notable for insisting on an uncertainty assessment. 

The Singapore Computer Society is the primary infocomm and digital media professional 
society in Singapore, with about 33 000 members and 16 specialist groups. Its code of conduct2 
also guides its members in their professional behaviour. The guidelines are broadly categorised 
into four main categories: 

1. integrity, 
2. full responsibility, 
3. competence, 
4. professionalism. 

                                                           
2 https://www.scs.org.sg/membership/membership_code_of_conduct.php 

https://www.scs.org.sg/membership/membership_code_of_conduct.php


Likewise, the British Computer Society’s code of conduct3 also gives guidance under four 
headings: 

1. public interest, 
2. professional competence and integrity, 
3. duty to relevant authority, 
4. duty to the profession. 

Regardless of the different details in each professional organization’s code of ethics or code of 
conduct, there is a general consistency with regard to the following: 

1. The public interest or public good is a key concern. 
2. The codes present fundamental principles. 
3. The professional is expected to exercise their own judgment. 
4. The professional should seek advice if unsure. 

The public good 

So far, we have been considering professional working practices, which revolves around the third 
definition of ethics. When the question of public good arises, we also need to start considering 
the second definition as well. 

The ACM/IEEE code of ethics refers to the following: 

 The health, safety and welfare of the public, 
 The public interest, 
 The public good, 
 Public concern. 

Likewise, the SCS code of conduct refers to “the advancement of human welfare” while the BCS 
code of conduct states that the professional should “have due regard for public health, safety, 
privacy, security and wellbeing of others and the environment”. 

There is no further indication of how these should be interpreted. However, we can look at some 
case studies to illustrate what might be considered. 

1. The Therac-25 was a computer-controlled radiation therapy machine produced by Atomic 
Energy of Canada Limited (AECL) in 1982. The machine offered two modes of radiation 
therapy: 

a. Direct electron-beam therapy, which involved a narrow low-current beam of 
electrons directly hitting the patient, and 

b. Megavolt X-ray therapy, which involved a current 100 times higher, which then 
struck a target to produce X-rays. The X-ray beam was supposed to pass through 
a flattening filter and a collimator before hitting the patient at a safe level. 

c. A third mode, Field Light mode, allowed the patient to be correctly positioned by 
using visible light to illuminate the target area of the body. 

In previous models of the Therac, hardware design meant that if the machine was in X-
ray therapy mode, the high-current electron beam would be physically blocked from 

                                                           
3 https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/ 

https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/


reaching the patient. However, in the Therac-25, this safety feature was replaced by a 
software check. There were two bugs in the software: 

a. When the operator incorrectly selected X-ray mode before quickly changing to 
electron mode, this allowed the electron beam to be set for X-ray mode without the 
X-ray target being in place. 

b. The electron beam could activate during field-light mode, during which no beam 
scanner was active or target was in place. 

As a result of these bugs, patients were sometimes hit with an electron beam 100 times 
larger than intended, delivering a potentially lethal dose of beta radiation. Between 1985 
and 1987, there were at least six documented cases which resulted in three deaths. 

Correct application of the code of ethics with respect to specification, development and testing of 
software could have saved human life. Fortunately, examples where software bugs cause loss of 
life are very rare indeed. In the next three case studies, if the software had been documented and 
tested properly, large amounts of public funds could have been saved. 

2. The Ariane 5 rocket exploded 40 seconds after blast-off in 1996. About US$500 million 
had gone into its development, scientific equipment and launch costs. The problem was 
caused by a line of code that converted a 64-bit floating point number into a 16-bit signed 
integer. This caused an overflow which crashed the program and ultimately, the rocket. 

3. In 1999, the Mars Climate Orbiter, which was launched by NASA to orbit Mars and study 
the climate, went on the wrong trajectory that brought it too near to Mars. It lost contact 
with mission control and was either destroyed in Mars’ atmosphere or re-entered space at 
some unknown location. This was caused by the software engineers assuming all 
variables were in SI units. However, one group of engineers had used Imperial units 
instead. This caused a problem only when the calculations concerned with achieving orbit 
around Mars were carried out. The cost of this project was US$125 million. 

4. In 2011, the UK government scrapped the National Programme for IT in the NHS (National 
Health System), which had been commissioned in 2002, because the project failed to 
produce a workable system. An estimated £12 billion had been spent on the project, 
whereas the initial estimate for the cost was £3 billion. This was not the fault of the software 
engineers, but the codes of ethics or codes of guidance also refer to project management 
as well, and this type of failure should not have occurred. 

In the above examples, there was no public concern with the ethics of the project itself, only how 
it was carried out. However, there are areas associated with computer-based systems where 
there is public concern about the nature of the project or where it led, intentionally or not. Here 
are some examples to consider: 

 Powerful commercial companies being able to exert pressure on less powerful companies 
to ensure that the powerful company’s products are used even if alternatives are more 
suitable or less costly. 

 Companies providing systems that do not guarantee security against unauthorised access. 
 Organisations that try to conceal information about a security breach that has occurred in 

their systems. 
 Private data transmitted by individuals to other individuals being stored and made 

available to security services. 



 Social media sites allowing abusive or illegal content to be transmitted. 
 Search engines providing search results with no concern about the quality of the content. 

(No examples have been provided for these. You should be able to find examples on your own 
using a web search.) 

Public attitude to such concerns varies with country and time. This makes it difficult for an 
individual software engineer to make a judgment with respect to public good. Even if the judgment 
is that a company is not acting in the public good, it will be difficult for one person to exert an 
influence in the company. There are examples where the life of such individuals, who have taken 
action, have been severely affected. 

Legal frameworks 

Most countries have laws covering the illegal usage of technology. In Singapore, some of these 
laws include the following: 

 The Computer Misuse Act4 covers, among other things, hacking, sabotaging computers, 
accessing and distributing confidential data, copyright infringement including installing and 
distributing pirated software, cyber-stalking, harassment or online grooming, and credit 
card fraud. 

 The Cybersecurity Act5 establishes a legal framework for oversight and maintenance of 
national cybersecurity, including establishing a cybersecurity regulator, imposing 
cybersecurity obligations on organisations providing critical and essential services, 
licensing and regulating cybersecurity service providers, and providing a framework for 
sharing cybersecurity information. 

 The Personal Data Protection Act (PDPA)6 covers the collection, use, disclosure and care 
of personal data. 

Ownership and copyright 

Copyright is a formal recognition of ownership. If a person creates and publishes some work that 
has some element of originality, that person becomes the owner and can claim copyright. (An 
exception is if the person works for an organisation. An organisation can claim copyright for 
published work created by one or more people working for the orgsanisation.) 

Copyright can apply to any of: 

 Literary (written) work 
 Musical composition 
 Film 
 Music recording 
 Radio or TV broadcase 
 Works of art 
 Computer programs 

                                                           
4 https://sso.agc.gov.sg/Act/CMA1993 
5 https://sso.agc.gov.sg/Acts-Supp/9-2018/ and https://www.csa.gov.sg/legislation/cybersecurity-act 
6 https://sso.agc.gov.sg/Act/PDPA2012 and https://www.pdpc.gov.sg/Overview-of-PDPA/The-
Legislation/Personal-Data-Protection-Act 

https://sso.agc.gov.sg/Act/CMA1993
https://sso.agc.gov.sg/Acts-Supp/9-2018/
https://www.csa.gov.sg/legislation/cybersecurity-act
https://sso.agc.gov.sg/Act/PDPA2012
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act


Copyright cannot apply to an idea, and it cannot be claimed on any part of a published work that 
was previously published by a different person or organisation. 

There are two reasons copyright law exists: 

1. Creative work takes time and effort and requires original thinking, so the creator deserves 
the opportunity to earn money from it. 

2. It is unfair for another person or organisation to reproduce the work and make money from 
it without paying the original creator. 

Singapore’s Copyright Act can be found online7. While copyright laws vary from country to country 
in details, there is an international agreement that copyright laws cannot be avoided, for example, 
by republishing someone else’s work in a different country without the original copyright holder’s 
permission. Typical copyright laws include: 

 A requirement for registration recording the date of creation of the work 
 A defined period when the copyright will apply (usually a fixed amount of time after the 

creation of the work, or the creator’s death). 
 A policy to be applied if the person holding copyright dies. 
 An agreed method for indicating the copyright, for example, using the © symbol. 

While the copyright is in place, there will be implications for how the work can be used. The 
copyright holder can include a statement concerning how the work might be used. For instance, 
Section 10.02 of the ACM/IEEE code of ethics describes how it should be reproduced. 

Other conditions describe what is permissible when the work has not been sold. For example, if 
someone has bought a copy of a copyrighted product (such as a book), there is no restriction on 
making copies as long as they are only for that person’s use. Other regulations relate to, for 
example, books in a library, where people can photocopy a limited amount of a book. 

The consequences and development of the Internet and World Wide Web 

Before the internet, copyright breaches tended to happen mainly in two ways. 

1. People with a tape cassette recorder could record a radio broadcast or make copies of 
other people’s cassette tapes and vinyl records. 

2. People photocopied printed material such as books and articles. 

In the early days of the Internet, illegal copying, or piracy, of movies, TV shows, and music was 
commonplace, when these media were originally intended to be sold to distributors (cinemas, TV 
and radio stations) or bought (as CDs or DVDs). The scale and ease of illegal distribution was 
much larger than it had previously been and began to affect the profitability of the creators. 

The initial response was to create Digital Rights Management (DRM) to counter such activity. 
For instance, DRM made CDs playable on CD players but not on computers, to prevent ripping. 
This was done by encryption or deliberately including some damaged sectors. Unfortunately, they 
did not guarantee the prevention of piracy. 

                                                           
7 https://sso.agc.gov.sg/Act/CA1987  

https://sso.agc.gov.sg/Act/CA1987


The major mechanism for piracy of media content is the widespread use of peer-to-peer (P2P) 
sharing. As a result, ISPs have been asked to monitor P2P technology usage and report it to 
interested parties. This, however, has been argued as being a breach of privacy. 

The current commercial model for many content producers is to make some content available 
online for free, on streaming sites such as Youtube, and allow buyers to pay for remaining content 
at an affordable rate. 

There are many resources on the internet describing copyright law for laymen and how it applies 
to content produced on the internet. Here are two examples: 

 https://www.youtube.com/playlist?list=PL8dPuuaLjXtMwV2btpcij8S3YohW9gUGN 
(Playlist on Intellectual Property Rights by CrashCourse) 

 https://www.youtube.com/watch?v=1Jwo5qc78QU (Youtube’s Copyright System Isn’t 
Broken. The World’s Is by Tom Scott) 

Software licensing 

Commercial software is no different from any other commercial product, in the sense that it is 
created and sold by a company to make a profit. However, there is one key difference. When you 
buy, for example, a phone, you own the phone. However, if you buy software, you do not own the 
software. Instead, what you are buying is a license that allows you to use the software. There are 
some different models of this, including: 

 Paying a fee for each individual copy of the software 
 An organisation might buy a site license which allows a fixed number of copies of the 

software to run on the organisation’s computers at any one time 
 Special rates might be offered for educational use 

In some instances, the license may be provided free-of-charge. There are two possibilities. 

 Shareware is commercial software which is made available on trial basis for a limited time. 
During this trial period, either the full version or a limited version might be available, or a 
beta test of a new version. 

 Freeware does not have a time limit on the free usage. It could be the full software or an 
earlier version. 

Whether the license is paid or free, there will be limitations on the use of the software and the 
user will not be provided with the source code. 

Open or free licensing is carried out by two global Non-Profit Organisations with slightly different 
philosophies, but both of them are open source, meaning that users have access to the source 
code, and are free to use it, modify it, copy it, or distribute it in accordance with the terms. 

The Open Source Initiative is a movement to make open source software available. The 
philosophy here is that using open source software will allow collaborative development of 
software to take place. The software is normally available free-of-charge. 

The Free Software Foundation is named because the philosophy is that users should be free to 
use the software in any way they wish. The software may not be free – there is usually a small 
fee to cover distribution costs. One special feature of the license is something called copyleft, 

https://www.youtube.com/playlist?list=PL8dPuuaLjXtMwV2btpcij8S3YohW9gUGN
https://www.youtube.com/watch?v=1Jwo5qc78QU


which is the condition that if users modify the source code, the modified version must be made 
available for other users under the same conditions. 

When should you use commercial software? When should you use open source software? 
 The software is available for immediate 

use and provides the functionality 
required. 

 The software has been created to be used 
in conjunction with already installed 
software. 

 There will be continuous maintenance and 
support provided. 

 Shareware might allow suggestions to be 
made as to how the software can be 
improved. 

 Freeware can often offer sufficient 
functionality to serve your needs 

 The full functionality can be provide for at 
most a nominal cost. 

 The software could provide the required 
functionality with just a few modifications 
to the source code. 

 A consortium of developers are 
collaborating in producing a new software 
suite. 

 The future development of the software or 
the continuous provision of the existing 
software is controlled by the user. 

 

Examples of software (fill in your own): 

Commercial paid 
 Microsoft Office 
  
  
  

 

Open source or free software 
 Mozilla Firefox 
 Open Office 
 Python 
 MongoDB 
  
  
  
  

Shareware/Freeware 
 Google Chrome 
  
  
  

 
 

Impact of computing and technology 

The impact of computing on society can be roughly divided into four overlapping areas: social, 
ethical, legal, and economic. 

Area Examples of impact (fill in your own) 
Social Internet and modern communication technology: 

Allowing people who are physically distant to communicate with one another 
easily and immediately 
Allows access to information to people far more easily and quickly than traditional 
media 
Allows collaboration between teams which are geographically separated 
 
Artificial intelligence 



Helps with data analysis, such as predicting where crimes are likely to take place, 
calculating shapes of proteins for medical purposes, optical character recognition 
to help visually handicapped people read text, etc. 

Ethical Programming self-driving vehicles to make decisions when an accident is 
imminent leads to an ethical dilemma, e.g. should the car prioritise the driver’s life 
or the pedestrian’s? 
 
Artificial intelligence tends to exaggerate human biases. Does this lead to biases 
in predictions? 

Legal Creation of laws pertaining to cybersecurity, data collection and protection 
Modification of copyright laws (see above section on copyright) 
Current laws unequipped to handle artificial intelligence? 

Economic Cost savings due to automation of repetitive tasks, but job losses for the same 
reason 
Creation of new technology-related jobs in existing companies 

 

Suggested videos: 

https://www.youtube.com/watch?v=ltCVp1ic-L8 (The rise of human-computer cooperation - 
Shyam Sankar) 

https://www.youtube.com/watch?v=MnT1xgZgkpk (What happens when our computers get 
smarter than we are? | Nick Bostrom) 

https://www.youtube.com/watch?v=t4kyRyKyOpo (The wonderful and terrifying implications of 
computers that can learn | Jeremy Howard) 

https://www.youtube.com/watch?v=hQigUH0vZSE (A funny look at the unintended 
consequences of technology | Chuck Nice) 

https://www.youtube.com/watch?v=5xflVUa4M_8 (Robert Reich: "Preparing Our Economy for 
the Impact of Automation & AI" | Talks at Google) 

https://www.youtube.com/watch?v=oYmKOgeoOz4 (Max Tegmark: "Life 3.0: Being Human in 
the Age of AI" | Talks at Google) 

https://www.youtube.com/watch?v=JcC5OV_oA1s (Amir Husain: "The Sentient Machine: The 
Coming Age of Artificial Intelligence" | Talks at Google) 

https://www.youtube.com/watch?v=leX541Dr2rU (There is No Algorithm for Truth - with Tom 
Scott) 

https://www.youtube.com/watch?v=Rzhpf1Ai7Z4 (Should Computers Run the World? - with 
Hannah Fry) 

https://www.youtube.com/watch?v=TtisQ9yZ2zo (Christmas Lectures 2019: How to Bend the 
Rules - Hannah Fry) 

 

https://www.youtube.com/watch?v=ltCVp1ic-L8
https://www.youtube.com/watch?v=MnT1xgZgkpk
https://www.youtube.com/watch?v=t4kyRyKyOpo
https://www.youtube.com/watch?v=hQigUH0vZSE
https://www.youtube.com/watch?v=5xflVUa4M_8
https://www.youtube.com/watch?v=oYmKOgeoOz4
https://www.youtube.com/watch?v=JcC5OV_oA1s
https://www.youtube.com/watch?v=leX541Dr2rU
https://www.youtube.com/watch?v=Rzhpf1Ai7Z4
https://www.youtube.com/watch?v=TtisQ9yZ2zo


1 

2021 JC2 H2 Computing 9569 
33. Network Security 
 
 
Malware 
 
Malware is a short form for malicious software. Examples include viruses, spyware, 
ransomware, worms and trojans. 
  
Malware aims to damage computer systems and/or to gain unauthorised access to them. For 
instance, a computer user may unwittingly download a file containing a virus from the Internet 
and run it. Without anti-virus software to stop it, the virus will infect the computer and may 
cause the computer to crash or have its data deleted. If the computer happens to be an 
important server, there can be great damage to the company concerned. 
 
A spyware is a hidden program that secretly collects information about its user and transmits 
information to attackers without the user’s knowledge. Signs that your computer may be 
running spyware: 

 It runs slower than usual 
 The web browser automatically accesses an unfamiliar website regularly 
 Anti-spyware software crashes or cannot work properly 
 The camera turns on without any user input 

 
Different kinds of malware (technical details are not in syllabus): 

 Ransomware is a type of malicious software that threatens to publish the victim's data 
or perpetually block access to it unless a ransom is paid. While some simple 
ransomware may lock the system in a way that is not difficult for a knowledgeable 
person to reverse, more advanced malware uses a technique called cryptoviral 
extortion, which encrypts the victim's files, making them inaccessible, and demands a 
ransom payment to decrypt them. 

 A virus attaches itself to a program or file so it can spread from one computer to 
another. Some only have mildly annoying effects, but others can cause severe damage 
to hardware, software, or files. Usually they are attached to executable files, so even 
though they exist on a computer, they will not infect the computer until the executable 
file is run or opened. They are spread by sharing infected files, through downloads, 
email attachments, file-sharing, etc. 

 A worm may be considered to be a special class of virus. The main difference is that 
they are standalone software and can spread from one computer to another without 
action by a host program or a person. A worm uses file or data transport features on 
the system. It has the capability to replicate itself and thus send many copies of itself 
to many different computers (e.g. an entire address book). It then replicates itself in 
the recipients’ computers and sends itself out in their address books, etc. As a result, 
the worm ends up consuming large amounts of system memory or network bandwidth, 
causing servers to be overwhelmed and stop responding. More recently, worms can 
also act as spyware, allowing malicious users to control a computer remotely.1 

 A trojan (short for Trojan horse) is a destructive program that looks like a genuine 
application. It opens a backdoor entry to the computer which gives access to malicious 
users or programs, allowing them to extract confidential or personal information. 

                                           
1 The Blaster Worm spread in August 2003 among computers running Windows XP and 
Windows 2000 operating systems. It was programmed to create a DDOS attack against 
the Windows Update site. Microsoft temporarily shut down the site to minimize potential 
effects of the worm. 



2 

 
 
Denial of Service (DOS) attacks 
 
A denial of service attack on a server happens when a hacker sends many requests to the 
server, causing it to overload, and thus preventing legitimate users from accessing it. This also 
causes the server to use up unnecessary resources and disrupts normal operations on the 
server. 
 
A hacker may also make use of malware to control multiple computers to attack a server at 
the same time. This is called a distributed denial of service (DDOS) attack.2 
 
Protection mechanisms: Firewalls 
 
A firewall is a system that is designed to prevent unauthorized access to a private network by 
filtering the information that comes in from the internet. 
 
A firewall blocks unwanted traffic and permits wanted traffic. Its purpose is to create a safety 
barrier between a private network and the public internet. There may be hackers and malicious 
traffic that may try to penetrate into a private network to cause harm. A firewall is the main 
component on a network to prevent this. 
 
It is especially important to a large organization that has many computers and servers in them, 
because the company would not want all those devices accessible to everyone on the internet 
where a hacker can come in and disrupt that organization. 
 
A firewall that's used in computer networks is very similar to how a firewall works in a building. 
A firewall in a building provides a barrier so that in the event of an actual fire, on either side of 
a building, the firewall is there to keep the fire contained and to keep it from spreading over to 
the other side, preventing the fire from destroying the entire building. A network firewall works 
in a similar way as a building firewall. It stops harmful activity before it can spread into the 
other side of the firewall and cause harm to a private network. 
 
A firewall works by filtering the incoming network data and determines by its rules if it is allowed 
to enter a network. These rules are also known as an access control list. They are 
customizable and are determined by the network administrator. The administrator decides not 
only what can enter a network but also what can leave a network. 
  
For example, an access control list may show a list of IP addresses that have been allowed 
or denied by this firewall, so that traffic from some IP addresses are allowed to enter this 
network but traffic from other IP addresses may been denied. Rules may also be based on 
domain names, protocols, programs, ports, and keywords. 
 
There are different types of firewalls 
 

 Host-based firewall. This is a software firewall. This is installed on a computer and it 
protects that computer only and nothing else. For example, later versions of Microsoft 
operating systems come pre-packaged with a host-baseball firewall. There are also 

                                           
2 On October 22 and 24, 2016, a DDOS attack brought down Starhub’s broadband network. 
This was the first time a major attack took place on a Singaporean telco’s infrastructure. 
Some Starhub’s subscribers’ machines were infected with malware that repeatedly sent 
requests to Starhub’s DNS. Since they came from subscribers’ machines, Starhub’s server 
believed they were legitimate and did not block them. The server was eventually 
overwhelmed and went down. 



3 

third party host based firewalls can be purchased and installed on a computer. Many 
antivirus programs will have a built in host-based firewall. 

 
 Network-based firewall. This is a combination of hardware and software, and it 

operates at the network layer. It is placed between a private network and the public 
internet Unlike a host-based firewall, where it only protects that computer, a network-
based firewall protects the entire network, and it does this through management rules 
that are applied to the entire network so that any harmful activity can be stopped before 
it reaches the computers. Network-based firewalls can be a stand-alone product, an 
arrangement which is mainly used by large organizations. They can also be built-in as 
a component of a router, which is mainly used by smaller organizations. They could 
also be deployed in a service provider's cloud infrastructure. 

 
Most organizations will use both network- based and host-based of firewalls. They will use a 
network-based firewall to protect the entire network, and they will also use host-based firewalls 
for their individual protection for their computers and servers. In the event that harmful data 
happens to get passed the network firewall, the host based firewalls on each computer can 
still stop it. 
 
Protection Mechanisms: Intrusion Detection Systems (IDS) and Intrusion Prevention 
Systems (IPS) 
 
The IDS is a passive system that scans incoming traffic. Once the IDS identifies dangerous or 
suspicious traffic it can send an alert but leaves the action to the IPS. 
 
The IPS is able to actively block or prevent intrusions. Actions taken by IPS: 
 

 Inspection and investigation. Inspection can include signature-based inspection and 
a statistical anomaly-based inspection. Investigation includes analyzing suspicious 
package and activities. 

 
 Action. Once unwelcome packets are identified, the IPS would either put them in 

quarantine or simply drop them. 
 

 Logs and Reports. Like many security devices IPS can log attacks and send reports. 
 
IDS and IPS are not necessarily two separate physical devices. They can be combined into 
one device They can be also be combined with other devices such as firewalls or routers into 
a single device. 
 
Encryption, Digital Signatures, and Authentication 
 
Network Applications handle data. How do we ensure data is safely transmitted? We can use 
encryption, digital signature and authentication. 
  
Encryption protects data by encoding3 it such that a secret key is required to decode4 the data. 
The decoding process is also known as decryption. Before decryption, encrypted data appears 
as random, meaningless data. This provides security for the computer system, as only the 
authorised users who have the secret key can access the data. However, encryption does not 
prevent the hacker from deleting the data from the computer system. 

                                           
3 Encoding is the process of converting the data or a given sequence of characters, symbols, 
letters etc, into a specified format. 
4 Decoding is the reverse of encoding. 



4 

 
By itself, encryption does not verify the sender of a message. One way to verify the sender is 
to use a private and public key system.  In such a system, users publicly reveal their public 
key, which is unique to each user and is used to encrypt messages intended for them. Once 
a message is encrypted, it can be decrypted using only the user’s private key, which is known 
only by the user. Encryption using a public key is a one-way process. No one, not even the 
sender, can decrypt the message without knowledge of the private key or the original 
message. 
 
A digital signature works in a similar way. A data file is hashed and encrypted using the 
sender’s private key to form a signature. The original (unhashed) data file and signature are 
sent to the recipient. The recipient hashes the received data file, and also decrypts the 
signature using the sender’s public key. If the hashed data file and the decrypted signature 
correspond, the data and signature are valid. 
 
This verifies that a message comes from the intended sender and has not been changed by 
a third-party. 
 
Finally, a network application requires authentication to check the identity of the user 
requesting to enter a system, ensuring only those with valid credentials can access the 
system. Common ways of authentication include: 
 

 passwords 
 biometrics, for example: fingerprints, facial recognition, iris scans 
 token values, such as from a physical device, a mobile phone or a software application 

 
Some applications use two-factor authentication (2FA), which uses two different ways of 
authentication for better security. 
 


