2020 JC1 H2 Computing 9569

01. Data Types and Basic Operations

Variables

Variable is a name declared in a program to represent something. It can be one of the many

types of entities, such as:

e avalue

e asetof data

e afile

e another program

For a start, we will deal with values. Once a variable is created, the value associated with it
can retrieved or modified.

Naming Variables

When writing a program, we often need to assign names to different variables. As there can
be many different variables within the same program, it is important to give them names that
are helpful, so that the program is more readable. As we gain more experience, we will have
a sense of what kinds of names are helpful or not. Below is a guideline of naming variables.

1. Every name must begin with a letter or an underscore (_).

e A numeral is not allowed as the first character.

e Multiple-word names can be linked together using the underscore, e.g. my_name,
the_best_is_yet_to_be.

¢ A name that actually starts with an underscore is usually used to denote a variable
with special characteristics.
It is not recommended to start variable names with an underscore for now.

2. After the first letter, the name may contain any combination of letters, numbers and
underscores.

e The name can be of any length.

e The name cannot be a keyword.

e The name cannot contain any delimiters (e.g. parentheses), punctuation, or
operators (e.g. +, -, *).

e The name is case sensitive, i.e. acjc_1977 is different from Acjc_1977 or ACJC_1977.

Keywords

Keywords are words used by Python to indicate commands to the interpreter. As such, they
are reserved and cannot be used as variable names. Here is an (incomplete) list of keywords.

and as assert break class continue def del elif else except exec
False finally for from global if import in is lambda None not or

pass print raise return True try while with yield

Objects and Types

In Python, every 'thing' is considered to be an object that has:

e an identity
e some attributes
e some (possibly zero) names

When an object is created by Python, it receives an ID number. The id() function can be
used to discover its ID number. This ID number is system-dependent, which means it will
differ from machine to machine or even from session to session on the same machine. It
actually indicates the location where the object is stored in the computer’'s memory. This
number is difficult for humans to remember, which is precisely why we give names to
variables.

To execute a Python program code in Jupyter Notebook, we need to press Shift+Enter on the
relevant cell.

When we want to restart the system or the notebook stops working (indicated by an asterisk
(*) next to a program code cell), we can click on Restart & Clear Output under the Kernel tab.

To put a non-executable comment in Python, we use the hash character (#).
x =1
id(x)

The print() function is used to display the given object to the standard output device, i.e.
computer screen.

X = 2
y =3

To print the contents of the variables
print(x)

print(y)

To print the memory addresses of the variables
print(id(x))

print(id(y))

The following is the way to assigning multiple values to multiple variables in one line.

X, y=5,17

print(x)
print(y)

An important attribute of an object is its type, which dictates the data stored in it.
These are the more common types that we will encounter for now.

Type Description Examples

Type Description Examples

|r.1t This corres.p.onds to our.mathematlcal definition of integer. They 1,23, 142857, -1886
(integer) can be positive or negative.
float
I(ofcl)ci’r?:mg_ This roughly corresponds to real numbers. 2.71828, -3.5
number)
bool
(Boolean True or False True, False
value)
A collection of characters in a sequence, delimited by single 'This is a string!’, 'i am

str (string) quotes (') or double quotes (") groot', 'x'

A mutable collection of objects in a sequence, delimited by
list square brackets ([]). The objects do not need to be all of the
same type.

[4, 3.14, 'abc'], ['a', 'b!,
[ICI, 'd'], |e|]

An immutable collection of objects in a sequence, delimited by
tuple square brackets (()). The objects do not need to be all of the
same type.

(4, 3.14, 'abc'), (‘a', 'b,
(ICII 'd'), |en)

A collection of unique elements, delimited by curly brackets ({}
set). The objects do not need to be all of the same type, and their {4, 3.14, 'abc'}
order do not matter.

A set of element pairs. The first element in each pair is the key {'Jones':3471124,
and the second is the value. The key can be used to look up the 'Larson':3472289,
value. 'Smith':3471288}

dict
(dictionary)

Note that in other programming languages, such as Java and C++, there is a char data type.
It is essentially a one-character string.

We can check they type of an object using the type() function.
type(5)
type(3.1)
type(3.0)
type (True)
type('abc')

type(x)

y = 'Hello'
type(y)

Typecasting

In some cases, it is possible to change the type of an object. Known as typecasting, Python
will make a new object of the specified type that is most similar to the given object as far as
possible.

Take a look at a few examples below. What do you notice when a float is cast into an integer?

float(3)

int(2.1)

int(2.9)

int(-0.9)
Does executing int(var) change the type of variable var?

x = 1.6
print(int(x))
print(type(x))

y = int(x)
print(type(y))

print(str(1965))
s = '2000'
print(int(s))
print(float(s))
print(type(s))

Typecasting involving Boolean variables is more complicated and will be covered in the next
topic.

Operators

We carry out operations on objects to get a result. For instance, applying the operation of
addition to the integers 2 and 3 gives us the integer 5.

Many of the operators for integers and floats are precisely what we would expect from
Mathematics.

243
2-3
2*3

2/3

Note that the result of dividing an integer by another is always a float, even if the division
does not have a remainder.

10/5
The operator for exponentiation is given by double asterisks (**).
2 %% 3
Python also performs modular arithmetic, that is, division with a quotient and remainder.

Double slashes (//) gives us the quotient, while the percentage character (%) gives us the
remainder.

= 36
y =7

b
|

q = /'y
r

S =

o N

1
HoM X

y
y

~

print(q)
print(r)
print(s)
print(type(q))
print(type(r))
print(type(s))

Parentheses and BODMAS (Bracket, Of, Division, Multiplication, Addition and Subtraction)
rule work as they would in Mathematics.

3+2 *5
(3 +#2) *5
2 % 3 %% 2
Note that when we mix integers and floats, the result is always a float.

a 12 + 3.0
b =12 * 3.0

print(a)
print(type(a))

print(b)
print(type(b))

x = 36

y = 3.5
a=x//y
r=x2%y
s =%x/y

print(type(q))
print(type(r))
print(type(s))

Reassigning Variables

In the course of writing a program, we may need to change the value of a variable. The most

straightforward way is to assign it a new value.

x =3
print(x)

x =5
print(x)

The new value may depend on the previous one.

x =3
print(x)

x = x+1

print(x)

x = x+1
print(x)

We can also swap the values of two (or more) variables.

a, b=3,5
print(a)
print(b)

a, b=>b, a
print(a)
print(b)

Why is the following program code not working as intended?

a, b=3,5
print(a)
print(b)

a=>
b =a
print(a)
print(b)

2020 JC1 H2 Computing 9569

02. Boolean

Boolean is a special kind of variable that only takes on one of two possible values: True or
False.

X = True
print(type(x))
print(x)

y = False

print(type(y))
print(y)

Comparison Operators

We have the following symbols that are used to compare two numbers (integers or floats).

Symbol Meaning

< less than

> greater than

== equal to

1= not equal to

<= less than or equal to
>= greater than or equal to

X = 2==
print(type(x))
print(x)

a =2
X (a == 2)
print(x)

y = (a>1)
print(y)

z = (a<1)
print(z)

p = (a >= 2)
print(p)

q= (a!=2)
print(q)

r = (a != 3)
print(r)

Note that two strings can also be compared with each other according to lexicographic

order.

The convention used in Python is that the space (' ') comes first, followed by the digits '1' to
'9', followed by the capital letters 'A' to 'Z', and finally the lowercase letters 'a' to 'z".

AR
'l1' < 'A'
'z2' < 'a'
'a' < 'b’

'ant' < 'antman'

'ant' < 'Antman'

Boolean Operators

Sometimes we need to work with two Boolean variables to make a third.

The usual operators for doing so are the not, and and or operators.

1. not
X not x
True False
False True
In essence, not x is the opposite of x.
2. and
X y xandy
True True True
True False False
False True False
False False False
In summary, x and y is True only when both x is True and y is True.
3.or

X y Xxory

True True True

True False True

X y xory
False True True

False False False

In summary, x or y is True when x is True, or y is True, or both.
Note that in Computing (and Mathematics) the word 'or' always includes the case when both
statements are True. This is sometimes called the inclusive or.

There is an old joke where a waiter asks a programmer, "Would you like coffee or tea?"
The programmer says, "Yes."

Try to work out the following codes.

X = 2
y =3
a=(x<1) or (y <4)

print(a)

b= (x==2) and (y > 3)
print(b)

c=(x+y>4) and (y - x <= 0)
print(c)

Exercise

Change x to different integer values to check if you have done your program codes correctly.

x = 2021

Define a variable a so that it is True when x is even and False when x is odd.

Define a variable b so that it is True when x is odd and False when x is even.

b=(x%2-==1)
print(b)
OR if we want to reuse the variable a: b = not a

Define a variable ¢ so that it is True when x is an odd multiple of 3 and False otherwise.
What kinds of values should we try for x?

[}

c=(x % 2==1) and (x % 3 == 0)
)

Define a variable d so that it is True when x is a multiple of 4, but not of 100.
For example, when x == 96, d is True but when x == 100, d is False.
What kinds of values should you try for x?

d=(x % 4 ==0) and (x % 100 != 0)
print(d)

The Gregorian Calendar, which we are currently using, has leap years when the year is a
multiple of 4, except when the year is a multiple of 100. Interestingly, it also has leap years
when the year is a multiple of 400.

For example, the years 1892, 1904, 1992 and 2004 were leap years (since they are multiples
of 4, but not of 100). The years 1700, 1800 and 1900 were not (since they are multiples of
100, but not of 400), and neither will 2100. However, 1600 and 2000 were leap years (since
they are multiples of 400).

Write a program code to determine whether y is a leap year. The variable isleap should be
True when y is a leap year and False otherwise.

y = 2000
isleap = (y % 400 == 0) or ((y ¢ 4 == 0) and (y % 100 != 0))
print(isleap)

Typecasting

Typecasting into Boolean

The following table summarises how other data types are typecast into Boolean variables.

Data type False True

int or float 0 or 0.0 all other values

str empty string "' all other strings (including 'False'!)
list empty list [] all other lists

set empty set {} all other sets

Typecasting from Boolean

The following table summarises how other data types are typecast from Boolean variables.

Data type False True

int 0 1
float 0.0 1.0
str 'False' 'True'

list or set error error
Use the space below to experiment with typecasting.

Type your code here

For Boolean operators, Python performs some typecasting automatically and this allows us
to shorten some codes.

For instance, in the example above where we had to define the variable a to determine
whether or not x was even, we could have done the following.

b 4 2019
a = not(x % 2)
print(a)

While this makes the code more concise, it also makes it much harder for humans to read.
Therefore, it is still advisable not to typecast Boolean variables, but instead use the
operators defined above.

Conditional Statements

1. If statement

The basic structure of the if statement is as follows.

if <boolean expression>:
#codel
#code2

It does the following:

1. Evaluate to determine whether it is True or False.

2. If is True,
e Execute the indented code under the if (i.e. in the position of #code1).
e Once that is done, continue with any code after the indented code (i.e. in the
position of #code?2).

3. If is False,
e Ignore any indented code under the if (i.e. in the position of #code1).
e Continue running any code after the indented code (i.e. in the position of #code2).

x = =3

if x < 0:
print("The value of x has been changed to zero.")

print("This is the end of the program.")

2. If-else statement
The basic structure of the if-else statement is as follows.

if <boolean_expression>:
#codel

else:
#code2

#code3

It does the following:

1. Evaluate to determine whether it is True or False.

2. Ifis True,
e Execute the indented code under the if (i.e. in the position of #code1).
e Once that is done, continue with any code after all the indented code (i.e. in the
position of #code3).

3. If is False,
e Execute the indented code under the else (i.e., in the position of #code2).

e Once that is done, continue with any code after all the indented code (i.e. in the
position of #code3).

x =3
if x $ 2 == 0:

print("x is even.")
else:

print("x is odd.")
print("That's all, folks!")

Complete the code below so that it prints "The first integer is bigger." or "The second
integer is bigger." as appropriate.

Assume that the two integers are never equal.

first int = 20
second_int = 20

if first int > second int:
print("The first integer is bigger.")

else:
print ("The second integer is bigger.")

3. Nested statement

If and if-else statements can be nested inside one another.

x =5
if x $ 3 == 0:
print("x is a multiple of 3.")
else:
if x § 3 == 1:
print("x has a remainder of 1 when divided by 3.")
else:

print("x has a remainder of 2 when divided by 3.")

Complete the code below so that it prints "It is a leap year." or "It is not a leap year." as
appropriate.

year = 2004

if year % 400 == 0:
print ("It is a leap year.")
else:
if year % 100 == O0:
print ("It is not a leap year.")
else:
if year % 4 == 0:
print ("It is a leap year.")
else:
print ("It is not a leap year.")

4. If-elif-else statement

The elif statement helps us to avoid too many layers of nesting, which make a program
code hard to read.

The basic structure of the if-elif-else statement is as follows.

if <boolean_expressionl>:
#codel

elif <boolean_expression2>:
#code2

elif <boolean_ expression3>:
#code3

There can be as many elif statements as needed.

else:
#code_else
#code _after

It does the following:

1. Evaluate to determine whether it is True or False.

2. If is True,
e Execute the indented code under the if (i.e. in the position of #code1).
e Once that is done, continue with any code after the all indented code (i.e. in the
position of #code_last).

3. If is False,
e Evaluate to determine whether it is True or False.
e Ifis True,
m Execute the indented code under the elif (i.e. in the position of #code?2).
= Once that is done, continue with any code after the all indented code (i.e. in the
position of #code_last).
e If is False,
= Evaluate to determine whether it is True or False.
= |fis True,
A. Execute the indented code under the elif (i.e. in the position of #code3).
B. Once that is done, continue with any code after the all indented code (i.e.
in the position of #codelast).
= |f is False,
A. etc.

In other words, the code goes down, , etc. in order, until it finds the first one which is
evaluated to be True and subsequently executes the indented code under that particular elif.
After that, it continues on to the unindented code.

The example below shows how the code from earlier can be rewritten using elif.
x =5

if x & 3 ==

print("x is a multiple of 3.")
elif x & 3 ==

print("x has a remainder of 1 when divided by 3.")
else:

print("x has a remainder of 2 when divided by 3.")

Try to use elif to write a code that prints "It is a leap year." or "It is not a leap year." as
appropriate.

year = 2004

if year % 400 == O0:

print ("It is a leap year.")
elif year % 100 == 0:

print ("It is not a leap year.")
elif year % 4 == 0:

print ("It is a leap year.")
else:

print ("It is not a leap year.")

2020 JC1 H2 Computing 9569

03. String

String is a built-in data type in Python used to represent text.
The following are some examples of strings:

e "Thisis a string"
e 'This is also a string'
e "25"

Note that strings are always enclosed within a pair of inverted commas, either ' "or " ".
Try to write a program code to print the following:

Mr Cliff says, "Hello, everyone! Welcome to Computing!"

print('Mr Cliff says, "Hello, everyone! Welcome to Computing!"')

String Concatenation

String concatenation allows us to join two or more strings together.

print(nau + nbn)

result = "one" + "one" + "one
print(result)

What does this do?
test = "abc"
print(test * 3)

String Indexing and Slicing

String slicing allows us to extract specific portions of a string. It has the following format.
<name_of_string>[<start>:<stop>:<step>]

Only start is compulsory within the square brackets ([]).

s = "some random string"
print(s[0])
print(s[7])

S

n

In the program code above, the variable s is assigned the string "some random string". The
number 0 enclosed within [] indicates the index (position) of the character we want to
extract.

Note that Python (and most programming languages) uses zero indexing. In other words,
the first item has index number 0. Hence, to extract the first character of a string, we use

s[0].

A space ('') is also regarded as a character. Hence, s[7] extracts the 8th character in this
string, which is 'n".

print(s[0:41])
print(s[3:8])

some

e ran
The program code above shows the use of both start and stop indexes. The strings are
sliced from the start index up to (but excluding) the stop index.

print(s[0:10:2])
print(s[0:10:3])

sm ad

seao

The program code above shows the use of start, stop and step indexes. The strings are
sliced from the start index up to (but excluding) the stop index, advancing step indexes
every time.

It is also possible to slice strings using negative values. Experiment with the following to see

how it works.
- s[-1]
- s[10:0:-1]
- s[-10:-2:1]

print(s[-11])
print(s[10:0:-11])
print(s[-10:-2:1])

9

modnar emo
dom stri

Common String Functions and Methods

Function or Method Description Example Output
Returns the length of s ="'abc'
len(s) the string len(s) 3
s1 = "abc'
s1ins2 Checks if sTisin s2 s2 = 'abcdefg’ True
s1in s2
s1="abc'

s1==s2 Che.cks if sTis s2 ='abc' True
equivalent to s2

s1==s2
str(n) (sit?%\/gerts nintoa str(14) 14"
.index("") Returns first index "Computing".index("in") True

where given substring
can be found in the str
or raises ValueError if

.isalnum()

.isalpha()

.isdigit()

.isspace()

.isupper()

islower()

.startswith("")

.endswith("")

lower()

.upper()

given substring is not
found

Returns whether the
str is made of
alphanumeric
characters only

Returns whether the
str is made of
alphabetical
characters only

Returns whether the
str is made of
numerical digits only

Returns whether the
str is made of
whitespace characters
only

Returns whether the
str is made of
uppercase characters
only

Returns whether the
str is made of
lowercase characters
only

Returns whether the
str starts with the
given prefix

Returns whether the
str ends with the given
suffix

Returns the str
converted to
lowercase

Returns the str
converted to
uppercase

"Computing".isalnum()

"Computing".isalpha()

"Computing".isdigit()

"Computing".isspace()

"Computing".isupper()

"Computing".islower()

True

True

False

False

False

False

"Computing".startswith('kdlse

"Computing".endswith("d'tue

"Computing".lower()

"Computing".upper()

"computing"

"COMPUTING"

You can use the space below to experiment with the different functions and methods.

String_Formatting

The .format() method gives us an alternative way of concatenating strings.

strl = "How {} you?".format("are")
print(strl)
str2 = "1 + 1 {}".format (1+1)

print(str2)

str3 ="{} and {}".format("Apple",
print(str3)

"Pen")

Manual numbering within { } is possible. The number indicates the order of placement of the

strings.

strd = "lst: {1}, 2nd: {0}".format("one", "two")
print(str4)

str5 = "{1}, {2}, {0}".format("One", "Two", "Three")
print(str5)

User Input

It is common for a program to ask for input from the user to perform specific task(s).

Note that any input by the user is stored as a string.

name = input("What is your name? ")
print("Hello, " + name + "! Nice to meet you!")

Does the program code below work as what you would expect?

numl = int(input("Enter the first number: "))
num2 int (input("Enter the second number: "))

answer = numl + num2

print("The answer is + str(answer))

Exercise
Write a program code that:

e asks the user for an input string
e display the string in the reverse order

strl = input("Enter your string here: ")
result = strl[::-1]
print(result)

Appendix

There are other operations and methods that we can perform on strings.
Refer to the official documentation for a more complete list.

https://docs.python.org/3.6/library/stdtypes.html#typesseq-common

https://docs.python.org/3.6/library/stdtypes.html#typesseq-common

2020 JC1 H2 Computing 9569
04. Flowchart and Decision Table

An algorithm is a sequence of steps to complete a particular task.

As a simple example, the following is one algorithm to prepare a slice of bread with jam for
breakfast.

Take a slice of bread from the packet of bread.
Grab a bottle of jam from the fridge.

Open the bottle of jam.

Scoop some jam from the bottle using a knife.
Spread the jam on the bread using the knife.
Fold the bread in half.

ook wh=

Very often, there is more than one way to complete a task. Hence, one can formulate multiple
algorithms to solve the same problem. However, some algorithms are more efficient than
others. We shall discuss about efficiency in a later topic.

Flowchart

A flowchart is a graphical representation of a computer program in relation to the sequence
of steps it is intended to perform.

There are four standard symbols used in flowcharts.
1. Terminator

The terminator symbol is a rectangle with rounded corners.

)

e the beginning of the algorithm with the START command, or
e the end of the algorithm with the STOP command.

(smr)

It represents either:

&

2. Data

The data symbol is a parallelogram.

It represents a step of either:

e receiving input data from outside the algorithm using the INPUT command,
e or producing output from within the algorithm using the OUTPUT command.

An example of each type of command is shown below.

INPUT x OUTPUT “Hil”

3. Decision

The decision symbol is a diamond.

It represents a step involving a question. The outgoing arrows represent the possible
outcomes to the question and are usually labelled “Yes” and “No”. There may be two or
three outgoing arrows depending on the number of possible outcomes. Only one of these
outgoing arrows should be followed at any one time when performing the algorithm.

Is Computing
fun?

4. Process

The process symbol is a rectangle.

The process symbol is a rectangle. It represents a step involving an operation. This usually
involves changing the value of a variable or performing more complex actions.

An example is shown below.

Spread jam on bread

Examples

The example below shows a flowchart of an algorithm to convert from Singapore Dollar to

Malaysian Ringgit.
(START)

INPUT amount in Singapore Dollar

Convert amount to
Malaysian Ringgit

OUTPUT amount
in Malaysian Ringgit

\ 4

G

Another example below shows how a guess-the-number game works.

(s)

Set a number

INPUT guess from user

Did the user

No

guess correctly?

OUTPUT “You win!”

Exercise

Two new rules are to be implemented for the guess-the-number game mentioned in the
previous page.

1. The range of numbers is limited to 0 to 50 inclusive.
2. The user has up to 10 chances to guess the number.

Draw a new flowchart to capture the new rules.

(s)

A\ 4

Set a number between 0 to
50 inclusive

Chance =0 ‘

<
<

) 4

Is chanc>

\ 4

No
INPUT guess from user /

Yes

Did the user

guess correctly? Chance = chance + 1

OUTPUT “You win!”

OUTPUT “You lose!” STOP)

Decision Table

Decision table is a visual logic representation for specifying which actions to perform
depending on given conditions. Possible combinations of conditions are considered before

deciding on the action to be taken.

A useful tool for program testing, it is used to analyse a situation where the conditions and
actions involved are more complex.

Shown below is the typical format of a decision table.

<Condition 1> Y Y
n
[
2 <Condition 2> Y N
=
c
o
(&)
<Action 1> X
[72]
5 <Action 2> X
©
<
Examples

An example below shows a two-condition decision table.

>= 70 marks Y Y N N
0
c
2
T < 45 marks Y N Y N
S

Grade ‘A’ - X
4 Grade ‘Pass’ - X
S
©
<

Grade ‘Fail’ - X

Take note that the leftmost scenario cannot take place as a particular score cannot be larger
than or equal to 70 marks and less than 45 marks at the same time. As such, we put the dash
symbol (-) on each of the actions to indicate the impossibility of such a scenario.

Another example below shows a three-condition decision table.

Male Y Y Y Y N N N N
(72}
|5 Singaporeanor | Y Y N N Y Y N N
5 2" gen. PR
c
o
© Healthy Y N Y N Y N Y N
Serve NS X
[72]
c
9
® Do not need to X X X X X X X
< serve NS

Notice that some of the cells are actually redundant since NS is mandatory only to those who
satisfy all the three conditions specified.

It is possible to come up with a simpler decision table and eventually a simpler program code
to be written.

Male Y N - -
0
§ Singaporeanor | Y - N -
5 2" gen. PR
=
o
© Healthy Y . _ N
Serve NS X
[72]
c
2
kT Do not need to X X X
< serve NS

The dash symbol (-) for the conditions means that they can either be true or false for the given
intended actions.

Exercise
An airline company offers discounted tickets according to the following rules:

1. 5% discount applies to every passenger aged 3 and above who purchase a ticket 90 days
prior to the departure date.

2. 80% discount applies to every infant aged 0 to 2 occupying a seat.
No further discount can be granted for an infant ticket.

Draw a decision table for the scenario above.

Age <=2 Y Y N N N

Age >= 3 Y N Y Y N

Conditions

Buy 90 days - - Y N -
in advance

Offer usual - X -
price

Offer 5% - X -
discount

Actions

Offer 80% - X -
discount

2020 JC1 H2 Computing 9569

05. Functions

For a start, take a look at the program code below. What is it trying to do?

initl = 25
resultl = initl + 273.15
print(resultl)

init2 = 30
result2 = init2 + 273.15
print(result2)

Notice that the same calculation is performed on init7 and init2. Should we wish to
repeatedly perform the same calculation for different values, we can write a function, which
is a block of organised, reusable codes. It helps us simplify our program and reduce
redundancy.

A function has the following format.

def <name of function>(<arguments>):
<do something>
<return something>

For the example above, we can define the following function and subsequently make use of
it for different values of T passed into the function as an argument.

def C_to K(T C):
return T C + 273.15

Converts 25 degree Celcius to Kelvin
result = C_to K(initl)
print(result)

Converts 30 degree Celcius to Kelvin
print(C_to K(init2))

Converts 50 degree Celcius to Kelvin

print(C_to K(50))
Notice that with the function C_to_K made available to the user, he/she simply needs to call it
to do the job without having to know the formula to convert the temperature from degree
Celcius to Kelvin. This idea is known as abstraction, which is the process of hiding details to
reduce complexity.

Defining functions allows us to group multiple steps under a common name, reducing the
need to rewrite codes (or reinvent the wheel) if the set of steps needs to be repeated on
multiple occasions. It also helps us to break up a big (and difficult) task into multiple smaller
(and simpler) parts.

Take note of the following:

e A function need not have an argument or a return statement.
When a return statement is not supplied, the function returns None.

Example 1.1

def print gaps():
print()
print()
print()

print("Good morning, world!")
print gaps()

print("Good afternoon, world!")
print gaps()

print("Good night, world!")

x = print gaps()
print(x)

Example 1.2
def return something():
return "This is something!"

text = return something()
print (text)

¢ A function can have more than one argument, e.g.

Example 2.1

def greet(namel, name2):
print("Hello, " + namel + "!")
print("Hello, " + name2 + "!")
print("Nice to meet both of you!")

greet("John", "Jane")

Example 2.2
Write a function that takes in three numbers and returns their sum.

def add(x, y, z):
return x + y + z

Note that sum() is an in-built Python function.
Should we also use 'sum' as the name of the function in this example, the 1

print(add (100, 200, 300))

e A function can be passed as an argument into another function, i.e. function chaining is
possible.

Example 3.1
Given the functions C _to K() and K _to F, use both of them to print the resu
def K to F(T):

return T * 9/5 - 459.67

print(K_to F(C_to K(50)))

e A function can be called inside another function.

Example 4.1
def area_of rectangle(length, breadth):
return length * breadth

def area_of n rectangles(n, length, breadth):
area = area_of rectangle(length, breadth)
return n * area

In the example above, we called a function that had been declared previously to help us
solve the problem. Of course, we could have written the entire solution without calling other
functions.

However, it is a good programming practice to break up a big problem to several small
functions. This makes debugging, a chore every programmer hates, much easier.
Exercise

(a) Write a function that takes in an integer and returns a string to tell the user whether it is
an odd or an even number.

def check odd _even(x):
if x § 2 ==
return "It is an even number."
else:
return "It is an odd number."

(b) Write a function that takes in a string and returns its first character.

def first char(s):
return s[0]

(c)

The volume of a cuboid is given as follows:

volume = length x breadth x height

The density of an object is given as follows:

density = mass / volume

()
Write a function that takes in the length, breadth and height of a cuboid to calculate its
volume and return the value.

def volume(l, b, h):
return 1 * b * h

(ii)
Using the function in (c)(i), write another function that takes in the length, breadth, height
and mass of a cuboid. It should calculate and return the density of the cuboid.

def density(l, b, h, m):
vol = volume(l, b, h)
return m/vol

(iii)
Hence, write a program code that:

e asks the user to input four values: length, breadth, height and mass
display the volume and the density of the cuboid based on the user input

float(input("Input the length: "))
= float(input("Input the breadth: "))
float(input("Input the height: "))
float(input("Input the mass: "))

== o i =
|

print("The volume of the cuboid is " + str(volume(l,b,h)))
print("The density of the cuboid is " + str(density(l,b,h,m)))

Input the length: 1

Input the breadth: 1

Input the height: 1

Input the mass: 1

The volume of the cuboid is 1.0
The density of the cuboid is 1.0

2020 JC1 H2 Computing 9569

0G. List

List is a collection of data that are ordered and mutable (i.e. changeable), which is denoted
by square brackets in Python.

The elements in a list are delimited by commas (,). They can be integers, strings, etc.,
including other lists, and a list need not contain elements of the same data type.

Define an empty list
empty 1st = []

Define some lists with element(s)
fruit = ['apple']

class_1MD10 = ['Sanjay', 'Phoebe', 'Matthew', 'Fauzan']
Matthew details = ['Matthew', 'M', 17]

List Concatenation

It is also possible to merge the contents of two or more lists in order using the addition

operator.
1st_a = [1, 2, 3]
st b = [4, 5, 6]

st _a += 1st b
print(lst_a)

Ist_ ¢ = 1st_ b * 3

print(lst_c)

List Indexing and Slicing

String and list belong to the same sequence data type, they share some similar operations

and methods.
However, unlike a string, a list can be changed, making it versatile.

1stl = ['John', 'M', 18, 'Basketball']

Print the list
print(1lstl)

What do the following codes do?
print(1lstl[0])
print(1stl[0][0])
print(1lstl[:2])

1stl[-1] = 18
print(1lstl)

Does the following code work?

text =
text[5] = 6

"I am 5 years old."

Common List Functions and Methods

Function or Method

len(s)

L.pop(i)

L.append(x)

L.sort()

L.remove(x)

L.extend(x)

L.clear(x)

L.copy()

L.index(x)

L.insert(index, item)

L.reverse()

L.sort()

Description

Returns the length of
the list

Removes the item at
given index and return
it. If no index is
specified, the last item
of the list is removed
and returned.

Appends x to the end
of the list

Sorts the list in
ascending order

Removes x from the
list.

Returns an error if x
does not exist.

Adds items in the
second list to the end
of the first list.

Removes all items
from the list.

Creates a copy of the
list.

Returns first index of
given value in the list
or raises ValueError if
given value is not
found

Inserts at given index
the given item

Reverses list in-place

Sorts list in-place

Example

L=10,1,2 3, 4]
len(L)

L=10,1, 2, 3, 4]
L.pop()

L = [IaI, lbl, ICI, ldl]
L.pop(2)

L=10,1,2, 3, 4]
L.append(5)

L =11,5,3,72,8]
L.sort()

L - [lal’ Ibl, ICl’ ldl]
L.remove('b’)

L = [IaI, lbl, ICl, ldl]
L.extend('edf')

L - [lal’ Ibl, ICl’ ldl]
L.clear()

L = [lal, lbl, ICl, ldl]
L2 = L.copy()

L - [lal’ Ibl, ICl’ ldl]
L.index('b")

L = [laI, lbl, ICI, ldl]
L.insert(2, 'x')

L - [lal’ Ibl, ICl’ ldl]
L.reverse()

L =11,3,29,8,76,4,5]
L.sort()

Output

ICI

#Returns None, but
L=100,123 4,5]

#Returns None, but
L=[12 3,57 8]

#Returns None, but
L — [Ial’ ICI’ |dl]

#Returns None, but
L = [Iall Ibl, ICI, Idl, Iel'
Ifl' Igl]

#Returns None, but
L=1]

#Returns None, but
L2: [lal, lbl, ICl, ldl]

#Returns None, but
L= [IaI, Ibl' IXl' ICI' Idl]
#Returns None, but
L: [Idl, |CI' Ibl, Ial]

#Returns None, but
L=1[1,23,4,5,6,7 8,
9]

You can use the space below to experiment with the different functions and methods.

Appendix

There are other operations and methods that we can perform on lists.

Refer to the official documentation for a more complete list.

https://docs.python.org/3.6/library/stdtypes.html#mutable-sequence-types

https://docs.python.org/3.6/library/stdtypes.html#mutable-sequence-types

2020 JC1 H2 Computing 9569

07. Number Bases

Underlying our sophisticated computer systems and applications are values stored as a
series of Os and 1s. Computers perform operations using only these two digits as the
arithmetic encoded in the hardware follows a binary (base 2) number system instead of the
denary (base 10) one that we use in our daily lives.

Denary (Base 10)

To understand how number bases work, it is helpful to take a closer look at our denary

number system and see how numbers are represented in Base 10. Note that we use the
digits 0 to 9 as we do not require a number larger than 9 to be represented by a single
symbol.

Example 1
345 actually represents the number 3 X 1024+4x10+5 x 1.
We may also represent it in tabular form as shown below:

10? 10! 10°

3 4 5

We can also begin from the right and multiply the first (rightmost) digit, 5, by 10° = 1,
followed by the next digit, 4, by 10! and so on, until we reach the last (leftmost) digit.

Example 2

142,057 actually represents the number
1x10°+4x10* +2x10°+0x 10> +5x 10+ 7 x 1.

Example 3

The number system also extends to decimals, where the first digit to the right of the decimal
point is multiplied by 10_1, the second digit by 10_2, and so on, until we reach the last digit.

3.14 actually represents the number 3 x 1 + 1 X 107 +4 x 1072

Think!

e Which fractions have finite decimal representations, i.e. they do not go on forever?

Binary (Base 2)

In Base 2, we do not require numbers larger than 1 to be represented by a single symbol.

Therefore, we only use the digits 0 and 1. The notation works in the same way as Base 10
notation, but instead of multiplying the digits by powers of 10, we multiply them by powers of
2.

Example 4

The binary number 1110 is actually 1 x 2B +1x22+1x2+0x1 (which gives us 14 in
denary notation).

23 22 2! 20
1 1 1 0

When we are talking about numbers from two different bases at the same time, it is helpful
to use a subscript to represent the base. Therefore, we would write that 11105 = 144.

Try writing the numbers 119 to 1019 in binary.

Think!

e Which numbers end in a O in their binary representation? Which numbers end in a 1?

e What happens when you multiply a binary number by 219?

Example 5
To convert the denary number 92 into binary, we need to express it as a sum of powers of 2.

9219 = 6410 + 1610 + 810 + 410

=204 2% 4 934 92
—1x240x2°+1x22+1x224+1x2240x2+0x1
= 1011100,

As writing numbers in binary can quickly become very long, we often abbreviate them using
octal (Base 8) and hexadecimal (Base 16) number systems.

Octal (Base 8)

In Base 8, we do not require numbers larger than 7 to be represented by a single symbol.
Therefore, we only use the digits 0 to 7, and we multiply them by powers of 8.

Example 6

The octal number 157g is actually 1 x 82 +5 x 8 + 7 x 1 = 111y in denary.

Think!

e Here is a joke. Why do computer programmers often confuse Halloween and Christmas?
(Hint: Halloween is on Oct 31, while Christmas is on Dec 25.)

e |s there a way to convert between binary and octal very quickly without a computer or
calculator?

Hexadecimal (Base 16)

In Base 16, we need to be able to represent the numbers 0 to 1519 by a single symbol each.

We use the digits 0 to 9, and then the letters A to F to represent 101¢ to 1519.

Example 7

The hexadecimal number BO7A is actually
11 x 163 40 x 162 + 7 x 16 + 10 x 1 = 45,1784,

Example 8

To convert the denary number 1977 into hexadecimal, we need to express it terms of powers
of 16.
19770 = 7 % 16% + 11 x 16 + 9 x 1 = 7B9 in hexadecimal.

Think!

e |s there a way to convert between binary and hexadecimal very quickly without a
computer or calculator?

Common Uses of Number Bases

Number base Use

Binary Machine-level computation, Boolean (True or False) conditions
Octal Older 12/24/36-bit systems
Denary Display for easy human readability

Hexadecimal = Modern 16/32/64-bit systems

2020 JC1 H2 Computing 9569

08. lteration

Consider a situation where we want to display positive integers from 1 to 5 line by line. We
may instinctively think of doing the following.

print(1l)
print(2)
print(3)
print(4)
print(5)

What if we need to go all the way to 100? Surely there must be a more efficient way to do so.

Iteration refers to the process of repeating a task to achieve a specific end goal.

When iteration is employed, the set of instructions within the loop will keep repeating until a
certain condition has been reached or is no longer satisfied. The result(s) of one iteration
is/are used as the starting point for the next iteration.

The flowchart diagram below shows how iteration works.

Entry point

Y

I

Instruction(s) to repeat

Condition for iteration

Cxit point

FOR Loop

FOR loop is a looping mechanism that comes with an explicit counter for every iteration,
executing a given task until the counter reaches a certain value.

Before we discuss the construct of the FOR loop, let us take a look at the range() method
that is used in conjuction with the loop. This function returns a range object comprising a
sequence of integers.

range(<start>, <stop>, <step>)

Does the above construct look somewhat familiar to you?

Start is an optional argument that determines the first number in the sequence. If not
supplied, the value is O by default.

Stop is a mandatory argument that determines the last number in the sequence, which is
stop-1.

Step is an optional argument that determines the increment or decrement of the numbers. If
not supplied, the value is 1 by default.

For visualisation, we can typecast a range object into a list as shown in the examples below.

Print a list of integers from 0 to 4
a = range(5)
print("a is", list(a))

Print a list of integers from 1 to 4

b = range(1,5)

print("b is", list(b))

Print a list of odd integers from 1 to 10

c = range(l, 10, 2)

print("c is", list(c))

Print a list of integers from 3 to 0

d = range(3, -1, -1)

print("d is", list(d))
Once we have understood how the method works, we shall look into the FOR loop construct
given below.

for i in range(<start>, <stop>, <step>):
<do something>

In the above construct, the variable i represents the counter with an initial value of start (or O
if start is not supplied).

The iteration continues until i >= stop-1.

Take note that the body, which contains the task(s) to be performed at every iteration, has to
be indented.

Examples
The code below prints out the integers 0 to 5.

for i in range(6):
print (i)

The trace table below shows what happens at every iteration.

Iteration i Execute
1 0 print(0)
2 1 print(1)
3 2 print(2)
4 3 print(3)

5 4 print(4)

6 5 print(5)

Exit
Loop

The code below prints out the integers 1, 3, 5 and 7.

for i in range(l, 8, 2):
print (i)

The trace table below shows what happens at every iteration.

Iteration i Execute
1 1 print(1)
2 3 print(3)
3 5 print(5)
4 7 print(7)
5 9 Exit
Loop

WHILE Loop

WHILE loop is a looping mechanism that continually executes a given task while a particular
condition evaluates to True.

while (<condition>):
<do something>

Similar to FOR loop, the body comprising the task(s) to be performed at every iteration has
to be indented.

We need to be especially careful when using a WHILE loop. There must be a point in time
where the condition has to evaluate to False, otherwise we will end up in an infinite loop.

See what happens when you run the code below, where i is always equal to zero and thus the
condition stated in the loop always evaluates to True. Do interrupt the kernel after looking at
the output.

i=0

while (i < 3):
print("Hello!")

To use a counter for a WHILE loop, it is declared first outside the loop and subsequently
incremented inside the loop.

Examples
The code below prints out the integers 0 to 5.
i=0
while (i < 6):
print (i)
i+=1

The trace table below shows what happens at every iteration.

Iteration i i<6 Execute

1 0 True !orlnt(O)
i+=1

2 1 True print(1)
i+=1

3 2 True !orlnt(2)
i+=1

4 3 True !orlnt(S)
i+=1

5 4 True !orlnt(4)
i+=1

6 5 True prlnt(5)
i+=1

7 6 False Exit
Loop

The code below prints out the integers 1, 3, 5 and 7.

while (i < 8):
print (i)
i 4= 2

The trace table below shows what happens at every iteration.

Iteration i i<8 Execute

1 1 True !orlnt(1)
i+=2

2 3 True !orlnt(3)
i+=2

3 5 True PTNtG)
i+=2

4 7 True !orlnt(7)
i+=2

5 9 False Exit
Loop

Exercise

Write two separate program codes using a FOR loop and a WHILE loop respectively to print
out the integers 5, 4, 3, 2 and 1 in descending order.

for i in range(5, 0, -1):
print (i)

while i > 0:
print (i)
i-=1
Let us now take a look at the following flowchart diagram that shows how we can count the
sum of four numbers keyed in by a user.

No

Is counter < 52

Ye:z

v A
/ INPUT x / / OUTPUT result /

A4 v

result = result + x (STOP }

¥

counter = counter + |

We shall write two separate program codes that displays the following upon execution.

Input an integer:
Input an integer:
Input an integer:
Input an integer:
Sum = 10

[1 S VAR oS I

Write a code that makes use of FOR loop.

result = 0

for counter in range(l, 5):
x = input("Input an integer: ")
result += int(x)

print("Sum = " + str(result))

Write a code that makes use of WHILE loop.

result, counter = 0, 1

while counter < 5:
X = input("Input an integer: ")
result += int(x)

counter += 1

print("Sum = " + str(result))

Nested Loop

Just like the IF statement, we can have loop(s) nested inside another.

Take a look at the two examples shown below. Try to guess the output before running the
code.

result = 0

for i in range(3):
result += i
print(result)
for j in range(2):
print("Hello!")

j=0

for i in range(3):
print("Here we go!")
j=0
while (j < 3):
print(j)
Jo4= 1

Break and Continue

These are two keywords that may be used with loops.

To understand the difference between the two, let us try to print out integers from 10 to 15,
but we want to avoid the unlucky number 13.

for i in range(10, 15):

if (i == 13):
break
print (i)

print("Done!")

for i in range(10, 15):
if (i == 13):
continue
print (i)

print("Done!")

It should not be difficult to see that break causes the program to skip the remaining code
inside the loop and exit the loop completely.

On the other hand, continue causes the program to skip the remaining code inside the loop
for that particular iteration and continue with the next iteration, if any.

Loops for Iterables

Strings, lists and tuples (to be covered in the next topic) are examples of data types known

as iterables.

FOR loop, in particular, is commonly used to easily iterate over members of an iterable.

String

We have previously learnt that a string is a sequence of characters. In order for us to extract
and print out each character line by line, we can do the following.

s = "Hello"

for i in s:
print (i)

The trace table below shows what happens at every iteration.

Iteration i Execute
1 'H' print('"H')
2 ‘e print('e')
3 " print('l")
4 " print('l")
5 'o' print('o")

Alternatively, since each character of a string has an index, we can also use the range()
function introduced earlier to get the job done.

The following code prints out each character three times line by line.

s = "Hello"

for i in range(len(s)):
print(s[i] * 3)

The trace table below shows what happens at every iteration.

Iteration i Execute

1 0 print(s[0]*3)
2 1 print(s[1]*3)
3 2 print(s[2]*3)
4 3 print(s[3]*3)
5 4 print(s[4]*3)

Exercise

Write a code to count the number of '0' in the string given below. Print the number as an
output.

s = "I love Python."
count = 0
for i in s:

count +; 1
print (count)
OR

count = 0

for i in range(len(s)):

if s[i] == 'o':
count += 1

print (count)
List

Recall that a list is an ordered sequence of elements. In a similar fashion to strings, we can
extract and print out each element line by line.

1 = ['apple', 'banana', 'cherry', 'durian']

for i in 1:
print (i)

The trace table below shows what happens at every iteration.

Iteration i Execute
1 'apple’ print(‘apple')
2 'banana’ print('banana’)
3 'cherry' print('cherry')
4 'durian’ print('durian')

Since a list is mutable, it is possible for us to modify its elements. This can be done when we
use the range() function to deal with the indexes of the elements.

Given the same list of strings, we can change all of them to upper case as follows.

1 = ['apple', 'banana', 'cherry', 'durian']

for i in range(len(l)):
1[i] = 1[i].upper()

The trace table below shows what happens at every iteration.

Iteration i Execute
I[0] =

! 0 I[0].upper()
I[1] =

2 1 [[1].upper()
3 2 I[2] =

I[2].upper()

I[3] =
I[3].upper()

Exercise

Given a list of positive integers below, modify it such that the even integers are multiplied by
2.

for i in range(len(l)):
if 1[1i1%2 == 0:
1[i] *= 2

print(1l)

Once you have successfully completed the exercise above, copy and paste your code to the
box below.

Modify your code such that the elements in /7 are copied to /2 with the even integers
multiplied by 2. Do not change the contents of /7.

11 =111, 5, 2, 3, 6, 9, 8, 4, 7]
12 = []

for i in range(len(ll)):
if 11[i]%2 ==
12.append(11[i]*2)
else:
12.append(11[i])

print(11)
print(12)

Write the function vowel_counter that takes in a list and counts the number of vowels in a list
of words. It should return an integer.

e.g.
lst = ["hello", "bye"]
vowel_counter(lst) -—> should return 3.

1lst = ["apple", "banana", "cherry", "durian"]

def vowel counter(lst):
count = 0
for word in 1lst:
for char in word:
if char in "aeiou":
count += 1
return count

print(vowel counter(lst)) # You should obtain 9.

Common Mistakes

Be wary when using FOR loops for iterables when inserting or deleting elements.

Case 1
The code below tries to do two things:

1. insert 'x' into the list after 'b', and
2. print out all the items in the list one by one.

While the code below looks reasonable at first glance, notice that it does not behave as
expected.

lStl=['y', lbl, 'kl, |j|’ Iol]

for i in range(len(lstl)):
if (1lstl[i] == 'b"):

l1stl.insert(i+l, 'x')
print(1lstl[i])
Observe that while the inserted letter 'x' is printed out, the letter '0' is not. That is due to the
fact that the integer j only runs up to the original length of the list, which is from 0 to 5, and it
is not modified despite the changing length of the list.

Case 2

Let us now take a look at the case of deletion. Given another list of letters, suppose we want
to print out all the letters in order one by one and remove the letter 'c' as well. Observe what
happens when you run the following code.

lst2 = [lm|, lpl, ch, Ifl, IVI]
for i in range(len(lst2)):
print(1lst2[i])
if (1lst2[i] == 'c'):
1st2.pop(i)

What error message does the code give when it is run? Similar to the previous case, the

integer i runs up to the original length of the list, which is from 0 to 5, and is not affected by
the change in the length of the list.

Exercise

Rewrite the program code for each of the cases shown above using WHILE loop.
1stl = ['y', 'b', 'k', '§', '0']
i=0

while i < len(lstl):
if (lstl[i] == 'b'):
lstl.insert(i+l, 'x")
print(1lstl[i])
i+4=1

while i < len(lst2):
print(1lst2[i])
if (1st2[i] == 'c'):
1st2.pop(i)
else:
i+=1

2020 JC1 H2 Computing 9569

09. Tuple

Tuple is a collection of data that are ordered and immutable (i.e. unchangeable), which is
denoted by round brackets in Python.

Similar to the case of list, the elements in a tuple are delimited by commas (,). They can be
integers, strings, etc., including other tuples, and a tuple need not contain elements of the
same data type.

Define an empty tuple
tup_a = ()

Define a tuple with only one element
tup b = (100,)

What about this?
tup_c = (100)
print(tup _c)
print(type(tup _c))

Define a tuple with more than one element
tup d = (1, 2, 3, "Happy new year!")

Tuple Indexing and Slicing

Try guessing the outputs when you perform the following operations before checking your

answers.

- tup[6]
- tup[-1][1]
- tupl0:2]

tup = (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, (110, 120, 130))

print (tup[6])
print(tup[-1][1])
print(tup[0:21])

Immutability

As mentioned earlier, since tuples are immutable, it is not possible to add, remove or edit any
elements associated with them. Try executing the code below and see what happens.

tupl = (10, 20, 30, 40, 50)
tupl[-1] = 500

However, using the addition and multiplication operators on tuples may work.

tup2 = (1, 2, 3)
tup3 = (4, 5, 6)

Is this allowed?

tup4 = tup2 + tup3
print (tup4)

Is this allowed?

tup5 = tup2 * 3

print(tup5)
By adding tup2 with tup3, the two tuples remain as they are. A new tuple, tup4, is created in
the memory space with all the elements of tup2 and tup3 in order.

Similarly, in multiplying tup2 by a factor of 3, tup2 remains as it is. A new tuple, tup5, is
created in the memory space with a total of 9 elements.

Is this allowed?
tup4 += tup5
print (tup4)

In essence, it is impossible to modify a tuple. We can, however, let it point to another set of
values.

tup5 = ('Computing', 'is', 'fun')
print (tup5)

Common Tuple Functions and Methods

Most of the methods available to lists do not work for tuples since tuples are immutable.
However, the following methods do work.

You can use the space below to experiment with the different functions and
methods.

Iterating Through Tuples

Since a tuple is an iterable, we can use a loop to iterate through its elements.

Recapping on what we have learnt from the previous topic, here are two
ways we can print out all the elements in a tuple line by line.

tup8 = ('Alan', 'Betty', 'Charlie', 'Diana', 'Ethan')

for item in tup8:
print(item)

for i in range(len(tup8)):
print(tup8[il)

In the example below, the function takes in a tuple and returns a tuple
containing all numbers that are divisible by 9.

def div_3(tup):
ans = ()
for item in tup:
if item % 3 == 0:
ans += (item,)

return ans
print(div_3((1,2,3,4,5,6,7,8,9)))

Exercise

Part of the function remove_string, which takes in a tuple, is given below.
Complete the program code such that the function returns a new tuple with
elements that are not strings.

def remove_string(tup):
ans = ()
for item in tup:
if type(item) != str:
ans += (item,)
return ans

print(remove_string(('a',1,2,3,'b"',4,6,7,'c',True)))

Additional example: removing not only strings, but also
boolean
def remove_str_bool(tup):

ans = ()

for item in tup:

if type(item) not in (str, bool): # OR if
type(item) != str and type(item) != bool:
ans += (item,)
return ans

print(remove_str_bool(('a',1,2,3,'b"',4,6,7,'c',True,8.0,9.0)))

Write the function odd_tuple that takes in a tuple and returns a new tuple
with only the odd numbers.

def odd_tuple(tup):
result = ()
for item in tup:
if item%2 ==
result += (item,)
return result

Test your code with the following.

odd_tuple((1,2,3,4,5)) — (1, 3, 5)
odd_tuple((2,4,6,8)) —> ()

odd_tuple((2,4,6,8,9)) —> (9,)

Write the function string_index that takes in a tuple and returns a new tuple
with only the indexes of the strings.

def string_index(tup):
ans = ()
for i in tup:
if type(i) == str:
ans += (tup.index(i),)
return ans

Test your code with the following.
string_index((1,2,3,'four',5,'six"')) —> (3, 5)
string_index(('happy','sad','joy',2,3,4)) —> (0, 1, 2)

Typecasting

Note that we can typecast a string into a tuple or a list.

text = "abc"
print(tuple(text))
print(list(text))

A tuple can be typecast into a list and vice versa.

tup7 = tuple(['a','b','c'])
print(tup7)
print(list(tup7))

Use of Tuples

At this juncture, we may feel that tuples are nothing but 'underpowered lists'.

Is there any particular reason as to why we employ the use of tuples instead
of lists?

One reason is that it makes our codes safer. Using a tuple instead of a list is
akin to implying that the data stored are constants. As a simple example,
think about the colours of the rainbow. As we all know, the seven colours are
(from the longest to the shortest wavelength): red, orange, yellow, blue,
green, indigo and violet.

Storing the colours of the rainbow as strings in a tuple should prevent any
changes to them. Using a list, on the other hand, allows one to change the
element and subsequently compromise the concept discussed at hand.

rainbow = ['red', 'orange', 'yellow', 'green', 'blue',
'indigo', 'violet']

rainbow[-1] = 'hot pink'

print("The last colour of the rainbow is " + rainbow[-1] + ".")

Not In Syllabus: Filter and Map

Filter

As the name suggests, filter removes some elements from a tuple or a list. It
creates a new filter object containing only elements for which a specified
function returns True. This object needs to be typecasted to a tuple or a list
for further use.

Filter takes in two arguments: a boolean function and an iterable data type.

filter(name_of_function, iterable_data_type)

Refer to the example below, which only takes in odd integers from the input
tuple into a filter object, odd_num1. This object is then typecasted to a tuple,

odd_num2, for display.

def check_odd(x):
return x%2 ==

numbers = (48, 31, 77, 100, 95, 2, 0, 13, 209)
resultl = filter(check_odd, numbers)
result2 = tuple(resultl)

print(resultl)
print(result2)

Map

Map applies a function to all the elements in a tuple or a list into a new map
object as the output. Similarly, this object needs to be typecasted to a tuple
or a list for further use.

Map takes in two arguments: a function and an iterable data type.

map (name_of_function, iterable_data_type)

Refer to the example below, which multiplies all the elements in the input
tuple by a factor of 5 into a map object, result1. This object is then
typecasted to a list, result2, for display.

def multiply_by_5(x):

return x5
numbers = (1, 2, 3, 4, 5, 6)
resultl = map(multiply_by_5, numbers)
result2 = list(resultl)

print(resultl)
print(result2)

Putting Them Together

Suppose we want to find the perfect squares of integers 1 to 10 that are
even. We can use both filter and map to do so as shown below.

def square(x):
return Xxk*x2

def check_even(x):
return x%2 ==

numbers = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
perfect_squares = tuple(map(square, numbers))
even_perfect_squares = tuple(filter(check_even,
perfect_squares))

print(even_perfect_squares)

Function or Method Description Example Output

len(tup)

tup.count()

tup.index()

max(tup)

min(tup)

Returns the length of
the tuple

Returns the number of
times an item occurs
in the tuple

Returns the index of
the first occurence for
an item in the tuple

Returns the item with
the maximum value in
the tuple

Returns the item with
the minimum value in
the tuple

tup = (Or 11 21 31 4)
len(tup)

tup = (OI 1! 2! 2! 2! 3!
4,2)
tup.count(2)

tup = (Or 3! 21 31 4! 3!
4)
tup.index(3)

tup = (10, 4, 12, 3)
max(tup)

tup = (10, 4, 12, 3)
min(tup)

12

2020 JC1 H2 Computing 9569

10. File Input/Output

Python allows us to open and read data from files, as well as create files and write data to
them.

For the purpose of the syllabus, we will be working with text files (.txt) most of the time.

Opening and Closing Files

The open() function is used to open a file. The format is as follows.

open("samplel.txt", "r") # OR open('"samplel.txt")

It requires at least one argument, file_name, which is the name of the file.

The optional second argument, file_mode, is supplied according to what the user intends to
do with the file after opening it.

Character Mode Function

rt Read Opens a file for reading (throws an error if the file does not exist)
w" Write Opens a file for writing (creates the file if it does not exist)

"a" Append Opens a file for appending (creates the file if it does not exist)

x" Create Creates the specified file (throws an error if the file already exists)

If no file_mode is supplied, it is in the read mode by default.

It is always a good practice to close any files using the .close() method when we are done
using them. Very often, changes made to a file may not appear until we close it.

fl = open("samplel.txt")

Alternatively,
f1 = open("samplel.txt", "r")

fl.close()

Reading Files

The .read() method is used to read the entire content of an opened file.

fl = open("samplel.txt", "r")

line = fl.read()
print(line)

fl.close()

The .readline() method, one the other hand, is used to read one line of the file at a time.

fl = open("samplel.txt", "r")

line = fl.readline()
print(line)

Notice that when the method is executed the second time, the second line of the file is read.
The method works as a cursor.

line = fl.readline()
print(line)

line = fl.readline()
print(line)

line = fl.readline()
print(line)

fl.close()

A loop can be used to read the contents of a file.

fl = open("samplel.txt", "r")

for line in f1l:
print(line)

fl.close()

Exercise
Write a program code that:

e reads an input file consisting of numbers;
e stores the numbers in a list;
e adds the numbers together and display the result.

fl = open("sample2.txt", "r")
Ist = []

for line in f1l:
lst.append(int(line))

print(sum(lst))
fl.close()

Write the function capital_count that takes in an input file of words and returns the number
of words that starts with a capital letter.

def capital count(filename):
fl = open(filename)
count = 0
for line in f1:
if line[0].isupper():
count += 1
fl.close()

return count

print(capital count('sample3.txt'))

Writing Files

Writing to an output file is just as easy as reading lines from an input file.

The .write() method requires a string as an argument and writes it as a line into an opened
file. If the file does not exist, it will be created.

fl = open("sampled.txt", "w")
fl.write("I just wrote something 1 \n")
fl.write("I just wrote something 2 \n")

fl.write("I just wrote something 3 \n")

fl.close()

Try running the code below. Notice that the content of sample4.txt will be overwritten.

fl = open("sampled.txt", "w")
fl.write("I just wrote something 4 \n")
fl.write("I just wrote something 5 \n")

fl.write("I just wrote something 6 \n")

fl.close()

The append mode of the open() function allows us to add lines into an existing file instead of
overwriting its content.

fl1 = open("sampled.txt", "a")

fl.write("I just wrote something 7 \n")
fl.write("I just wrote something 8 \n")
fl.write("I just wrote something 9 \n")

fl.close()

Exercise
Write the function write_multiply that:

e takes in and reads an input file consisting of numbers;
e multiplies the numbers together;
e store the result in a text file named output.txt.

Use sampleb.txt for this question.

def write multiply(filename):
fl = open(filename)
result =1

for line in f1:
result = result * int(line) # OR result #*= int(line)

f2 = open("output.txt", "w")
f2.write(str(result))

fl.close()
f2.close()

write multiply("sample5.txt")

.split() Method

So far, we have been dealing with data that are only separated by lines in text files. What if

they are separated by white spaces (' '), commas (',') or any other characters?

The .split() method of a string can be used conveniently to extract the data separated by a
particular character into a list. When no argument is passed into the method, the separator is
a white space by default.

Refer to the examples below.

rowl = "1 2 3 4 5"
outputl = rowl.split()
print (outputl)

row2 = "6,7,8,9,10"
output2 = row2.split(",")
print (output2)
To ensure that you understand how the method works, why not predict the output of the

following?

row3d = "1,2,3,4,5"
output3 = row3.split('3")
print (output3)

Exercise
Write the function capitalise_words that:

e takes in and reads an input file consisting of words separated by commas and lines;
e capitalises all the letters and store the words in a list;
e display the list content.

def capitalise words(filename):
fl = open(filename, "r")
result = []

for line in f1:
l1st = line.strip().split(",") # easiest to do using strip() to remo
for i in range(len(lst)):
1st[i] = 1lst[i].upper()
result.extend(1lst)
print(result)

fl.close()

capitalise words("sample6.txt")

.strip() Method

Notice that we had to deal with the new line character ('\n') in the previous example.

There is an easy way to strip that out, as well as leading and trailing white spaces, using the
.strip() method of a string when no argument is passed into it as shown in the examples
below.

wordl = " hello "
print (wordl.strip())

word2 = " he 1llo "
print(word2.strip())

word3 = " he 1lo \t hello \n \n \n"
print (word3.strip())

It is also possible to specify what you want to strip off instead.

word4 = ",,,hello,"
print (word4.strip(',"'))

word5 = "hey hey hey hhh"
print (word5.strip('h'))

WITH Statement

In Python, the with statement is used when working with an external resource, such as a text
file, a database file, etc. It ensures that the file is automatically closed when the nested code

finishes running or when there is an exception that may otherwise potentially jeopardise the
integrity of the data stored.

Take a look at the program code below and see how it differs from how we read a file earlier.

lst = []
with open("sample7.txt") as fl:
for line in f1:

lst.append(line.strip())

print(1lst)

CSV Module

The so-called CSV (Comma Separated Values) is the most common import and export
format for spreadsheets and databases. Python's CSV module offers another way for us to

read from and write into files.

Take a look at how the .reader() method behaves, paying close attention to the second
argument supplied into the method.

import csv

with open("sample8.txt") as fl:
csv_file = csv.reader(fl, delimiter=',")
for line in csv_file:

print(line)

The following code shows how the .writer() and .writerow() methods behave. Take a look at
the file that is created after you run the code.

import csv
lst = ['eagle', 'fox', 'giraffe', 'horse’]

with open("sample9.txt", "w") as fl:

csv_file = csv.writer(fl, delimiter=',")
csv_file.writerow(lst)

2020 JC1 H2 Computing 9569

11. Recursion

Recursion is a method of breaking down a problem into smaller sub-problems until the sub-
problem is so small that it can be easily solved. It involves a function calling upon itself.

All recursive algorithms must obey two important rules:

e They must have a base case where the problem can be easily solved.
e They must change the state and move towards the base case.

A simple recursive function typically has the following construct.

def recursive function(n):
if <problem is easy>:
<do or return something>
else:
<do something>
return recursive function(<change n>)

To best understand the concept, we shall go through some examples.

3... 2...1... Happy New Year!

Let us do a simple task of printing three integers in a descending order from 3 to 1, followed
by a string "Happy New Year!"

Using a WHILE loop, write a code for the task described above.

Type your code here

n=3

while n > 0:
print(n)
n -=1

print ("Happy New Year!")

If we do not want to use a FOR or a WHILE loop, can we still perform the task?
Study the code below and compare with your code above.

def countdown(n):
if n ==
print ("Happy New Year!")
else:
print(n)
return countdown(n-1)

countdown (3)
The trace table below shows what happens at every step.
Step n Executed Return

countdown(3) 3 print(3) countdown(2)

countdown(2) 2 print(2) countdown(1)

countdown(1) 1 print(1) countdown(0)

print("Happy New

Year!") None

countdown(0) 0

In this example, the base case is when n = 0, where we print the string "Happy New Year"
and stop calling the function recursively.

At each recursive call before n = 0, n must be decremented by 1 and passed as an argument
when the same function is being called.

Recursive Sum

Consider the following recursive mathematical function.

f(x) = f(x-1) + 5, where f(0) = 2

Solve for f(5).

Solving by hand,

f(5) =f(4) +5
f(4)=f(3)+5
f(3) =f(2) +5
f(2) = (1) +

f(1) =f(0) + 5
Since f(0) = 2,
fl)=2+5=7
f(2)=7+5=12
f(3)=12+5=17
f(4)=17+5=22
f(5) =22+5=27

Notice that we have to evaluate f(5).
However, according to the definition, f(5) is in terms of f(4), so we need to evaluate f(4).

f(4) is in terms of f(3), so we need to evaluate f(3), which is in terms of f(2), which is in terms
of f(1), which is in terms of f(0).

Every step leads us to another sub-problem that is closer to f(0).
Once we get to f(0) = 2, we are able to evaluate f(1), then f(2), then f(3), then f(4), then f(5).
Here is the recursive code to solve the problem.

def f(n):
if n ==
return 2
else:
return f(n-1) + 5

print(£(5))

Product of Integers in a List

How can we find the product of integers in a list using recursion?
Suppose we have the following list: [1, 3, 5, 7].

We shall approach the problem by multiplying a pair of numbers at a time. The parentheses
indicate the order we are going to perform the multiplications.

((Mx3)x5)x7)

Stepwise, the product of the integers can be calculated as such.

product = (((1 x 3) x 5) x 7)
= ((3 x5) x7)
= (15 x 7)
= 105

Study the recursive code below to see how it works.

def product(lst):
if len(lst) ==
return 1lst[0]
else:
return product(lst[:-1]) * 1lst[-1]

numbers = [1, 3, 5, 7]
print (product (numbers))

We can also parenthesise the expression the other way around.
(1Tx(83x(5x7)))

Stepwise, the product of the integers can be calculated as such.

products

]
o~~~
SRR, R

(5 x 7)))
35))

=~~~
S W w
— X X

X X X

Try to write the recursive code.

def new_product(lst):
Type your code here
if len(lst) ==
return 1st[0]
else:
return 1st[0] * new_product(lst[1l:])

numbers = [1, 3, 5, 7]
print(new_product (numbers))

Counting Even Numbers in a List

How do we count the number of even numbers in a list using recursion?

def count even(lst):

if len(lst) == O0:

return 0
elif (1st[0] % 2 == 0):

return count_even(lst[1l:]) + 1
else:

return count_even(lst[1l:])
print(count_even([1,2,3,4,5]))

Compared to the previous example on multiplication, why must the base case here be:
len(lst) ==
instead of 1?

Exercises
Write the recursive code recursive_sum that takes in a list of integers and returns the sum.
lst = [5, 6, 7, 8]
Type your code here
def recursive sum(lst):
return 1lst[0] + recursive sum(lst[l:]) if 1lst else 0

recursive_sum(lst)

Write the recursive code count_capital that takes in a string and returns the number of
capital letters.

strl = "PuRple DinOsAUr"

Type your code here

def count capital(strl):
return int(strl.isupper()) if len(strl) == 1 else int(strl[0].isupper())

count capital(strl)

Write the recursive code tuplify that takes in a string and returns a tuple containing all the
characters of the string.

str2 = "aBCdE"
Type your code here
def tuplify(str2):
return (str2,) if len(str2) == 1 else (str2[0],) + tuplify(str2[l:])

tuplify(str2)

Tower of Hanoi

Have you heard of or played this puzzle before?

F Ve | L

A B C A B C
2) | (3 I {4) l I
A B C A B C A B C
{(5) (6) I &) |
J.-L_-L. —=m L S
A B C A B C A B C

The Tower of Hanoi consists of three rods and a number of circular disks of different sizes.
The puzzle begins with all the disks arranged on one of the rods (e.g. rod A) in order of size -
largest at the bottom, smallest at the top.

The objective is to transfer all the disks from the initial rod to another under the following
rules:

e Each move consists of moving a disk from one rod to another.
e You can only move one disk at a time.
e You cannot put a larger disk on top of a smaller one.

For 3 disks, it turns out that this can be done within 7 moves, as shown in the diagram
above. (Is it possible to do solve it with fewer than 7 moves?)

Experiment a bit with solving the puzzle here:
https://www.mathsisfun.com/games/towerofhanoi.html

It is possible to solve it using iteration, although it may be complicated. A solution using
recursion, on the other hand, is short and elegant.

By playing with the puzzle at the website above, try to come up with a method of moving the
disks so that you can always do it in the shortest number of moves.

You will implement this in one of the missions in Coursemology.

https://www.mathsisfun.com/games/towerofhanoi.html

2020 JC1 H2 Computing 9569

12. Object-Oriented Programming

In the early days, computers operated along a linear line of control, i.e. one could only do
one thing at a time via Command-Line Interface (CLI). With the emergence of Graphical User
Interface (GUI), this is no longer the case. You can type your report on a word processor,
switching over to a web browser to search for something while also listening to songs from a
music player at the same time. Under this multi-tasking environment, there is no longer a
single thread of control in using computers. Not only can people do things in different
orders, they can seemingly do many things concurrently. This is the motivation for Object-
Oriented Programming (OOP).

Many programs that we use today, such as Google (search engine), Facebook (social
network) and Twitter (microblog) are developed using OOP.

Class, Object and Encapsulation

Imagine a situation where you need to write a program code to control the current balance of

a bank account.
As a quick exercise, define the functions deposit and withdraw.

def deposit(lst, money):
1st[2] += money

def withdraw(lst, money):
if 1st[2] < money:
return "Not enough money!"
else:
1st[2] -= money

bank account = ["912-83746-5", "Sam Phua", 20000]

deposit(bank account, 1000)
print(bank_account)

withdraw(bank account, 500)
print(bank_account)

What are some of the issues that may arise with such a simple program code?

In OOP, a class is a blueprint that defines the properties and methods of a group of similar
objects. An object is a specific instance of a class that have the same properties and
methods as the class from which it is built.

A class contains two components:

1. Properties: defining features of a class in terms of data
2. Methods: codes designed to perform particular tasks on the data

Encapsulation refers to the concept of bundling the properties and the methods together as
a package. A recommended practice is to protect the data contained in the properties from
being accidentally or intentionally modified by unauthorised parties. As such, we want to
keep our data private. However, since the user needs a way to access them, we need to
provide a set of methods to be made public. Take note that methods can be made private,
but we shall not discuss about it here.

Defining a Class

In a bank account, we need to keep data such as account number, account holder name,

current balance and annual interest rate. The typical operations done on a bank account
include getting and setting the information of the account, deposit money, withdraw money
and add interest.

A Unified Modelling Language (UML) diagram is typically used to illustrate OOP concepts.
A table represents a class with the private data indicated by the - sign in front of the
properties, while the public operations are indicated by having + in front of the methods as
shown below.

BankAccount

- acct_num
- acct_name
- cur_bal

- int_rate

+ get_acct_num()

+ get_acct_name()
+ get_cur_bal()

+ get_int_rate()

+ set_acct_name()
+ set_int_rate()

+ deposit_money()
+ withdraw_money()
+ add_int()

The typical construct of a class is as follows.

class <name>(<optional parent class>):

def init (self, <optional parameters>):
<constructor body>

def <method name>(self, <optional parameters>):
<method body>

Methods of a class can generally be classified into a few types:
1. Constructor

The __init___ function allocates storage when an object of a class is created.

1. Accessor

The 'get' functions access the data stored in an object.
1. Mutator

The 'set' functions allow modification to the data stored in an object.
1. Utility

These methods extend the functionality of the class, e.g. deposit money in our
BankAccount class.

Notice that the construct contains self, which is used to refer to itself and is required in each
of the methods of a class.

Let us define our BankAccount class.

class BankAccount:
Constructor
def init (self, acct_num, acct_name, cur_bal, int rate):
self.acct_num = acct_num
self.acct_name = acct_name
self.cur bal = cur_bal
self.int rate = int rate

Accessors
def get_acct num(self):
return self.acct_num

def get_acct name(self):
return self.acct name

def get_cur bal(self):
return self.cur_bal

def get_int rate(self):
return self.int rate

Mutators
def set_acct name(self, name):
self.acct_name = name

def set_int rate(self, int rate):
self.int rate = int rate

Utllity methods
def deposit_money(self, money):
self.cur bal += money

def withdraw money(self, money):
if money > self.cur_bal:
return "Not enough money!"
else:
self.cur_bal -= money

def add_int(self):
self.cur_bal += self.cur bal * self.int rate

Creating and Manipulating an Object

The syntax to create an object of a class is as follows.

<object name> = <class_name>(<required parameters defined in _ init >)

We can now create an object of the BankAccount class. Let us call it david_account with the
following data to be supplied:

e Account number: 123-45678-9
e Account name: David Tan
e Current balance: 100000
e Annual interest rate: 0.1%

david_account = BankAccount("123-45678-9", "David Tan", 100000, 0.001)

Once the object has been created, we shall test the correctness of the methods defined
earlier.

Test accessor methods

print(david_account.get acct num())
print(david_account.get acct name())
print(david_account.get cur bal())

print(david_account.get int rate())

Test mutator methods

david_account.set_acct name("David Tan Ming Quan")
print(david_account.get _acct name())

david_account.set_int rate(0.002)
print(david_account.get int rate())

Test utility methods

This should print 110000
david_account.deposit_money(10000)
print(david_account.get_cur_bal())

This should print 90000
david_account.withdraw money(20000)
print(david_account.get_cur_bal())

This should print "Not enough money!"
david_account.withdraw money(200000)

This should print 90180.0
david_account.add_int()
print(david_account.get_cur_bal())

After going through the example above, you should realise that it is actually not something
entirely alien to you. You have, perhaps unknowingly, been using OOP concepts when you
write codes involving strings, lists and tuples, but to name some that we have previously
covered.

Instantiate an object of the list class
my list = list()

Perform some methods on the list object

my list.append('a')
my list.append('b')
print(my_list)

my list.pop()
print(my_list)

Inheritance

Inheritance refers to the concept of properties and methods in one class being shared with

its subclass. This promotes code reusability.

The subclass inherits all the properties and methods of the superclass, but the former may
behave differently from the latter with the addition or modification of certain features.

To illustrate this concept, we shall look at a CurrentAccount, a subclass of BankAccount. A
current account typically caters for frequent deposits and withdrawals by cheque.
Something unique to this type of account is that it may go into an overdraft, a state where
the available balance goes below zero. Also, it is often regarded as a non-interest bearing
account, or the interest rate is usually very small, e.g. 0.001%.

Here is the UML diagram to show the relationship between BankAccount and
CurrentAccount.

BankAccount

-acct_num
- acct_name
- cur_bal

- int_rate

+ get_acct_num()

+ get_acct_name()
+ get_cur_bal()

+ get_int_rate()

+ set_acct_name()
+ set_int_rate()

+ deposit_money()
+ withdraw_money()
+ add_int()

A

CurrentAccount

+ check_overdraft()

The typical construct of a subclass is as follows.

class <name>(<superclass>):

def <additional / overriding method name>(self, <optional parameters>):
<method body>

To define the CurrentAccount subclass, we simply need to add the additional method
check_overdraft that should return True if the current balance is below zero, and False
otherwise.

class CurrentAccount (BankAccount):

def check overdraft(self):
if self.cur_bal < 0:
return True
else:
return False

Let us create the object ali_account of the CurrentAccount class with the following data to be
supplied:

e Account number: 123-45678-9
e Account name: Ali Ramlan

e Current balance: 100000

e Annual interest rate: 0.1%

ali account = CurrentAccount("123-45678-9", "Ali Ramlan", 100000, 0.001)

Run the following codes to see for yourself how an object of CurrentAccount behaves.

Test accessor methods

print(ali_account.get_acct num())
print(ali_account.get_acct name())
print(ali_account.get cur bal())
print(ali_account.get_int rate())

Test mutator methods

ali account.set _acct name("Ali Ramlan")
print(ali_account.get_acct name())

ali account.set_int rate(0.00002)
print(ali_account.get_int rate())

Test utility methods

This should print 12000
ali account.deposit _money(2000)
print(ali_account.get_cur_bal())

This should print 11500
ali account.withdraw _money(500)

print(ali_account.get_cur_bal())

This should print False
print(ali_account.check overdraft())

Polymorphism

Polymorphism refers to the concept of a subclass method, which is inherited from its

superclass, used in a different way. The literal meaning of polymorphism is to take on many
shapes.

Polymorphism is realised through method overriding, which refers to the redefining of the
implementation of a method provided by the superclass. This allows for generalisation of
method name, which may behave slightly differently depending on the subclasses we are
dealing with.

For our CurrentAccount subclass, we need to redefine the following utility methods:

+ withdraw_money () allows cur_bal to go below zero
+ add_int() if overdraft, 5% should be applied to the
debt annually

otherwise, it should do the same as the
original superclass method

class CurrentAccount (BankAccount):

def check overdraft(self):
if (self.cur_bal < 0):
return True
else:
return False

Redefine the two utility methods
def withdraw money(self, money):
self.cur_bal -= money

def add_int(self):
if self.check overdraft():
self.cur_bal += self.cur_bal * 5/100
else:
self.cur_bal += self.cur_bal * self.int_rate

Run the following codes to test the correctness of your utility methods.

kannan account = CurrentAccount("876-54321-0", "Kannan Kumar", 800, 0.00001)

The account goes to an overdraft after withdrawing $1,800 to become -$1,000
kannan account.withdraw money(1800)
print(kannan account.get cur_bal())

An interest of 5% is applied to the overdraft account to become -$1,050
kannan account.add int()
print(kannan account.get cur_bal())

$2,000 is deposited into the account to become $950, so the account is not
kannan account.deposit money(2000)
print(kannan account.get cur_bal())

The default interest rate is applied to the non-overdraft account to become

kannan account.add int()
print(kannan account.get cur_bal())

Built-in Libraries

These are some useful libraries that we need to know how to use, which need to be
imported first before we write our program codes.

1. Random Library

Method

random()

randint(a, b)
randrange(stop)
randrange(start, stop)

randrange(start, stop, step)

shuffle(Ist)

Return

A random float in the range [0.0, 1.0), i.e. between
0.0 (inclusive) and 1.0 (exclusive)

A random integer in the range [a, b], i.e. between
a (inclusive) and b (inclusive)

A random integer in the range [0, stop), i.e.
between 0 (inclusive) and stop (exclusive)

A random integer in the range [start, stop), i.e.
between start (inclusive) and stop (exclusive)

A random integer in the range [start, stop), i.e.
between start (inclusive) and stop (exclusive), in
intervals of step

Shuffles the elements in list Ist without any return
value

Try running the codes below to see the outputs.

import random

print (random.random())
print(random.randint (0, 5))
print(random.randrange(5))
print(random.randrange(5, 10))
print(random.randrange(l, 10, 2))

st = [2, 0, 1, 9]

random.shuffle(1lst)
print(1lst)

2. Math Library

Try to work out the output of each of the following before running the code.

You need to use a calculator to evaluate some of them.

import math

print(math.trunc(20.19))
Output: 20

print(math.floor(20.19))
Output: 20

print(math.ceil(20.19))
Output: 21

print(math.pow(2, 3)) # VS 2x%x3
VS

Output: 8.0 (float)

print(math.exp(2))
Output: 7.38905609893065

print(math.log(10))
Output: 2.302585092994046

print(math.sqrt(4))
Output: 2.0

8 (integer)

3. Datetime Library

Note that this library uses the 24-hour clock convention.

Method
trunc(n)

floor(n)

ceil(n)

pow(n, x)

exp(n)

log(n)

sgrt(n)

Method
datetime.now()

datetime(year, month, day, {hour, {minute,
{second, {microsecond}}}})

datetime.strptime(str, format)

< datetime >.strftime(format)

< datetime >.isoformat()
Try running the codes below to see the output.

import datetime

datetime.datetime.now()

test datel datetime.datetime (2019,

print(test_datel.isoformat())

"01/04/19 13:55:26"
"$d/%m/%y $H:%M:%S"

str_date
str_format

test_date2

print(test_date2)

test_date3
new_format

datetime.datetime (2019,
"Date: %d-%m-%y \nTime:

1,

4

14 I
SH:%M:

Return

An integer after removing any
decimal values of n

An integer after rounding n down
An integer after rounding n up

A float when n is raised to the power
of x

A float when e (~2.7) is raised to the
power of n

A float that is the logarithm to the
base of e (~2.7) of n

A float that is the square root of n

Return

A datetime object representing the current date
and time

A datetime object representing the specified date
and time

A datetime object from a given string str of a
given format

A string of a given format representing the
datetime object

A string representing the date and time in ISO
8601 format (YYYY-MM-DDTHH:MM:SS)

1)

datetime.datetime.strptime(str date, str format)

1, 8, 20, 33)
%

14
Sll

print(test _date3.strftime(new_format))

To get the specific component of the object, the data of the datetime library are officially

made accessible for public use.

Data Return

datetime.now().year An integer representing the current year
datetime.now().month An integer representing the current month
datetime.now().day An integer representing the current day
datetime.now().hour An integer representing the current hour
datetime.now().minute An integer representing the current minute
datetime.now().second An integer representing the current second

Try running the codes below to see the output.

test date4 = datetime.datetime(2019, 12, 25, 15, 30, 45)

print(test _date4.year)
print(test_date4.month)
print(test_date4.day)
print(test_date4.hour)
print(test _date4.minute)
print(test _date4.second)

It is also possible to find the difference between two datetime objects in terms of days and
seconds respectively.

Method Return

An integer representing the difference in terms of

ti Ita >.
< timedelta >.days number of days

An integer representing the difference in terms of

< timedelta >.seconds
number of seconds

Try running the codes below to see the output.

d1l
d2

datetime.datetime(2019, 1, 1, 21, 10, 10)
datetime.datetime(2020, 1, 1, 21, 10, 10)

days_to_go = (d2-dl).days

print(days_to_go)

d3
d4

datetime.datetime(2019, 12, 25, 8, 0, 0)
datetime.datetime (2023, 12, 25, 9, 1, 5)

Note that this considers only the difference in time and disregards the dat
secs_to go = (d4-d3).seconds

print(secs_to_go)

d5 = datetime.datetime (2020, 1, 1)
diff = datetime.timedelta(days=100)

What is 100 days later after 1 January 20207?
dé6 = d5 + diff
print(d6)

4/18/2020 13. Storing Characters and Numbers

2020 JC1 H2 Computing 9569

13. Storing Characters and Numbers

Storing Characters 1

How are characters stored in computers?

Any group of Os and 1s can be used to represent a specific character. The number of bits used to store one
character is called a byte, which usually comprises eight bits. The complete set of characters that a particular
computer uses is known as its character set.

Consider a three-bit system to represent upper case letters in alphabetical order as shown in the table below.

Sequence of Bits Corresponding Letters
000 A
001 ‘B’
010 C
011 ‘D
100 E
101 ‘F’
110 ‘G
111 ‘H

It can be seen that using a three-bit system only allows for eight possible unique codes. That is to say, we
can only store the upper case letters ‘A’ to ‘H’, but not the rest of the alphabet, not to mention their lower case
counterparts, punctuation marks, decimal digits and so on.

Some systems do not need to be able to recognise a lot of characters, so a few bits for each character is
sufficient. One example is an Automated Teller Machine (ATM) that we use to perform financial transactions.

As a quick thinking exercise, how many bits are necessary to encode the required number of characters used
in an ATM? Assume that we only have the digits 0 to 9, as well as three operations: enter, delete and cancel?

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 114

4/18/2020 13. Storing Characters and Numbers

Let us look at the typical layout of a QWERTY keyboard, which gives a quick glance into a portion of the
character set of the computers that most of us use in our daily lives.

Tl S5 15 |5 [s |7 [s |6 [6 [T |5 [oetee
Tab |Q |[WIlE [R [T |Y |[u I |Oo]P f ; {
caps |A[SP[FleH]Y K]t Enter
Shift Z |X [C [V |B N M (> 7 Shift

Ctrl Alt Alt Ctrl

Imagine a situation where one computer uses 10000001 to represent the upper case letter ‘A’, while another
computer represents the same letter with 10000010. Any document files created on one of the computers is
not going to make sense to the other as the two will interpret the codes differently. As such, standardisation is
required in order for computers to be able to communicate with each other.

American Standard Code for Information Interchange (ASCII)

In October 1960, the work on the American Standard Code for Information Interchange (ASCII) began
and it became the first character encoding system to be used across the globe. Each ASCII character is
represented by a sequence of bits or a byte.

The original ASCII system uses the decimal numbers 0 to 127 (i.e., the binary numbers 0000000 to 1111111)
to encode each character, so each character is represented by seven bits.

(An eighth bit was used as a check digit if the computer manufacturer wished to do so. Some computer
manufacturers simply set the eighth bit to 0 for all characters. Because of this, the convention that a byte
represented eight bits began. Check digits will be explained in the chapter on Debugging.)

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

2/14

4/18/2020

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

PEBENGLRELRESKRRGRBE OO EORTOF

% A

Null

Start of heading
Start of text

End of text

End of xmit
Enquiry
Acknowledgs
Bell

Backspace
Horizorkd tab
Line fead

Vertical tab
Form feed
Carriage feed
Shift out

Shiftin
Data line escape
Device control 1
Device control 2
Device control 3
Device control 4
Neq acknowledge
Synchronous ide
End of xmit block
Cancel

End of medium
Substitute
Escape

File separator
Group separator
Record separ ator
Unit separator

us

13. Storing Characters and Numbers

VONOOLWN=O™"

DOV BA S

AMEBEPBRYRRLUR LB HAEAEL 38386281 28F

ISP NLX X ECCHVDODOZEIr A= =~To0MmMOO®D>glo

AN IS BV AN IV NSRRGSR 882882 R BYF
OQlWw— AN X g«<CTwT0DO3I3 -~ "JTOo "0oao0o0Ccwo

3/14

4/18/2020

13. Storing Characters and Numbers

Another version of the table can be found at http://www.asciitable.com/ (http://www.asciitable.com/)

Characters 0 to 31 (0000000 to 0011111), as well as 127 (1111111) are known as control characters.
These were previously used to assist in data transmission or entering data at a computer terminal, as
well as controlling the output when a computer printed out its output directly on paper without displaying
it on a screen. They have very limited use in modern computing.

Characters 48 to 57 (0110000 to 0111001) represent the digits 0 to 9. The choice of this range provides
an easy way for a human to recognise a denary digit in ASCII - if it starts with 011, the person can
(mentally) convert the remaining 4 binary digits into a denary number.

Characters 65 to 90 (1000001 to 1011010) represent the uppercase letters A to Z, and characters 97 to
122 (1100001 to 1111010) represent the lowercase letters a to z. Again, this provides an easy way for a
human to recognise a letter of the alphabet. If it starts with 10 or 11, it is a uppercase or lowercase letter
respectively and the remaining 5 bits indicate the position of the letter in the alphabet (e.g. M is 13 which
is 1101 in binary, so uppercase M is 1001101 in ASCII.)

The remaining characters (32 to 47, 58 to 64, 91 to 96, and 123 to 126) represent various punctuation
symbols.

The ASCII encoding of a character can be found using the Python function ord . Likewise, a denary number
can be converted into its corresponding character using the Python function chr .

In[]:

print(ord('A'))
print(ord('a'))
print(ord('@'))
print(chr(65))
print(chr(97))
print(chr(64))

The ASCII encoding system is adequate for the English language and some others that use a similar
alphabet, such as Latin and Malay. In time, speakers of other languages would develop encoding systems for
their own languages.

IBM released an extension of ASCII called 'Code page 437' which would eventually become known as
Extended ASCII. These included additional punctuation symbols, mathematical symbols, and some
characters used in European languages (such as 4&,i, and 6).

The Extended ASCII table is shown below.

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

414

http://www.asciitable.com/

4/18/2020 13. Storing Characters and Numbers

Dec Hex Char Dec Hex Char Dec Hex Char ec ex ar
128 &0 @ 160 A) 192 C0 L 224 ED a
1220 81 0 161 Al i 193 1 1 225 E1 B
130 &2 é 162 A2 6 194 c2 - 226 E2 r
131 83 H 163 A3 G 195 C3 k 227 E3 "
132 84 a 164 A4 i 1% C4 - 228 E4 I
133 85 4 185 A5 N 197 C5 ~ 229 ES ¢
134 &5 3 186 A5 : 198 (5 E 230 33 1
135 &7 ¢ 167 A7 ° 19 C7 b 231 E7 '
13 &3 é 168 A3 . 200 C8 t 232 E8 o
137 89) 189 A9 - 201 c9 ¢ 233 E9 o]
1383 B8A @ 170 AA - 202 CA L 234 EA 0
133 8B i 171 AB VA 203 CB = 235 EB 3
140 8C i 172 AC Y 204 cC L 236 EC -
141 8D i 173 AD i 205 CD = 237 ED 9
142 8E A 174 AE < 206 CE 3 238 EE £
143 6F A 175 AF > 207 CF + 239 EF n
144 E 176 B0 : 208 00 L 240 FO =
145 91 = 177 81 = 209 D1 + 241 F1 +
146 @ & 178 B2 i 210 02 x 242 F2 2
147 o3 6 178 83 | 211 03 L 243 F3 <
148 94) 180 B4 - 212 D4 0 244 Fa4 (
149 95) 181 85 9 213 D5 £ 245 F5 |
150 % d 182 86 < 214 06 - 246 F6 -
151 97 0 183 87 - 215 07 - 247 F7 “
152 = i 184 B8 3 216 08 * 248 F3 =
153 9 0 185 B9 3 217 09 d 243 F9

154 9A 1] 185 BA | 218 DA r 250 FA

155 9B ¢ 187 88 3 219 0B il 251 FB J
156 9C £ 188 BC 3 220 DC s 252 FC "
157 9D ¥ 189 8D 4 221 oD] 253 FD :
158 SE 23 190 BE J 22 DE | 254 FE "
158 9F { 191 BF 1 223 OF - [285 FF

Since the numbers now run from 0 to 255, eight bits (one byte) are now required to encode all the characters
in the Extended ASCII table without using any check digits. The original ASCII characters would have a 0
added to the front. Since four binary digits (bits) correspond to one hexadecimal digit, this extended ASCII
system uses two hexadecimal digits to represent each character in the system.

Some countries, such as India and Vietham, would eventually create their own extensions of ASCII (known
as ISCII and VISCII) respectively. These are extensions in the sense that 0 to 127 would still correspond to
the original ASCII characters, and the additional characters used for other languages would be encoded with
numbers greater than 127. This allows for compatibility with ASCII users, since a text encoded with ASCII
would still be able to be read normally in the other encoding systems without any modification.

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

5/14

4/18/2020

13. Storing Characters and Numbers
Establishing a Global Standard

Unfortunately, there are some languages that are used in multiple countries or regions, each of which
developed their own encoding systems that may have been compatible with ASCII but not with each other.

For instance, Chinese was encoded primarily using the GB (Guobiao) system in China and Singapore, and

the Big5 system in Taiwan, Hong Kong and Macau. This meant that transmissions from one country to
another could turn out garbled.

The following parcel, for instance, was sent from a French person to her Russian friend

. o
9 8 s 4
¢ = -
) ﬁ@(}?(_@k 0 & :
3?:? 110ExA, 11945 i«
+ AOTAROEICL A, B iR
1311 -1 =7 AR EC S B

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

6/14

4/18/2020 13. Storing Characters and Numbers

The Russian friend emailed the French person her address in Russia, but as their two computers used
different encoding systems, the address, which was meant to be written in the Russian alphabet, was
decoded using a different system. Fortunately, the Russian post office realised the problem and managed to
find the corresponding Russian characters, and delivered the parcel correctly.

In an effort to avoid such problems, the computing industry tried to establish a global standard. There were
two ways it could have gone about this:

What does not work: assigning each character more bytes

One simple way to establish a global standard would be to determine at the outset how many characters
would be encoded into the standard, and work out how many bytes would be needed for each character. For
instance, assuming 224 = 16,777,216 characters are needed to encode the whole world's languages, then we
would only need 24 bits, or 3 bytes, to represent every possible character. This sounds like a reasonable
assumption, but it does have disadvantages, namely:

« This system is not backwards compatible with ASCII. This means that all previous files and programs
which were stored using ASCII would need to be converted into the new system, or a program for
converting ASCII files into the new system would need to be written.

» Each character in this system would be 3 bytes, but the vast majority of files and programs in existence
are already written using ASCII, with only 1 byte per character. All these files and programs would need
to triple in size to accommodate the new system.

« The system is not extendible. As technology spreads around the world, there is a need for an increasing
number of languages, with their written forms, to be computerised. In the (admittedly unlikely) event that
the predetermined number of bytes per character is not enough, the computing industry would once
again need to determine a new standard, and it would still not be backwards compatible with either
ASCII or the older standard.

While some of the national standards, especially for countries such as China, Japan and Korea, used this
system to extend ASCII to encode their languages, ultimately, it was decided that this would not be an
appropriate way to encode a global standard which would need many more characters.

Therefore, a system called Unicode was drawn up which would overcome the drawbacks mentioned above.

Unicode

The first volume of this standard was published in October 1991. The ultimate aim of Unicode is to be able to
present any possible text in any written language, in code form. This has been extended to include a number
of other symbols used in technical situations, as well as emoji. Unicode is designed so that once a code has
been determined, it never changes.

Unicode has its own special terminology. A character code is referred to as a code point. Currently, there
are three standards, known as UTF-8, UTF-16 and UTF-32 (UTF stands for ‘Unicode Transformation
Format’). The main difference between Unicode and the system described above is that Unicode encodes
each character with a different number of bytes. The system will be described in the next section (not in
syllabus).

Python 3.6 is compatible with UTF-8. UTF-8 encodes all characters using one to four eight-bit bytes. The
one-byte characters are the original ASCII characters. This ensures that old files and programs written in
ASCII can still be read in Unicode without any conversion required, and, more importantly, their file
size is still the same.

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 7/14

4/18/2020 13. Storing Characters and Numbers

The compatibility of UTF-8 with the original (non-Extended) ASCII encoding is demonstrated by the table

below. Note the Unicode terminology - the number representing the character is known as a code point, and
is written with 'U+' followed by a 4 (or more)-digit hexadecimal number. This system makes it easy for people

to refer to specific characters within the Unicode system.

Character ASCII (denary) ASCII (7-bit binary) ASCII (hexadecimal) UTF-8 code point

$ 36 0100100 24 u+0024

Other characters, not in the original ASCII set, also have their own Unicode encodings.

Character UTF-8

¢ U+00A2
g U+0939
€ U+20AC

O U+10348

U+1F431

The Python functions ord and chr actually contain the Unicode characters and not just the Python ones

(although they may not print correctly if your computer does not have the appropriate fonts installed.)

In Python, the code points are represented using the control sequence "\u" followed by the hexadecimal

numbers.

In []:

print('\ue3ce’')
print(ord('\ue3ce"))
print(chr(960))

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

8/14

4/18/2020 13. Storing Characters and Numbers

Unicode in detail (not in syllabus)

The Unicode system can be seen in more detail in the following table (not in syllabus):

Number Number Number of First Last
of Byte Byte Byte Byte of bits for possible code code
1 2 3 . . .
bytes encoding characters point point
T OXXXXXXX 7 27=128 U+0000 U+007F
2 110xxxxx TOXXXXXX 11 2"=2,048 U+0080 U+07FF
3 1110xxxx TOXXXXXX TOXXXXXX 16 216=65536 U+0800 U+FFFF
4 1M110xxx 10xxxxxX 10xxxxxx TOXXXXXX 21 U+10000 U+10FFFF

(In practice, for reasons not related to the encoding system, not all 22! possible combinations are used for 4-
byte encodings. As a result, "only" 1,112,064 characters are allowed in UTF-8.)

Therefore, as a computer reads each byte, it knows how many bytes to expect for the current character. If the
byte it is reading starts with '0', then it is a one-byte character. If the byte it is reading starts with '1110', then it
is a three-byte character, so this byte and the next two comprise one single character.

There is also some degree of error checking involved. For instance, if one byte starts with '1110' and the
following two bytes do not both start with '10', then there is an error somewhere and the file has been
corrupted.

The following examples show how characters are encoded in UTF-8:

Character Code point yfu:;, I::sr Co?ovr;:rs‘ilor; Unicode
¢ U+00A2 2 0000 0000 1010 0010 11000010 10100010

B U+0939 3 0000 1001 0011 1001 11100000 10100100 10111001

€ U+20AC 3 0010 0000 1010 1100 11100010 10000010 10101100

o] U+10348 4 0001 0000 0011 0100 1000 11110000 10010000 10001101 10001000
U+1F431 4 0001 1111 0100 0011 0001 11110000 10011111 10010000 10110001

Storing Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 9/14

4/18/2020 13. Storing Characters and Numbers

Strictly, this section is not in syllabus. However, it is extremely useful to know why your computer
programs sometimes have inexplicable rounding-off errors, and what you can do to avoid them.

Integers

Integers are stored in binary notation. For instance, a computer program may dedicate one byte (eight bits) to
storing an integer. This means that the integer can be between 00000000 (0 in denary) and 11111111 (255 in
denary). The main advantage of the binary system, apart from the fact that it fits naturally with the electronic
components used to make computers, is that very few arithmetic operations need to be hard-coded into the
computer for it to be able to carry out mathematical operations.

For example, binary addition only has four rules:

«0+0=0
c1+0=1
c0+1=1

e 1+1=0andcarry 1.

Likewise, binary multiplication only has four rules as well:

e« 0x0=0
e« 1x0=0
e 0x1=0
e 1x1=1

Performing operations in binary works as long as the final answer is within the range of integers that can be
encoded with one byte (0 to 255).

This system can be modified in a number of ways:

« If we want to store larger numbers, we would need more than one byte to do so. Most computer systems
use either two or four bytes to store integers, allowing them to go up to 26 - 1 = 65535 or 232 - 1 =
4294967295 respectively. Nevertheless, if this is not pre-empted as the result of a calculation the
computer is making, it can lead to an overflow error.

« We don't have a good way of storing negative numbers. This can be addressed by either of the following
methods.

Use one bit for the sign

The first bit, which we also call the most significant bit (MSB) can represent the sign, for instance, 0 for
positive numbers and 1 for negative numbers. The remaming seven bits are used to indicate the magnitude
(absolute value) of the number. Therefore, using one byte, we can represent numbers between -127 and
+127. However, we have to modify the arithmetic operations described above to allow for adding negative
numbers. Furthermore, this system also has a positive and negative zero (10000000 and 00000000), which
are two different encodings for the same number.

Two's complement

In the original binary system, each bit represents one of the powers of two, from 27 being the most significant
bit to 20 being the least significant bit. As we read from left to right, we add up that power of 2 if the
corresponding bit is 1, and ignore it otherwise.

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 10/14

4/18/2020 13. Storing Characters and Numbers

In the Two's complement system, the most significant bit represents a negative number, -27. The remaining
bits represent positive powers of 2 as usual. Therefore, if the most significant bit is 0, the remaining seven
bits are the usual binary representation of a number from 0 to 127. If the most significant bit is 1, however, we
decode the remaining seven bits as a number between 0 and 127, and subtract 128 from it.

For example, 01110101 (28 + 25 + 24 + 22 + 20) represents the number 117 . On the other hand, 10001011
(-27 + 23 + 27 + 20) represents the number -117. The advantage of this method is that the addition rules
mentioned above continue to work as long as the result is in the range of numbers that can be encoded (-128
to 127).

Another way to obtain the encoding of a negative number is to write down the magnitude of the number in
binary (8 bits), then change all the digits - changing 1 to 0, and vice versa (hence the 'complement’ in the
name), and then adding 1 to the final answer. For instance, +117 is encoded as 01110101 (we only take the
last 7 bits). Taking the complement of the digits gives 1001010, and adding 1 gives 1001011.

« Finally, we do not have a good way to represent fractions or decimals in this form. The usual way to do

this now is to use the floating point notation, described below.

Real numbers
In denary, the digits after the decimal point indicate negative powers of 10. For instance,
23.456=2x10"+3x100+4 x 107 +5x 102+ 6 x 103,

We can write it in the form ax10° where -1 < a < 1. (This is similar to scientific notation, but the range of
allowed values of a is from 0 to 1, instead of 1 to 10.) In this case,

23.456 = 0.23456 x 102.
In such a notation, a = 0.23456 is called the mantissa and b = 2 is called the exponent.

Likewise, a number like 0.0000134 would be written as 0.134 x 10*. In this case, 0.134 is the mantissa and
-4 is the exponent.

Likewise, in the binary system, the digits after the bicimal point (also called the radix point) indicate
negative powers of 2. For instance,

10.1011 = 2" + 271 + 23 + 24 (which is 2.6875 in denary).
However, we can write it as

10.1011 = 0.101011 x 22,

so that 0.101011 is the mantissa and 2 is the exponent.
Similarly,

0.0001101 = 0.1101 x 273,

so that 0.1101 is the mantissa and -3 is the exponent.

We can thus store any real number as a mantissa and an exponent. This is known as a floating point
representation because the bicimal or decimal point floats into position, depending on the value of the
exponent.

Suppose we want to store a number using two bytes. We can use the first byte to store the mantissa and the
second byte to store the exponent.

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 1114

4/18/2020 13. Storing Characters and Numbers

For example, the denary number 112 would be encoded in the following way:

11240 = 1110000, = 0.1110000 x 21 (remember the exponent is also in binary).

Hence it would be encoded as 01110000 00000111.

The binary number 10.11011 = 0.1011011 x 2'% would be encoded as 01011011 00000010.

The binary number 0.00000101011 = 0.1010110 x 21" would be encoded as 01010110 11111011 (the
negative exponent is encoded using Two's complement)

The negative binary number -1011 is encoded using the following steps.

1.-1011 =-0.1011 x 2100,

2. The magnitude of the mantissa is 0.1011. We use the Two's complement method (changing 1s and Os,
and then adding 1 at the rightmost bicimal place) to get 1.0101.

3. Therefore, the mantissa would be encoded as 10101000.

4. The exponent is 00000100.

The negative binary number -0.01001 (which is 11/32 in denary) is encoded using the following steps.

1.-0.01001 = -0.1011 x 2.

2. The magnitude of the mantissa is 0.1001. We use the Two's complement method (changing 1s and Os,
and then adding 1 at the rightmost bicimal place) to get 1.0111.

3. Therefore, the mantissa would be encoded as 10111000.

4. The exponent is a negative number, and hence would also be encoded using Two's complement to get

In []:

print(0.1 + 0.2)

0.1 in binary is 0.0001100110011... 0.2 in binary is 0.0011001100110... These are stored as floating point
numbers in the computer, but since they are infinitely recurring bicimal numbers, the mantissa has to be
truncated at a certain number of significant figures before the mathematical operation can be carried out.
This results in a loss of precision in the final answer.

For simplicity, assume that the calculation is carried out to 7 significant figures.

The computer thus adds 0.001100110 to 0.0001100110 to get 0.01001101. Translating this back into denary
notation, this is

22425426428 = 0.25 + 0.03125 + 0.015625 + 0.00390625 = 0.30078125

As a result, if floating point numbers are stored up to 7 significant (binary) figures, we do not expect accuracy
beyond about 3 significant figures in decimal.

This affects many functions which operate on floating point numbers.

In []:

print(round(.1, 1) + round(.1, 1) + round(.1, 1) == round(.3, 1))

In []:

print(round(.1 + .1 + .1, 10) == round(.3, 10))

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false 12/14

4/18/2020 13. Storing Characters and Numbers

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

The above explanation is a simplified explanation. Python floating point numbers are accurate to 16
significant figures in base 10.

Problems with floating point numbers

Many uses of floating-point numbers are in extended mathematical procedures involving repeated
calculations. Examples of such use would be in weather forecasting using a mathematical model of the
atmosphere or in economic forecasting. In such programming, there is a slight approximation in recording the
result of each calculation. These rounding errors can become significant if calculations are repeated enough
times. The only way of preventing this becoming a serious problem is to increase the precision of the floating-
point representation by using more bits for the mantissa. Some programming languages offer options two
work in 'double precision' (or 'quadruple precision') where double (or quadruple) the usual number of bytes
are used to store the mantissa.

Another problem is the range of numbers that can be stored. While the range of numbers is much larger than
what can be stored as an integer, there is also a possibility that if a very small number is divided by a very
large one, the result in a value smaller than the smallest possible number that can be stored. This is an
underflow error. Some programming languages treat such a small number as zero; depending on the nature
of the calculation involved, it may lead to errors later on.

In []:
print(2**50)
print(2**50 + 0.1)
In[]:

print(10000+0.1-10000)
print(10000-10000+0.1)

#why do the two outputs differ?

In []:

for i in range(10):
print(1/(2**(1000+i*10)))

#notice the Loss in the number of significant figures as we get to very small numbers.

Most calculating devices which have to deal with real numbers use some kind of floating point system. This
includes your graphing calculator! Try some of the calculations on your GC and see what happens!

NORMAL FLOAT AUTO REAL RADIAN MP '
;] ;]
10%°-10%%+1

13/14

4/18/2020

13. Storing Characters and Numbers

Appendix

For your watching pleasure!

Unicode and Character Encoding

https://www.youtube.com/watch?v=wCQSIlub_g7M (https://www.youtube.com/watch?v=wCQSlub_g7M)
https://www.youtube.com/watch?v=MijmeoH9ILT4 (https://www.youtube.com/watch?v=MijmeoHILT4)
https://www.youtube.com/watch?v=qBex3IDaUbU (https://www.youtube.com/watch?v=qBex3IDaUbU)
https://www.youtube.com/watch?v=50PkGQoPeHk (https://www.youtube.com/watch?
v=50PkGQoPeHKk)

Floating Point Numbers

https://www.youtube.com/watch?v=PZRI11fStY0 (https://www.youtube.com/watch?v=PZRI11fStY0)

https://acjccomputingnotes1-acjccomputing.notebooks.azure.com/j/nbconvert/html/13. Storing Characters and Numbers.ipynb?download=false

14/14

https://www.youtube.com/watch?v=wCQSIub_g7M
https://www.youtube.com/watch?v=MijmeoH9LT4
https://www.youtube.com/watch?v=qBex3IDaUbU
https://www.youtube.com/watch?v=5OPkGQoPeHk
https://www.youtube.com/watch?v=PZRI1IfStY0

2020 JC1 H2 Computing 9569

14. Debugging

Programmers make all kinds of mistakes when writing computer programs. These can be
due to various reasons, including (but certainly not limited to):

e assumptions about the input

e misunderstanding about the algorithm
e incorrect calculations

e poorly designed data structures

e blunders

Testing your program is a way to find errors before it is released as a product. When done
well, the testing would be able to tell us where the errors are.

Errors

In general, there are three kinds of errors:

e syntax errors
e runtime errors
e logic errors

Syntax errors are errors in the use of the programming language. Some examples include:

e forgetting a colon (:) at the end of a header suchasa def or if statement
e misspelling a certain keywords (e.g. def, for, while)

Runtime errors are errors that arise when Python is asked to perform operations that
cannot be done. Some examples include:

e misspelling of a previously declared variable
e dividing an integer by zero
e asking for 1st[10] inalist st that only has 10 elements inside

Sometimes the error may go undetected for some time. Referring to the second example, for
instance, if the majority of the user input does not cause 1st[10] to be called, the error
may go undetected until another user keys in an input that calls for 1st[10] .

Logic errors are a broad class of errors that encompasses everything else not covered in
the previous two categories. While the syntax is correct and Python can execute the
program without throwing any error messages, the results are not as intended. Some
examples include:

e incorrectly written mathematical expression
e acondition that is left outinan if - else statement
e skipping a value in a list

Debugging

Errors are also known as bugs. Thus, the process of finding and correcting errors is called
debugging.

In general, debugging comprises three steps:

1. Test: run tests to determine whether the program works as intended
2. Probe: determine where the error occur
3. Fix: fix the error

To test the program, we generally make use of test cases, which are inputs where we know
what the expected outputs are supposed to be. We usually start with some simple ones to
make sure that the program works as expected. Once that is done, we should take a more
adversarial approach by trying out inputs that might cause errors, such as extreme values or
those that might be exceptional in some way or another.

Once a problem has been discovered, we need to probe the program to locate its source(s).
At first, we can try to read through the code, or explain it to someone what each line is
supposed to do. As an aside, did you know that many professional programmers keep a
small toy or doll on their desk and explain their code to it as part of the debugging process?

If that does not work, we can employ a technique called code tracing to visualise the flow of
execution of the processes by inserting print statements as probes.

We shall go through some examples together.

(a) aim: to find the sum of integers from 1 to 100
NameError: number and the sum have not been defined yet
while number = 100: # logic error: should be <=
also a syntax error because a single = cannot be used

the_sum = the_sum + number

print("The answer is", the_ sum)

number = 1
the_sum = 0

logic error: infinite loop since number is not incremented
while number <= 100:

the_sum = the_sum + number

print("The answer is", the sum)

Final corrected code
number = 1
the sum = 0

while number <= 100:
the_sum = the_sum + number
number += 1

print("The answer is", the sum)

(b) aim: to find the median of a list of values

def median(L):
L length = len(L)

L_sorted = sorted(L) # creates a new sorted list instead of doing L.sort
if L_length % 2 = 1: # odd number of elements syntax error: a single

return L _sorted[L length/2] # TypeError: index must be an integer a
else: # even number of elements

return (L _sorted[L length/2] + L_sorted[L_length/2 + 1])/2 # logic

Final corrected code
def median(L):
L length = len(L)

L _sorted = sorted(L)
if L length % 2 == 1: # use ==

return L _sorted[L length//2] # use integer division (//) instead to
else:

return (L sorted[L_length//2] + L_sorted[L length//2 - 1])/2 # chan

(c) aim: to print and then remove all elements from a list

lst = [1, 2, 3, 4, 5, 6, 7, 8, 9]

logic error: some values are skipped (2, 4, 6, 8)
for x in lst:

print(x)

lst.remove(x)

Final corrected code
while lst:
print(1lst[0])
lst.remove(lst[0]) # OR lst.pop(0)

Always remember to use a while loop instead of a for loop when we want to ¢

Another debugging technique is condition handling, which allows us to take specific
actions when exceptions, which are errors detected during the execution of a program,
occur. The so-called handlers are programmed within the code to catch exceptions.

This can be done using try - except (- finally) statement.

try:
num = int(input("Enter a number: "))
except:
print("Are you sure that is a number?")
finally: # optional
print("This is the end of the program.")
Our program can be made more specific in catching the different types of exceptions. The

following are some common errors you may have committed along the way:

¢ FileNotFoundError

e ZeroDivisionError

e TypeError

e ValueError, e.g. typecasting a letter to an integer

numl = 1
num2 = 0
try:

print (numl/num2)
except ZeroDivisionError as errl:

print("An error occurs:", errl)
except TypeError as err2:
print("An error occurs:", err2)
finally:
print("This is the end of the program.")

Test Cases

In order to ensure the correctness of our program, it is important for us to design meaningful

test cases to iron out any runtime and logic errors. In general, there are three types of test
cases:

e normal (valid)
e boundary (extreme)
e abnormal (erroneous)

To understand each type of test cases, let us consider the following function to abbreviate a
string of words separated by white spaces. For example, "Ministry of Education" should be
abbreviated to "MOE" with the first letter of each word capitalised.

Taking care only normal test cases
def abbreviate(s):
Extract each word into a list
1st = s.split()

Abbreviate and capitalise the first letter of each word
result = "'

for i in 1lst:
result += i[0].upper()

return result

(a) Normal test cases

First of all, we shall design test cases to make sure that the program to be tested works as
intended under normal conditions, i.e. situations where the inputs are what we would expect
to be provided with during normal use of the program. In general, under normal conditions,
at least one test case should be designed for each type of expected input.

In the program discussed, only one type of input is expected: a string. Two examples are
shown below.

Normal test case 1: The first letter of each word is in uppercase
It should return "CS".
abbreviate("Computer Science")

Normal test case 2: The first letter of each word can be in uppercase or 1lo
It should return "MOE".
abbreviate("Ministry of Education")

Normal test case 3: All letters are in lowercase
It should return "PS".

abbreviate("political science")

(b) Boundary (extreme) test cases

Next, we look into boundary conditions, i.e. situations where the inputs are at the limits of
what the program is designed for, or where special handling of data are required. The limits
of a program are usually in terms of quantity and range (for int and float), as well as
length (for iterables such as str and 1ist). On the other hand, special handling is
usually needed when the problem definition specifies that certain values are to be treated as
exceptions, e.g. using -1 to represent missing data in a survey.

In the program discussed, perhaps there is little use in defining the maximum length for the
inputs, so it may not be meaningful to design a test case that would be at the upper limit of
what the program can handle. However, we do want the program to work as intended even

with the minimum length of input possible, that is, an empty string. Also, what if we do not

want to abbreviate a string that has only one word?

Boundary test case 1: Empty string
It can be made to return "Nothing to abbreviate!"
abbreviate("")

Boundary test case 2: A string with only one word
It can be made to return "Nothing to abbreviate!"
abbreviate("Python")

Modified code
Can split according to a single white space and a dash
def split(s):

1st = []

temp = ""

for char in s:

if char == " " or char == "-": # char in [" ", "="]
if temp != "":
lst.append(temp)
temp = ""
else:

temp += char
if temp != "":
lst.append(temp)

return lst

def abbreviate(s):
if type(s) != str:
return "Only strings can be abbreviated!"
if len(s) <= 1:
return "Nothing to abbreviate!"

Extract each word into a list
1lst = split(s)

Abbreviate and capitalise the first letter of each word
result = "'

for i in 1lst:
if i.isnumeric():
result += i
else:
result += i[0].upper()

return result

We may also want to design test cases that differ slightly from their normal counterparts in

that they may be unexpected in the given context of the program, but are still valid inputs.

Suppose the programme discussed is intended only to abbreviate input strings that contain
only the 26 letters in the English alphabets and a white space between each word. As such,
abnormal test cases can be as follows.

Boundary test case 3: Extra white spaces
It should return "MOE".
abbreviate(" Ministry of Education ")

Boundary test case 4: Inclusion of digits
It should return "CS101".
abbreviate("Computer Science 101")

Boundary test case 5: Anglo-Chinese Junior College
It should return "ACJC".
abbreviate("Anglo-Chinese Junior College")

How to handle the test cases above?

(c) Abnormal (erroneous) test cases

Finally, it is important to design test cases to ensure that the program runs smoothly under
abonormal conditions, i.e. situations where the inputs would normally be rejected by the
program.

In the program discussed, it is clear that we should only deal with input strings. Based on
this criterion, we should return an appropriate error message when other data types are
supplied.

Erroneous test case 1: Integer
It can be made to return "Only strings can be abbreviated!"
abbreviate(123)

Erroneous test case 2: Boolean
It can be made to return "Only strings can be abbreviated!"
abbreviate(True)

Modified code
def abbreviate(s):
if type(s) != str:
return "Only strings can be abbreviated!"
elif len(s) <= 1:
return "Nothing to abbreviate!"

Extract each word into a list
1st = s.split()

Abbreviate and capitalise the first letter of each word
result = "'

for i in 1st:
result += i[0].upper()

return result

Test cases for errors are necessary because programs that fail to reject invalid inputs may
end up performing unintended or even harmful actions. For instance, a large number of
security flaws in programs today are caused by the improper handling of error conditions. A
typical example in some programming languages would be forgetting to check whether the

inputs supplied by a user can fit into the memory space allocated to store the data. A
program that tries to store the invalid data anyway will end up overwriting subsequent areas
of memory and allow potential attackers to insert their own instructions into the program.

2020 JC1 H2 Computing 9569

15. Data Validation and Verification

Data Validation

Data validation is a process to ensure that the data provided as inputs to programs conform
with the requirements to avoid technical error. More often than not, a programmer does not

have any control over the inputs supplied as they can come from many sources. Checks have

to be done to make sure that the input data are acceptable.

Common data validation techniques are:

range check

format check

length check
e presence check

(a) Range check

It is a check that limits an input to a particular range of values.

Here is an example of a code that takes in a test score as an integer between 0 and 100

inclusive, and prints out the grade.

score = None
grade = ''
while score == None:

score = int(input("Enter score: "))

Range check
if score < 0 or score > 100:

print("The score entered is out of range.

score = None

if (score >= 70):

grade = 'Distinction’
elif (score >= 60):

grade = 'Merit'
elif (score >= 50):

grade = 'Pass'
else:

grade = 'Fail'

"

print("Grade: + grade)

(b) Format check

It should be between 0 and

It is a check that ensures that an input matches a required data type with a given format.

For instance, a particular form may require the date to be entered in a DD/MM/YYYY format.

It needs to check that each part of the date has the correct number of digits. Checking that
the month is between 01 and 12, and that the date is between 01 and 28, 29, 30, or 31
(depending on the month and year), would fall under the range check described above.

Consider the earlier code of converting a test score to a grade. If someone enters characters
other than digits, the program will crash. As such, we need to handle such inputs.

score = None
grade v

while (score == None):
score = input("Enter score: ")

Format check
if not score.isdigit():

print("You have entered an invalid score. It must be an integer betwe

score = None
continue

score = int(score)

Range check

if (int(score) < 0 or int(score) > 100):
print("The score entered is out of range. It should be between 0 and

score = None

if (score >= 70):

grade = 'Distinction’
elif (score >= 60):

grade = 'Merit'
elif (score >= 50):

grade = 'Pass'
else:

grade = 'Fail'

print("Grade: + grade)

(c) Length check
It is a check that limits an input to a certain (range of) length.
Below is a simple code to check if a newly entered password is at least 8 characters long.

password = None

while password == None:
password = input("Create a password: ")

Length check

if len(password) < 8:
print("Your password needs to be at least 8 characters long.")
password = None

print("Password accepted.")

(d) Presence check
It is a check that ensures that a required input is supplied.

Going back to the simple new password checker mentioned above, we shall display an error
message if no password is supplied.

password = None

while password == None:
password = input("Create a password: ")

Presence check

if (password == ''):
print("You have not entered anything.")
password = None

Length check

elif len(password) < 8:
print("Your password needs to be at least 8 characters long.")
password = None

print ("Password accepted.")

In summary, data validation ensures that the data are of the correct type and format.
However, it does not ensure that the data are accurate.

Data Verification

Data verification is a way to confirm that the data entered was what was intended to be

entered.
Common data verification techniques are:

e check digit
e double entry
e proofreading data

(a) Check digit

It is a piece of information used to detect typos in data, especially for sensitive ones such as
registration numbers, car numbers, etc.

For example, every published book has an ISBN-13 number (International Standard Book
Number), which is a 13-digit number usually printed above or below the barcode. This allows
publishers, retailers and libraries to be able to know exactly which edition of a book they are
referring to without ambiguity.

Suppose the 13 digits are labelled x; to 3. The weighted sum
s = (ZIIl+3ZB2+$3—|—3$4+{E5+3$6+$7+3$8+£L’9+3{E10+$11+3$12+$13)
is calculated.

A valid ISBN-13 number must satisfy
s % 10 ==

For instance, the ISBN-13 number of Cambridge International AS and A Level Computing
Coursebook is 978-0-521-18662-9.

s=9+3x7+8+3x0+5+3x2+14+3x1+84+3x6+6+3x2+9)=100

and indeed

100 % 10 ==

is true.

If there were an error in any one digit, the sum would not be divisible by 10. This provides a
small measure of checking against transmission errors as it would need at least two errors to
make the (wrong) sum divisible by 10.

This procedure is known as modulo-10 weighted check digit calculation.

Before 2007, the ISBN number was only 10 digits long (there was no 978 or 979 in front) and
the check digit used a modulo-11 weighted check digit calculation. More details are given
in the tutorial.

More details on the ISBN system (not in syllabus)

Referring to the same example of 978-0-521-18662-9, the 13 digits are broken down in the
following way:

e The first three digits are always 978 or 979 for books. Other sets of three digits are used
for other consumer products.

e The next digit, 0, is called the group. It refers roughly to the language area where the
book is published. 0 and 1 are used for English-speaking countries.

e The next three digits, 521, identifies the publisher, Cambridge University Press.

e The next five digits, 18662, refers to the specific book and edition.

e The last digit, 9, is the check digit, which is chosen to make the formula above true.

(b) Double entry

It is a process that asks a user to enter the required data twice. This is commonly used, for
instance, with passwords or e-mail addresses, where a user might easily type one character
wrongly. It is even more pertinent with passwords because the characters are usually not
displayed on the screen while the user is typing.

(c) Proofreading data

This can take place in several ways. For instance, the user may be asked to do a visual check
of what has been entered before confirming submission. This is used in some online forms,
where users are asked to check what they have entered one more time before the final
submission.

Another example of proofreading data is is one where the entered data is compared with
data that already exists in a database.

As an example, take a look at the image below that shows a page that is commonly seen
when we want to change an account password.

Enter your current password and new password

and click Confirm

current password eeeesee X

new password esssssse v

confirm new password eeeeeces v
(Cancel) Confirm

Double entry is employed to change the password, where the user is required to enter the
new password twice. Proofreading data, on the other hand, ensures that a user enters his old
password as stored in the database correctly before the new password is accepted. Should
the old password be entered wrongly, an error message such as "old password is incorrect"
is displayed.

In today's era of illegitimate use of automation, we see increasingly more and more websites
employing the use of Completely Automated Public Turing test to tell Computers and
Humans Apart (CAPTCHA), a program implemented to thwart spam and automated
extraction of data from a particular system. CAPTCHASs can be considered as a data
verification process to ensure that the required fields are keyed in by human beings.

2020 JC1 H2 Computing 9569

16. Stack and Queue

Building on our existing knowledge of OOP, we shall consider two simple, but powerful
concepts that are familiar to us in our daily lives.

Stack and queue are two linear data structures whose items are ordered according to how
they are added or removed.

Stack

Consider a stack of five books in a container as shown below.

Computing
Mathematics
Biology

Chemistry
Physics

To come up with the stack, one has to put Physics first into the container, which forms the
base of the stack. Subsequently, he has to put Chemistry on top of Physics, followed by
Biology, Mathematics and finally Computing, which is now at the top of the stack and is
readily accessible. In order to retrieve Biology, for example, he has to take out Computing
and Mathematics first in that order.

From the simple illustration above, we can see that most recently added item to the stack is
the one that is in the position to be removed first. The stack data structure has this ordering
principle known as last-in-first-out (LIFO).

There are other examples of stacks in everyday situations. A stack of trays is a common
sight at any food stalls in a hawker centre. One takes the tray from the top of the stack to
carry the food items purchased, uncovering the next tray for another customer in line. Can
you think of more examples?

The table below shows the common methods of the stack data structure.

Creating the Stack Class

Refer to the sample program given below.

Method Return Use

is_empty() boolean checks whether the stack is empty

size() integer counts the number of items in the stack
push(item) none adds an item to the top of the stack
pop() item removes and returns the item at the top of the stack

peek() item shows the item at the top of the stack

We shall now try to create a Stack class with the following methods:

is_empty()
size()
push(item)
pop()
peek()

When initialised, the Stack object should be empty.

Type your code here
class Stack:

def __init_ (self): self.stack = []

def is_empty(self): return not self.stack

def size(self): return len(self.stack)

def push(self, item): self.stack.append(item)

def pop(self): return self.stack.pop() if self.stack else
None

def peek(self): return self.stack[-1] if self.stack else
None

Run the following codes to see if your implementation works.
s = Stack()

This should display True
print(s.is_empty())

True

There is no item to peek
print(s.peek())

Stack is empty!

s.push(2)
s.push(5)

#This should display 5
print(s.peek())

5

s.push('b")
This should display 3
print(s.size())

3

This should display 'b'
print(s.pop())

b

This should display 5
print(s.pop())

5

This should return False
print(s.is_empty())

False

Use of Stack

A stack can be used in backtracking problems. Imagine a program that has
to find its way through a maze. Chances are the program will come to an
intersection, choose one direction and continue down that path. If it hits a
dead end, how does it know what to do next? Each decision point can be
pushed to a stack. If the outcome is not the expected one, the last decision
point can be popped off and another path can be traversed. You will do this
as one of the missions in Coursemology.

A more complex task is recursive descent parsing in Natural Language
Processing. To put it simply, the program traverses a tree data structure,
following a given grammatical path. During the traversal, the path is saved in

a stack that records each movement that is made.

Queue

One of the simplest example of a queue is the typical line that we all
participate in from time to time, such as at a cinema counter to get a movie
ticket or at a check-out lane in a supermarket. Someone at the head of the
queue is going to be served and removed from the queue first, while a new
person who wants to join the queue has to go to the tail of the queue.
Contrary to the stack data structure, this ordering principle is known as first-
in-first-out (FIFO).

In another scenario, imagine a printing queue within a computer laboratory
with 30 computers connected to a single printer via a local network. When
students want to print something out, their print tasks “get in line” with the
rest. The first student to send his printing job shall receive the printout first,
while the last person to do so has to wait for all the other printing tasks to be
completed. The actual implementation, however, uses spooling, which is
more complicated than a proper queue.

The table below shows the common methods of the queue data structure.

Code Stack Content Return

s =Stack() [] []

s.is_empty() [] True
s.peek() []
s.push(2) [2,]

s.push(b) [2, 5]
s.peek() [2, 5] 5

s.push('b") [2,5,'b"]

s.size() [2,5,'0'] 3
s.pop() [2, 5] 'b’
s.pop() (2] 5
s.is_empty() [2,] False

Creating the Queue Class

Refer to the sample program given below.

Method Return Use
is_empty() boolean checks whether the queue is empty
size() integer counts the number of items in the queue
enqueue(item) none adds an item to the tail of the queue
dequeue() item removes and returns the item at the head of the queue
show_head() item shows the item at the head of the queue
show_tail() item shows the item at the tail of the queue

We shall now try to create a Queue class with the following methods:

- is_empty()

- size()

- enqueue(item)
- dequeuel()

- show_head()

- show_tail()

When initialised, the Queue object should be empty.

Type your code here
class Queue:

def __init_ (self): self.queue = []

def is_empty(self): return not self.queue

def size(self): return len(self.queue)

def enqueue(self, item): self.queue.append(item)

def dequeue(self): return self.queue.pop(0@) if self.queue
else None

def show_head(self): return self.queuel[@] if self.queue
else None

def show_tail(self): return self.queue[-1] if self.queue
else None

Run the following codes to see if your implementation works.
q = Queue()

This should return True

print(q.is_empty())

True

There is no item at the head
print(q.show_head())

Stack is empty!

g.enqueue(3)
g.enqueue(8)

This should display 3
print(q.show_head())

3

This should display 8
print(q.show_tail())

8

This should display 2
print(q.size())

2

g.enqueue('k")

This should display 'k'
print(q.show_tail())

k

This should display 3
print(q.dequeue())

3

Use of Queue
A queue is used in breadth-first search, a type of search algorithm used in a

tree data structure.

There are other variations, such as circular queue and double-ended queue.
For one, the former is used in memory management and process scheduling.

As a heads up, you will use the queue data structure to perform radix sort, a
non-comparative sorting algorithm, as one of the missions in Coursemology.

Function Queue Content Return

d = Queue() [] []

g.is_empty() [] True

g.show_head()
g.enqueue(3)
g.enqueue(8)
g.show_head()
g.show_tail()
q.size()
g.enqueue('k')
g.show_tail()

g.dequeue()

[]

(3]

(3, 8]

(3, 8]

(3, 8]

(3, 8]
(3,8, k1]
(3,8, k1]

(8, 'k']

2020 JC1 H2 Computing 9569

17. Arrays, Static Memory and Pointers

Python is a high-level language, meaning that many lower-level processes are automated
into single functions or methods. This also means that some of the data types used by
Python have features that are more advanced than those of other languages. While these
features make Python easier to learn and use, they also mean that Python runs more slowly
than other languages. (You are not going to notice this with the data encountered in school
because it is a difference of fractions of a second. However, if you are dealing with actual big
data containing thousands, or even millions, of entries, this will be significant.) One such
data type used by Python is the list.

Arrays

In some other languages, a data type known as the array is used. This is a list of items,
usually (though not always) of the same data type. The main difference between an array
and Python's list is that when an array is first declared, it has a fixed length. This means
that while the programmer can make changes to individual items in the array, the
programmer cannot delete or append items to change the length of the array.

While Python does not have the array data type, we can simulate it using OOP. The code
below does the following:

1. Create an array, of a given length, of strings.
2. Changing the entry at a certain index.
3. Returning the entry at a certain index.

class Array:

def init (self, n):
The array is initialised as a list, of length n, of empty strings.
self.Array = []
for i in range(n):
self.Array.append("")

def add_entry(self, i, newstring):
Change the entry at index i to newstring
self.Array[i] = newstring

def get_entry(self, i):
Returns the entry at index 1
return self.Array[i]

If we want to make a delete method, the best we can do is
make a method to replace the string there with an empty string.

def delete entry(self, i):
Deletes the entry at index 1
self.add_entry(i, "")

MyArray = Array(10)
MyString = "singapore"

for i in range(len(MyString)):
MyArray.add entry(i, MyString[:i])

for i in range(4,7):
print (MyArray.get_entry(i))

MyArray.delete_entry(5)

for i in range(4,7):
print (MyArray.get_entry(i))
sing
singa
singap
sing

singap

While Python (and Java) starts the index numbering from O, there is no actual fixed
convention about whether the first number should be 0 or 1. In your A-level examination,
both conventions may be used. The code below shows the same array as above, but now
with indices 1to n (inclusive).

class Array:
def init (self, n):
self.Array = []
for i in range(n):
self.Array.append("")

def add _entry(self, i, newstring):
self.Array[i-1] = newstring

def get entry(self, i):
return self.Array[i-1]

In the event that the data is best represented in a table, each entry in an array can be an

array (or list) itself, representing the entries in each row of the table. The main array then
becomes a list of the rows. This is known as a two-dimensional array.

class TDArray:
def init (self, row, col):
self.TDArray = []
for _ in range(row):
temp = [""] * col
self.TDArray.append(temp)

def add_entry(self, row, col, new string):
self.TDArray[row][col] = new_string

def get entry(self, row, col):
return self.TDArray[row][col]

def delete entry(self, row, col):
self.add_entry(row, col, "")

Static Memory

In a computer's memory, a list of entries may be stored as a single continuous block of
memory cells with consecutive addresses. We need to determine how much space to
allocate to each entry, as well as the number of entries, to determine how much memory to
allocate to the entire list. This way of organising the memory is called a contiguous list.

Contiguous block of memory cells
|

/L

I

7 |

| [| |
| | |

First name Second name Last name
stored here stored here stored here

The array we have described previously provides us a way to simulate data in the computer's
memory, with the entries of the array corresponding to cells in the memory block. We can
only access or change cells using their index. However, this is not always the most
convenient way to do things. For example, if we wished to print out all the non-empty entries
in the block, we would have to iterate through the entire block, possibly skipping over the
empty entries.

One solution is to always move entries so that the space occupied by the data within the
block remains contiguous. If the list is a static list (i.e. it is not going to change), this storage
structure is a convenient one. However, in the case of a dynamic list that changes frequently,
after we delete an entry, we need to move all the following entries up by one index. If we add
an entry in the middle, we need to first move all the following entries down by one index.

To avoid this, we can restrict ourselves further - we only allow ourselves to add entries at
one end of the array, and we only allow ourselves to delete entries at the other end of the
array.

e |f we can add and delete entries at the same end, our array becomes a stack.
e If we add entries at one end and delete them at the other end, our array becomes a
queue.

One additional concept is required. Our data may be contiguous, but we would like to avoid
having to iterate through the entire array to find where it starts and where it ends. Therefore,
we introduce a variable called a pointer to tell us the location of one of the ends of the data.
As we add and delete entries, we would have to update the value of the pointer so that it
always points to the first or last entry.

Stack (Revisited)

A memory block large enough to accommodate the expected maximum size of the stack is
reserved. (How large this is depends on what the stack will be used for. This is not always
easy to determine.) One end of the memory block is designated as the base, and the entries,
or nodes, get pushed onto the stack next to each other. The stack thus grows towards the
other end of the reserved memory block.

Stack’s

Reserved block of memory cells
|

b
ase \I |
S]]\

l |

1
Space for growth

Stack pointer

Since the bottom of the stack is always at the beginning of the memory block, we do not

need to have a pointer there as we know where it is. However, as entries get pushed and

popped, the top of the stack moves back and forth within the memory block. To keep track

of this location, we use a pointer called the stack pointer.

The stack
To push:

1. Move
2. Place

To pop:

is thus initialised as an array of empty cells.

the stack pointer to point to the empty cell next to the top of the stack.
the new entry at this location.

1. Read (and delete) the data at the pointer.

2. Move

the stack pointer to the next entry of the stack.

class Stack(Array):

def

def

def

__init_ (self, n):
We define a Stack as a subclass of Array.
In this example, the convention for the indices is that
they go from 0 to n-1 (inclusive).
self.Array = []
for i in range(n):
self.Array.append("")
self.StackPointer = 0
In an empty Stack, the StackPointer points to a non-existent entry.
Note that in the code, we do not use -1 to refer to the
last entry of the array.
size(self):
This returns the number of elements currently in the Stack.
return self.StackPointer

push(self, newstring):

The stack is full when there are n entries in 1it.
The StackPointer then points to the hypothetical cell at index = n

if self.StackPointer == len(self.Array)-1:
print("Error: Stack is full!")

else:
self.StackPointer += 1
self.add_entry(self.StackPointer, newstring)

def pop(self):

The stack is empty when there are no entries in it.
The StackPointer then points to hypothetical cell at index = -1.

if self.StackPointer == -1:
print ("Error: Stack is empty!")
else:
data = self.Array[self.StackPointer]
self.Array[self.StackPointer] = ""
self.StackPointer -= 1
return data

def peek(self):
if self.StackPointer == -1:
print ("Error: Stack is empty!")
else:
return self.Array[self.StackPointer]

Queue (Revisited)

A queue is similar in implementation to a stack. Again, a block of memory sufficiently large to
accommodate the expected maximum size of the queue is reserved. For a queue, we need
pointers at both ends, which requires two additional memory cells, one for the head pointer
and one for the tail pointer.

In an empty queue, both the head and tail pointer would point to the same location.
Otherwise, the head pointer points to first entry in the queue, and the tail pointer points to
the empty cell after the last entry of the queue.

Head _f Head I

pointer pointer
Tail N Tail
pointer pointer >
AAWA
a. Empty queue b. After inserting entries A, B, and C
MW M
B
Head) Head >
pointer | | C pointer C
D D
Tail Tail
pointer > pointer | | N E
AW
c. After removing A and d. After removing B and
inserting D inserting E
To enqueue:

1. Write the data in the empty cell at the tail pointer's location.
2. Move the tail pointer to the next cell.

To dequeue:

1. Read (and delete) the data at the head pointer.
2. Move the head pointer to the next entry in the queue.

You will implement a linear queue in your tutorial.

Circular Queue

One problem with the queue described above is that, as entries are enqueued and
dequeued, the queue itself will slide through the memory block. It might eventually reach the
end of the reserved block, but have many empty cells in front of the head end of the queue.
To keep this from happening, we implement what is called a circular queue.

When the tail of the queue reaches the end of the block, new entries are enqueued at the
beginning of the block, which should be empty at this time. When elements have been
dequeued until the head of the queue reaches the end of the block, the head pointer is also

redirected to be beginning of the block. In an abstract sense, the ends of the block are
linked together in a circle (though this does not actually happen physically).

First cell

in block \
T

First cell
in block

Head

pointer Head

pointer

Tail |:_I Tail
pointer pointer

Last cell
in block

w|(>om|O|©

b. Conceptual storage with last cell “adjacent” to first cell

Last cell

////
in block

a. Queue as actually stored

The code below shows one way to implement a circular queue.

class CircularQueue(Array):
def init (self, n):

We define a CircularQueue as a subclass of Array.
In this example, the convention for the indices is that
they go from 0 to n-1 (inclusive).

self.Array = []
for i in range(n):
self.Array.append("")

self.Head = 0

self.Tail 0

The head and tail pointers both start off pointing to
the smallest index in the array.

self.MaxSize = n-1
Since the tail pointer must always point to an empty cell,
we can only put a maximum of n-1 entries in the queue.

def size(self):

This returns the number of elements currently in the gqueue.
This is useful later.

if self.Tail >= self.Head:
return (self.Tail - self.Head)
else:
If the tail has gone around the circle but the head has not,
what is the size of the queue?
return (self.MaxSize + 1 - (self.Head-self.Tail))

def enqueue(self, newstring):
The CircularQueue is full when there are n-1 entries in it.

if self.size() == self.MaxSize:
print ("Error: Queue is full!")

else:
self.add _entry(self.Tail, newstring)
self.Tail = (self.Tail + 1) % (self.MaxSize + 1)

def dequeue(self):

The circular queue is empty when there are no entries in it.
The head and tail pointers are thus pointing to the same cell.

if self.size() == 0:
print ("Error: Queue is empty!")

else:
data = self.Array[self.Head]
self.Array[self.Head] = ""
self.Head = (self.Head + 1) % (self.MaxSize + 1)
return data

\

def readHead(self):
if self.size() == 0:
print ("Error: Queue is empty!")
else:
return self.Array[self.Head]

def readTail(self):
if self.size() == 0:
print ("Error: Queue is empty!")
else:
return self.Array[self.Tail-1]
Here, we are using Python's convention that when the index is -
it refers to the last entry in the array.

2020 JC1 H2 Computing 9569

18. Linked List and Dynamic Memory

The order of data entries in the array corresponds directly to the order in which the
entries are stored in the memory block of the computer. As we have seen, we would like
to keep the data in the array contiguous so that it is easy to iterate through the data to
locate the entry that we want. For an array where data gets inserted and deleted
frequently, this is troublesome as it would mean having to shuffle data around repeatedly.

In the previous chapter, we saw that one way to get around this problem is to prevent it
from arising, i.e., to add or delete data only at one end of the array. This led us to two
data structures, the stack and the queue. We also introduced the concept of the pointer.

Using pointers, we can also solve the problem of having a frequently-changing array in a
different way. This is to make use of a new data structure, a linked list.

A linked list is a linear data structure where the order of the data entries may not
correspond their physical placement in the memory block of the computer. In a linked list,
each entry may be stored in a different area of the memory block. However, we still need
to ensure that we can still go from one entry to the next in a list. To do this, each entry
should be represented as a node, which consists of two parts: the data, and a pointer
(typically called next) to indicate the location of the next entry in the list. (You may think
of a node as a list/tuple of length two.)

We also need to know where the list begins and ends. For the beginning of the list, we
have a pointer to indicate the location of the first entry, known as the start pointer or
head pointer. At the end of the list, the last entry has a null pointer (in the case of
Python, the pointer shall point to None). This indicates that there are no further entries in
the list.

The diagram below shows how the list [5, 10, 20, 1] looks like as a linked list.

IS G-(ET-- ~

Head

Creating_ a Linked List

Before we can create the LinkedList class, we need to define the Node class, the
objects of which shall be the buildings blocks for our linked list.

class Node:
def init (self, data):
self.data = data
self.next None

class LinkedList:
def init (self):
self.head = None

With the above, we can now proceed to make a linked list 11ist to represent the list [1,
2, 3].

llist = LinkedList()

llist.head = Node(l)
second = Node(2)
third = Node(3)

Three nodes have been created, namely 11ist.head, second and third. At the
moment, they are not linked to one another as all their pointers point to None.

print(llist.head.next)
print(second.next)
print(third.next)

1list.head second third
I I

I
| 1 | None | | 2 None

+— +
+ — +
w

Let us link the first node with the second.

llist.head.next = second

print(llist.head.next)
print(llist.head.next.data)

The first node has been linked to the second.

1list.head second third
I I I

|
None | | 3 | None

| 1

How should we link the second node with the third?

print(second.next)
print(second.next.data)

We have now successfully created the linked list with three entries.

1llist.head second third
| | |

None

+ — +
=

+ — +

Printing Entries

The method PrintList contains a variable called temp that helps us to iterate through
the entries and prints them out sequentially.

class Node:
def init (self, data):
self.data = data
self.next = None

class LinkedList:
def init (self):
self.head = None

def PrintList(self):
temp = self.head
while temp != None:
print(temp.data)
temp = temp.next

Try running the code below to check whether your implementation of PrintList is
correct.

llist = LinkedList()

llist.head = Node(l)
second = Node(2)
third Node (3)

llist.head.next = second
second.next = third

llist.PrintList()

Adding a Node

Notice that there are three places where we can add nodes:

e at the beginning (Push method)
e somewhere in the middle (InsertAfter method)
e at the end (Append method)

You may wish to use the space below to draw a diagram to illustrate what the code is
actually doing.

class LinkedList:
Copy and paste the methods: __ init , printList

def Push(self, new data):
new_node = Node(new_data)
new_node.next = self.head
self.head = new node

def InsertAfter(self, prev_data, new data):
#check if prev node is in the linked list
temp = self.head
while temp != None:
if temp.data == prev _data:
new_node = Node(new_data)
new_node.next = temp.next
temp.next = new_node
break
else:
temp = temp.next
if temp == None:
iterated thru whole list, cannot find prev data
print("Error: Cannot find prev_data")

def Append(self, new data):
new_node = Node(new_data)

1f the linked list is empty, new node shall become the first enti
if not self.head:

self.head = new_node

return

at the end of the loop, last points to the last node before appel
last = self.head

while last.next:
last = last.next

last.next = new node

Work through the code below and try to guess the sequence of the entries in the linked
list before running it.

llist = LinkedList()

llist.Append(6)
llist.Push(7)
llist.Push(1)
llist.Append(4)
llist.InsertAfter(7, 8)
llist.InsertAfter(8, 9)

print('Result:')
llist.PrintList()

At this point you may be wondering if it is possible to InsertAfter a node with a given
index (in the linked list). You would need to modify the code of InsertAfter to do this.

You may also be wondering if it is possible to InsertAfter a node with a given data. To
do this, we would first need to search for the node with that particular data within the list.
This is addressed both of the sections below, "Deleting a Node" and "Searching for an
Entry".

Deleting.a Node

We may identify the node to be deleted by its index or by its data. The code below shows
how to identify a node by its data before deleting it.

What are some considerations we must bear in mind before deleting a node?

class Node:
def init (self, data):
self.data = data
self.next = None

class LinkedList:

Copy and paste the methods: init , PrintList, Push,

def DeleteNode(self, to_delete):
temp = self.head

1f the list if empty, there is nothing to be done

if not self.head:
return

1f the first node is the one to be deleted

if self.head.data == to_delete:
self.head = self.head.next
temp = None
return

when the node to be deleted is somewhere else

InsertAfter, :

delete the data in temp

need to know the node BEFORE the one to be deleted when the loop

while temp:
if temp.data == to_delete:
break

prev = temp
temp = temp.next

prev.next = temp.next
temp = None

delete the data in temp

Try running the code below to check whether your implementation of deleteNode is

correct.

llist = LinkedList()
llist.Push(7)
llist.Push(1)
llist.Push(3)
llist.Push(2)

llist.PrintList()

llist.DeleteNode(1)
llist.PrintList()

Searching_For an Entry

Searching for an entry - that is, searching for a node which has a given data stored inside

it - can either be done iteratively or recursively.

class Node:
def init (self, data):
self.data = data
self.next = None

class LinkedList:
Copy and paste the methods: _ init , printList, push, insertAfter, :

def Search iter(self, x): # iterative search
temp = self.head
while temp.data != x:
temp = temp.next
if temp == None:
return "Not Found!"
return "Found!"

def Search recur(self, x): # recursive search
def Search recur helper(cur, x):

if not cur:
return False

elif cur.data ==
return True

else:
return Search recur helper(cur.next, x)

return Search recur helper(self.head, x)

Either search method should return True when the integer 21 is supplied as an
argument.

llist = LinkedList()

1llist.Push(10)
llist.Push(30)
llist.Push(11)
llist.Push(21)
llist.Push(14)

print(llist.Search iter(21))
print(llist.Search recur(21))

Setting Up a Linked List Inside an Array

Similar to what we have done for stacks and queues, we would like to simulate a
computer's memory block using an array and use that to store a linked list. To do that, we
need to first create something called a free list. This is a linked list containing all the
unused memory cells. At the beginning, since all the cells are unused, the free list would
be the same as the array.

class Array:

The array has indices 0 to n-1 (inclusive).
Each entry in the array is a node, which will be a list of two elemel

def init (self, n):
self.Array = []
for i in range(n-1):
node = ["", i+1]

node[0] the data, which we initialise using an empty string.
node[1] is the pointer.

self.Array.append(node)

self.Array.append(["",None])

self.FreeListPointer = 0 # Head pointer of free list.

Our array now looks like this (where we use n=5):

FreeListPointer = 0

Array:

| Data | Pointer |

el | ™ | 1 |
(a2
(21 | "™ | 3 |
(31 | "™ | 4 |
[41 | "™ | None |

If we were to visualise this linked list using the diagrams we had above, it would look like
this:

FreeListPointer

|

|
I mnii | O _____ >| 1ni I 0 _____ >| mnii | O _____ >| 1mni I 0 _____ >
mni | None I
(Cell [@]) (Cell [11) (Cell [2]) (Cell [31])
(Cell [4])

Suppose we decide to create a linked list using this array. We would begin by initialising it
as an empty linked list (i.e. the head pointer points to None).

To add a node to the linked list:

1. Determine where the node is to be added (see "Adding a Node" abvove).
2. The data for the new node goes into the first node of the free list.
3. Update the pointers (not necessarily in the order indicated):

A. Free list pointer points to the second node of the free list.

B. The new node points to the node after the insertion point.

C. The node before the insertion point points to the new node.

To delete a node from the linked list:

1. The data of the node is deleted and the node is added to the beginning of the free
list.
2. The pointers in the linked list are updated.

Example
Step 1
We create a list called MyList.

MyListPointer = None

Initially it is empty.

FreeListPointer = 0
Array:
| Data | Pointer |
[0] | 1ni I 1 I
[1] | 1ni I 2 I
[2] | 1ni I 3 I
[3] | 1mni I 4 I
[41 | "" | None |
MyListPointer
I
I
None
FreeListPointer
I
I
I mnii | O _____ >| 1ni I 0 _____ >| mnii | O _____ >| 1mni I 0 _____
mni | None I
(Cell [@]) (Cell [11) (Cell [2]) (Cell [31)

(Cell [4])

Step 2

We add "Tom" into MyList.

MyListPointer = 0@
FreeListPointer =1
Array:
| Data | Pointer |
[@] | "Tom"™ | None |
[1] | mni | 2 |
[2] | ni | 3 |
[3] | 1n | 4 |
(41 | " | None |
MyListPointer
|
|
| "Tom" | None |
FreeListPointer
I
|
| ni | 0————— >| nu | 0———— | ni | 0————— >| nu | None |
(Cell [1]) (Cell [2]) (Cell [3]) (Cell [4])

Step 3

We add "Sue" into MyList before "Tom".

MyListPointer =1
FreeListPointer = 2
Array:
| Data | Pointer |

[@] | "Tom"™ | None |
[1] | "Sue" | 0 |
[2] | ni | 3 |
[3] | mni | 4 |
[4] | nn | None |
MyListPointer
+ + + o+ + +
| "Sue" | o————— >| "Tom" | None |
+ + + o+ + +
FreeListPointer

I

|
| mni | o _____ >| mni | 0 _____ | mni | None |
(Cell [2]) (Cell [3]) (Cell [4])

Step 4
We add "Ted" into MyList after "Sue".

MyListPointer = 1
FreeListPointer = 3
Array:
| Data | Pointer |
[0] | "Tom" | None |
[1] | "Sue" | 2 |
[2] | "Ted" | 0 |
[3] | mni | 4 |
[4] | nn | None |
MyListPointer
|
|
| "Sue" | o————— >| "Ted" | o——— >| "Tom" | None |
FreeListPointer
I
|
| mni | o _____ >| mni | None |
(Cell [3]) (Cell [4])

Step 5
We delete "Sue" from MyList.

MyListPointer = 2
FreeListPointer =1
Array:

| Data | Pointer |
[@] | "Tom"™ | None |
[1] | ni | 3 |
[2] | "Ted" | 0 |
[3] | mni | 4 |
[4] | nn | None |
MyListPointer

|

|
+ + + o+ + +
| "Ted" | o———— >| "Tom" | None |
+ + + o+ + +
FreeListPointer

I
|

| mni | o _____ >| mni | 0 _____ >| mni | None |
(Cell [11]) (Cell [3]) (Cell [4])

Notice that neither MyList nor the free list forms a contiguous block of cells in the array.
Also notice that the order of data entries in MyList is different in the array, and in the

linked list itself.

Instead of moving data around within the array, we leave it in the fixed location and only

update pointer values.

Note:

1. Some programmers use -1 (instead of None) to indicate the null pointer. In this case,
we need to avoid writing code in Python where -1 is used as the index of the last
element of a list to avoid confusion.

2. In the example shown, our array indices are from 0 to n-1. Cambridge may also use
array indices 1 to n. In this case, it is common to use 0 for the null pointer.

3. Notice that it is possible for two (or more) linked lists to share the same array. One
example is shown below.

BoyListPointer = 2
GirlListPointer = 3
1

FreeListPointer =
Array

| Data | Pointer |
[@] | "Tom"™ | None |
(11 | " | None |
[2] | "Ted" | 0 |
[3] | "Sue" | 4 |
[4] | "Ann" | None |
BoyListPointer

I

|
+ + + o+ -+ +
| "Ted" | o———— >| "Tom" | None |
: : : : : +
GirlListPointer

|

|
: : + : : +
| “Sue" | o0———— >| "Ann" | None |
: : + : : +
FreeListPointer

I
|

| " None

.4.._

1
-

This provides an analogy for how linked lists are stored within the computer's memory.
Multiple linked lists may not necessarily occupy contiguous blocks and their memory cells
may be intermingled with one another.

Doubly Linked List & Circular Linked List [Not in
Syllabus]

In a doubly linked list, each node has two pointers: one to the previous node and one to
the next node. This allows us to traverse the linked list in two directions. An example of a
doubly linked list is the list of webpages accessed when you are browsing the Internet.
You can traverse the list using the back and forward buttons on your browser.

In a circular linked list, the pointer of the last node points to the first node. An example
of a circular linked list is a music or video playlist that loops back to the first item after the
last one has finished playing.

Doubly linked list and circular linked list are not in the syllabus, but once you have
understood the concept of linked list well, they should not be difficult to implement.

Appendix
You may want to watch the following video to help you understand linked lists better.

https://www.youtube.com/watch?v=_jQhALI4ujg (until 6:25 for the syllabus)

https://www.youtube.com/watch?v=_jQhALI4ujg

2020 JC1 H2 Computing 9569

19. Pseudocode

In computing, solutions to problems are often written in pseudocode. This resembles a
programming language, but does not follow the syntax of any one particular language, so
that users of different languages can all read it.

Common Constructs

The following table shows some common constructs used in programming, expressed both

in Python and pseudocode.

Pseudocode Python

DECLARE A : INTEGER Python does not have variable declaration

Declaration
Assignment A - 34 A= 34
Changing a value B-B+1 B=B+1

IFA>B if A > B:

THEN ...

If/then/else ELSE .. else:

ENDIF

REPEAT

UNTIL A > B

while A <= B:

Repetition (while loop) Alternatively,

WHILE A <= B

ENDWHILE

FOR'N - 0 T0 10 for N in range(11):

Iteration (for loop)
ENDFOR

Input INPUT "Prompt:" A a = input("Prompt:")
" " print(''Message")

Output OUTPUT "Message" B print (B)

Comment // Comment # Comment

The following table shows relational operators and mathematical functions.

Pseudocode Python

is equal to

Pseudocode Python

is less than < <
is greater than > >
is less than or equal to <= <=
is greater than or equal to = >=
is not equal to <> =
addition + +
subtraction - -
multiplication * *
division / /
exponentiation ~ *k
integer division (quotient) DIV //
MOD o

modulus (remainder)
Exercise 1

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

DECLARE n: INTEGER // While variable declaration is not
compulsory,

DECLARE Total: INTEGER // it is a good practice to do so, so
that other people

DECLARE Count: INTEGER // reading your code know what data
type it is.

n < =~0

WHILE n <= 0
INPUT n
ENDWHILE

Total « @
Count « 0

REPEAT
INPUT Number
Total « Total + Number
Count « Count + 1
UNTIL Count = n

OUTPUT Total/Count

Find average of n numbers
Type your code here
n=20
while n <= 0:
n int(input ("Enter number of numbers to input: "))

total = 0
count = 0
while count != n:

number = int(input(f"Enter number {count + 1}: "))
total += number
count += 1

print(total/count)

Exercise 2

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

INPUT a
INPUT b
INPUT c

d « (bxb) - (4xaxc)

IFd<©0
THEN
OUTPUT "There are no real roots."
ELSE
SquareRoot « SQRT(d) // For common

mathematical functions, we can use abbreviations
Rootl « (-b + SquareRoot) / (2x*a)
Root2 « (-b - SquareRoot) / (2x*a)
OUTPUT Rootl and Root2

ENDIF
Find real roots of quadratic equation
Type your code here
a = int(input())
b = int(input())
c = int(input())
d = b*b - 4*a*c
if d < 0:
print("There are no real roots.")
else:
SquareRoot = d**0.5
Rootl = (-b + SquareRoot) / (2*a)
Root2 = (-b - SquareRoot) / (2*a)

print (Rootl, Root2)

Exercise 3

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

INPUT Valuel
INPUT Value2

Temp « Valuel
Valuel « Value2
Value2 « Temp

Swap two values with temporary variable
Type your code here

Valuel input ("Input value 1: ")

Value2 input ("Input value 2: ")

Temp = Valuel

Valuel = Value2
Value2 = Temp
Exercise 4

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

INPUT Valuel
INPUT Value2

Valuel « Valuel + Value2
Value2 « Valuel - Value2
Valuel « Valuel - Value2

#Swap two values without temporary variable
Type your code here

Valuel = int(input("Input value 1: "))
Value2 = int(input("Input value 2: "))
Valuel = Valuel + Value2
Value2 = Valuel - Value2
Valuel = Valuel - Value2

Input value 1: 1
Input value 2: 2

Exercise 5

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

What does the following algorithm written in pseudocode do? Try to write a Python

equivalent.
DECLARE Listl: ARRAY[1:3] of INTEGER // This is a 1D array
of integers of size 3.
DECLARE List2: ARRAY[1:3] of INTEGER // This is another 1D

array of integers of size 3.

FOR Index « 1 TO 3

Listl[Index] « Index*2
ENDFOR
FOR Index « 1 TO 3
List2[Index] « Index”2

ENDFOR

Get a list of consecutive and square numbers

Type your code here
Listl = []
List2 [1]

for i in range(l, 4):
Listl.append(i*2)

for i in range(l, 4):
List2.append(i**2)

For 2D arrays,

e.g. declaration of a 2D array of strings of size 3x5:
DECLARE List: ARRAY[0:2, 0:4] of STRING
e.g. accessing and outputting an element in a 2D array:

OUTPUT List[1, 2] // This is the equivalent of List[1][2] in
Python

String

The following table shows common string functions and methods.

Pseudocode Python

LOCATE(str1,

Returns the start position of str2 in strl, or-1if
str2)

str2 isnotin stril

strl.find(str2)

Returns the first n characters of str LEFT(str, n) strl[0:n]

MID(str, m,

Returns (as a string) the next n characters of str, strm:m+n]
starting with the m th character n)
RIGHT(str, trien:]
Returns the last n characters of str n) stri-n:
Returns the number of charactersin str LENGTH(str) len(str)
strl & str2
Alternatively,
Concatenates strl and str2 CONCAT(str1, strl + str2
str2)

For instance, suppose we want to come up with a procedure to draw a pyramid of characters
as shown below.

A
AAA
AAAAA
AAAAAAA

One solution is:

INPUT character // the character to be
used in the pyramid

REPEAT

INPUT MaxNumberOfCharacters // the number of
characters in the bottom row (must be odd)
UNTIL MaxNumberOfCharacters MOD 2 =1

NumberOfSpaces « (MaxNumberOfCharacters - 1)/2
NumberOfCharacters « 1

REPEAT
FOR i « 1 TO NumberOfSpaces
OUTPUT < ' Space' >
ENDFOR

FOR i « 1 TO NumberOfCharacters
OUTPUT character
ENDFOR

OUTPUT Newline // This goes to the next line. It is
like pressing "enter" or using "\n" in Python.

NumberOfSpaces « NumberOfSpaces - 1
NumberOfCharacters « NumberOfCharacters + 2
UNTIL NumberOfCharacters > MaxNumberOfCharacters

Exercise 6

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

INPUT MyName
LengthOfName « LENGTH(MyName)
PositionOfSpace « LOCATE(MyName, '< Space >')

FirstWord < LEFT(MyName, PositionOfSpace)
RestOfName « RIGHT(MyName, (LengthOfName - PositionOfSpace - 1))

OUTPUT RestOfName & '< Space >' & FirstWord

Flips name

Type your code here

MyName = input()

LengthOfName = len(MyName)

PositionOfSpace = MyName.find(" ")

FirstWord = MyName[:PositionOfSpace]

RestOfName = MyName[-(LengthOfName - PositionOfSpace - 1):]

print (RestOfName + ' ' + FirstWord)

1
1

Exercise 7

The following algorithm inputs seven numbers into a list.

DECLARE MyList: ARRAY[@:6] of INTEGER

FOR Index « @ TO 6
INPUT MyList[Index]
ENDFOR

What does the following algorithm written in pseudocode do?

MaxIndex « 6
INPUT SearchValue
Found « FALSE

Index « @
REPEAT
IF MyList[Index] = SearchValue
THEN
Found « TRUE
ENDIF

Index « Index + 1
UNTIL FOUND = TRUE OR Index > MaxIndex

IF Found = TRUE
THEN
OUTPUT "Value found at location:" Index
ELSE
OUTPUT "Value not found"
ENDIF

Procedures and Functions

A procedure refers to a group of steps carried out in a fixed order. In Python, procedures

and functions are not really distinguished. You may think of a procedure as a function that
does not return anything.

We can re-do the pyramid of characters using procedures, calling them one at a time.

CALL SetValues
REPEAT
CALL OQutputSpaces
CALL OQutputCharacters
CALL AdjustValuesForNextRow
UNTIL NumberOfCharacters > MaxNumberOfCharacters

Now, we need to define the procedures that we need. These are:

PROCEDURE SetValues
INPUT Character
CALL InputMaxNumberOfCharacters // We called yet another
procedure which we need to define.
NumberOfSpaces « (MaxNumberOfCharacters - 1)/2
NumberOfCharacters « 1
ENDPROCEDURE

PROCEDURE InputMaxNumberOfCharacters
REPEAT
INPUT MaxNumberOfCharacters
UNTIL MaxNumberOfCharacters MOD 2 =1
ENDPROCEDURE

PROCEDURE OQutputSpaces
FOR Count « 1 TO NumberOfSpaces
OUTPUT '< Space >'
ENDFOR
ENDPROCEDURE

PROCEDURE OutputCharacters
FOR Count « 1 TO NumberOfCharacters
OUTPUT Character
ENDFOR
OUTPUT Newline
ENDPROCEDURE

PROCEDURE AdjustValuesForNextRow
NumberOfSpaces « NumberOfSpaces - 1
NumberOfCharacters « NumberOfCharacters + 2
ENDPROCEDURE

When we write a function in pseudocode, we need to specify the input (if any), as well as
what it must return as shown in the example below.

Exercise 8

(a) What does the following algorithm written in pseudocode do?
(b) Try to write the Python equivalent.

FUNCTION InputOddNumber() RETURNS INTEGER
REPEAT
INPUT "Enter an odd number: " Number
UNTIL Number MOD 2 =1
RETURN Number
ENDFUNCTION

Input odd number and returns it
Type your code here
def InputOddNumber():
Number = 0
while Number % 2 != 1:
Number = int(input("Enter an odd number: "))
return Number

When a procedure or function requires values from the main program, these are supplied as
arguments. When we define a function, we put them in a parameter list. The list specifies
the parameters needed by the function, as well as their data types. The parameters are said
to be passed to the procedure or function.

Refer to the example below.

FUNCTION SumAP(FirstTerm: INTEGER, LastTerm: INTEGER) RETURNS
INTEGER
DECLARE Sum, CurrTerm : INTEGER

Sum « 0

FOR CurrTerm « FirstTerm TO LastTerm

Sum « Sum + CurrTerm

ENDFOR

RETURN Sum
ENDFUNCTION

def sumAP(FirstTerm, LastTerm):
Sum = 0
for CurrTerm in range(FirstTerm, LastTerm+l):
Sum = Sum + CurrTerm
return Sum

A parameter may be passed by value, as we saw in the function above. When the argument
is called, a copy of the value is passed into the function. The value of the variable in the main
program is not affected by what happens inside the function.

Returning to the earlier example where we printed a pyramid of characters, the procedure
OutputCharacters passes two parameters by value.

Alternatively, a parameter may be passed by reference. When the argument is called, a
pointer to the memory location is passed into the function or procedure. Changes which are
applied to the variable's contents will be effective outside the procedure, i.e. in the main
program. The procedure AdjustValuesForNextRow passes two variables by reference.

We now make this clear in the pseudocode:

PROCEDURE OutputCharacters(BYVAL NumberOfCharacters : INTEGER,
BYVAL Character: CHAR)
DECLARE Count : INTEGER

FOR Count « 1 TO NumberOfCharacters

OUTPUT Character

ENDFOR

OUTPUT Newline
ENDPROCEDURE

PROCEDURE AdjustValuesForNextRow(BYREF Spaces : INTEGER, BYREF
Characters : INTEGER)

Spaces < Spaces - 1

Characters « Characters + 2
ENDPROCEDURE

We also need to amend the main program:

CALL SetValues
REPEAT
CALL OutputSpaces
CALL OQutputCharacters
CALL AdjustValuesForNextRow(NumberOfSpaces,
NumberOfCharacters)
UNTIL NumberOfCharacters > MaxNumberOfCharacters

As Python does not distinguish between these two methods of passing parameters in its
code, do be careful when using the same variable name repeatedly in Python.

def OutputCharacters(NumberOfCharacters, Character):
for Count in range(NumberOfCharacters):
print(Character, end='")
print()

OutputCharacters(5, 'A')

def AdjustValuesForNextRow(Spaces, Characters):
Spaces = Spaces - 1
Characters = Characters + 1
return Spaces, Characters

NumberOfSpaces = int(input())

NumberOfCharacters = int(input())

NumberOfSpaces, NumberOfCharacters = AdjustValuesForNextRow(NumberOfSpaces, N
print (NumberOfSpaces)

print (NumberOfCharacters)

Finally, the following shows the recursive pseudocode for calculating a function that
calculates the factorial of an input integer.

FUNCTION Factorial(n : INTEGER) RETURNS INTEGER
IFn=20
THEN
Result « 1
ELSE
Result « n *x Factorial(n-1)
ENDIF
RETURN Result
ENDFUNCTION

2020 JC1 H2 Computing 9569

20. Tree

Now that we have understood the idea of recursion, we shall move on to another important
data structure that is commonly used in many areas of Computer Science, including but not
limited to database, graphics, networking and operating systems.

Tree is a non-linear, hierarchical data structure with a root, branches and leaves, just like its
botanical counterpart. The difference is that a tree data structure has its root at the top and
its leaves below.

Here is an example of a tree.

Let us understand the vocabulary used in relation to trees.

Node
Represented by an oval, each node stores a value.
In the example above, each node contains an integer.

Edge
Represented by an arrow, each edge connects two nodes to show the relationship between
them.

Root
It is the only node that has no incoming edge.
In the example above, the node storing the integer 1 is the root.

Parent, Child & Sibling

A parent node is connected to the child node through an edge. The children of the same
parent are siblings.

In the example above, the parent node storing the integer 1 has two children nodes storing
the integers 2 and 5 respectively.

Subtree (Branch)
A subtree is a set of nodes and edges comprising a parent and all the descendants of that
parent.

Leaf
A leaf node is a node that has no children.

Path
A path is an ordered list of nodes that are connected by edges.
In the example above, 1->2 and 1->5 -> 6 are two examples of the available paths.

Level
The level of a node refers to its depth in the tree. By definition, the level of the root node is 0.

Height
The height of a tree tells us how deep the entire hierarchy is.
In the example above, the height is 3.

Size
The size of a tree is the total number of nodes present.
In the example above, the size is 6.

Binary Tree

Binary tree is a tree where each node has at most two children (commonly referred to as the
left child and the right child).

In a perfect binary tree of a given height h where each node has two children except for the

leaf nodes, the size is 2" - 1.

O

Besides the root node, every node except for the leaf nodes can be seen as a root node of a
smaller tree. Hence, a tree can be an empty tree or consists of a root and zero or more
subtrees. The idea of recursion should come to your mind by now.

subtree-1 subtree-2

Tree Traversal

We shall look at three different ways of traversing a tree, which form the basis of depth-first

search.

To illustrate, we shall use the following binary tree.

Pre-Order Traversal

In this mode of traversal, we traverse the root first, followed by the left subtree and finally
the right subtree.

Result:1->2->4->5->8->9->3->6->0->7

In-Order Traversal

In this mode of traversal, we traverse the left subtree first, followed by the root and finally
the right subtree.

Result: 4 ->2->8->5->9->1->6->0->3->7

Post-Order Traversal

In this mode of traversal, we traverse the left subtree first, followed by the right subtree and
finally the root.

Result: 4 ->8->9->5->2->0->6->7->3->1

Exercise

Refer to the following binary tree.

Traverse the tree using the three methods described above.

Type your answer below.
Pre-order : a, b, d, ¢, e, f
In-order : b, d, a, e, ¢, f

Post-order : d, b, e, £, ¢, a

Binary Search Tree (BST)

We are interested in a special type of binary tree called binary search tree. In this tree, all
values smaller than the root value are stored in the left subtree, while all values larger than
the root value are stored in the right subtree.

<X >X

Below is an example of a binary search tree.

Notice that in-order traversal of a binary search tree gives values sorted in increasing order,
which is from 0 to 9.

Implementing BST

Node Class

First of all, we need to define the Node class, the objects of which shall be the building
blocks for our BST.

class Node:
def init (self, data):
self.data = data # primitive data type, e.g. integer, string
self.left = None # this shall point to the left child node in the

self.right = None # this shall point to the right child node in the

BST Class

The BST class should have only one property, which is its root. When creating a new BST, it
should be empty.

Some of the methods of BST that we need to be familiar with include:

1. Traversal

Print the data in the BST for pre-order, in-order and post-order traversals.
2. Search

Search for a node with the given data in the BST. It returns True when the data can be found,
and False otherwise.

3. Insert

Insert a node with the given data into the BST at the correct position. This is done by tracing
the tree from the root node, doing comparison with the value of the node before deciding
which path to be taken.

The example below shows where a new node with a value of 6 is inserted into the binary
search tree.

(5)

(3) (8]
@ @@ ©

2

4. Delete
Delete a node with the given data from the BST and possibly rearrange the tree.

In the syllabus, the focus is on the conceptual understanding of how nodes are deleted from
binary search tree. Writing algorithms and programs to delete nodes from a BST is excluded
from the syllabus.

Example:

e If the node to be deleted is a leaf node (i.e. nodes 2, 4 or 6), it is quite a straightforward
process as there is no need to shift any of the remaining nodes.

e |f the node to be deleted has one child (e.g. node 1), node 2 will be the new left child of
node 3.

¢ |f the node to be deleted has two children (e.g. node 5), there are two possible
scenarios:

= move the smallest node in the right subtree to the position of the deleted node.
i.e. node 6 becomes the root node of the BST.

= move the largest node in the left subtree to the position of the deleted node.
i.e. node 4 becomes the root node of the BST.

Define the BST class.

class BST:
The BST is empty when initialised
def init (self):
self.root = None

Inserts a new node with the given data to the BST
def insert(self, data):
def insert helper(cur, data):
if data < cur.data:
If there exists a left child, traverse to the left child vi
if cur.left:
insert helper(cur.left, data)
Else, create a new node as the left child
else:

cur.left = Node(data)
else:
If there exists a right child, traverse to the right child
if cur.right:
insert helper(cur.right, data)
Else, create a new node as the left child
else:
cur.right = Node(data)

If the tree is empty, create a new node as the root
if self.root == None:
self.root = Node(data)
Else, start to traverse the tree by calling the helper function
else:
insert helper(self.root, data)

Searches for a node with the given data in the BST
Returns True when found, and False otherwise
def search(self, data):

def search_helper(cur, data):

if cur == None:
return False
elif data == cur.data:

return True
elif data < cur.data:

return search_helper(cur.left, data)
else:

return search helper(cur.right, data)

return search_helper(self.root, data)

Prints out the result of pre-order traversal of the BST
def pre_order(self):
def pre_order_helper(cur):
print(cur.data, end=' ')
if cur.left:
pre_order helper(cur.left)
if cur.right:
pre_order helper(cur.right)

If the tree is empty
if self.root == None:
print("Tree is empty!")
else:
pre_order helper(self.root)

Prints out the result of in-order traversal of the BST
def in order(self):
def in order helper(cur):
if cur.left:
in _order helper(cur.left)
print(cur.data, end=' ")
if cur.right:
in_order_helper(cur.right)

If the tree is empty

if self.root == None:
print("Tree is empty!")

else:
in_order_helper(self.root)

Prints out the result of post-order traversal of the BST
def post_order(self):
def post_order_helper(cur):
if cur.left:

post_order helper(cur.left)
if cur.right:

post_order helper(cur.right)
print(cur.data, end=' ")

If the tree is empty
if self.root == None:
print("Tree is empty!")
else:
post_order_ helper(self.root)

Extension:
Instead of printing out the result of a traversal,
we can also put the elements in a list and return it
e.g. for post-order traversal:
def post order list(self):
def post order list helper(cur):
if cur.left:
post _order list helper(cur.left)
if cur.right:
post _order list helper(cur.right)
result.append(cur.data)

result = []

if self.root:
post_order list helper(self.root)

return result

Test case

bstl = BST()

bstl.insert (40)
bstl.insert(20)
bstl.insert(60)
bstl.insert(10)
bstl.insert(30)
bstl.insert(50)

Setting Up a Binary Tree Inside an Array

Similar to the linked list, it is also possible to use an array representation for a binary tree. In
this case, we first set up a free list of unused memory cells. Each node is a list of three
elements: the data, the left pointer, and the right pointer. The pointers point to the respective
children of the node. In the free list, for convenience, the nodes are put in order so that each
node is the left child of the previous node.

class Array:

The array has indices 0 to n-1 (inclusive).
Each entry in the array is a node, which will be a list of three elemen

def init (self, n):
self.Array = []
for i in range(n-1):
node = ["", i+l, None]

node[0] the data, which we initialise using an empty string
node[l] is the left pointer
node[2] is the right pointer

self.Array.append(node)

nn

self.Array.append(["", None, None])
self.FreeListPointer = 0 # head pointer of free list

Our array now looks like this (where we use n=5):

FreeListPointer = 0

Array

| Data | Left Pointer | Right Pointer |
[el | "" | 1 | None |
3 I 2 | None |
(21 | " | 3 | None |
[31 1 " | 4 | None |
(41 | "" | None | None |

Suppose we want to create a binary tree called MyTree. Initially it is empty.

MyTreePointer = None
FreeListPointer = 0

Array:

| Data | Left Pointer | Right Pointer |
(el | """ | 1 | None |
[11 | " | 2 | None |
(21 | " | 3 | None |
[31 | " | 4 | None |
(41 | " | None | None |

We insert "Tom" into MyTree:

MyTreePointer = 0
FreeListPointer =1
Array:

| Data | Left Pointer | Right Pointer |
(0] | "Tom" | None | None |
[11 | " | 2 | None |
(21 | ""* | 3 | None |
(311 "* | 4 | None |
(4] | " | None | None |
</pre>

We insert "Sue" as a left child of "Tom".

MyTreePointer

=0
FreeListPointer =

2

Array:

| Data | Left Pointer | Right Pointer |
[0] | "Tom" | 1 | None |
[1] | "Sue" | None | None |
172 I 3 | None |
[31 | " | 4 | None |
(41 | " | None | None |
</pre>

We insert "Bob" as a right child of "Tom".

MyTreePointer = 0
FreeListPointer = 3
Array:

| Data | Left Pointer | Right Pointer |
(0] | "Tom" | 1 | 2 |
[1] | "Sue" | None | None |
[2] | "Bob" | None | None |
(31 | " | 4 | None |
(41 | " | None | None |
</pre>

We delete "Tom" and make "Bob" the new parent of "Sue":

MyTreePointer = 2
FreeListPointer = 0
Array:

| Data | Left Pointer | Right Pointer |
[e1 | "" | 3 | None |
[1] | "Sue" | None | None |
[2] | "Bob" | 1 | None |
31 | " | 4 | None |
(4] | " | None | None |
</pre>

In this way, the abstract tree structure is maintained by use of
pointers, even though the order in which the data appears in the
tree may be completely different from the order in which it
appears in the array.

2020 JC1 H2 Computing 9569

21. Time Complexity

Even though computers can carry out millions (maybe billions) of intructions per second,
efficiency is still a major factor to consider when writing programs. Suppose that Program A
runs ten times faster than Program B. If the input is small, it may be a difference of between
0.1 seconds and 0.01 seconds, which might not be noticeable to us. However, if the input is
way larger, the difference between one hour and ten hours is certainly noticeable.

Example 1

Consider the following two methods to find the sum of an arithmetic progression:

Method 1

INPUT FirstTerm
INPUT CommonDiff
INPUT NoOfTerms

Sum <« 0
CurrTerm « FirstTerm

FOR Count « 1 TO NoOfTerms

Sum « Sum + CurrTerm

CurrTerm « CurrTerm + CommonDiff
ENDFOR

OUTPUT Sum
Method 2

INPUT FirstTerm
INPUT CommonDiff
INPUT NoOfTerms
Sum « (NoOfTerms / 2)x(2xFirstTerm + (NoOfTerms - 1)*CommonDiff)

OUTPUT Sum

How many steps does each method take?

Big-O Notation

The Big-0 notation is commonly used as an indication of the number of steps (and hence
the time) taken for the program to run.

Example 2

Consider the following method to determine whether a number n is prime.

Method 1

INPUT n
Result « TRUE

IFn=1
THEN
Result « FALSE
ELSE
IF n>2 // What happens when n is 27
THEN
FOR x « 2 TO n-1
Remainder = n MOD x
IF Remainder = 0
THEN
Result « FALSE
ENDIF
ENDFOR
ENDIF
ENDIF

OUTPUT Result

The number of steps is determined by the number of times the FOR loop happens. Within
the FOR loop, the number of steps is (roughly) constant. Since we go through the loop n-2
times, the total number of steps is (roughly) a multiple of n-2. For large values of n, the total
number of steps is approximately a multiple of n, therefore, we say that this program has a
time complexity of O(n).

It is possible to improve the program. In the way it is written above, the program has to
perform the loop n-1 times regardless of the value of Result. We could break the loop once
Result becomes FALSE.

Method 2

INPUT n
Result « TRUE

IFn=1
THEN
Result « FALSE
ELSE
X « 2
REPEAT
Remainder = n MOD x
IF Remainder = 0
THEN
Result « FALSE
ENDIF
X « x+1
UNTIL x > n-1 OR Result = FALSE
ENDIF

OUTPUT Result

In this case, the loop breaks once we find a value of x that is a factor of n (and between 1
and n, exclusive). However, in the worst-case scenario, which is when n is actually prime, we
still need to go through the loop n-2 times. Therefore, in the worst-case scenario, the
number of steps is still (roughly) a multiple of n, so the time complexity is still O(n).

Is it possible to improve the program beyond this? If n has a factor between 1 and n, then it
must have a factor between 1 and /n (why?). Therefore, we only need to check for factors
up to /n.

Method 3

INPUT n
Result « TRUE

IFn=1
THEN
Result « FALSE
ELSE
SQUAREROOT = SQRT(n)
X « 2
REPEAT

Remainder = n MOD x
IF Remainder = 0

THEN

Result « FALSE
ENDIF
X « x+1
UNTIL x > SQUAREROOT OR Result = FALSE
ENDIF

OUTPUT Result

In this case, even in the worst case scenario, we go through the loop at most \/n -1 times.
The time complexity of this is O(/n).

Returning to Example 1, where we tried to find the sum of an arithmetic progression, we
notice that Method 1 goes through the loop n times, where n is the number of terms in the
progression, and therefore it is O(n). In Method 2, the number of steps is the same
regardless of the values of the inputs, and so it as a constant number of steps, which we
indicate is O(1).

Example 3

Suppose we want to check whether two lists have any elements in common. The code in
Python would look something like this.

def checkcommon(lisl, 1lis2):
for item in lisl:
if item in lis2:
return True
return False

The compactness of the code in Python obscures the fact that we actually need to iterate
through both lists. In pseudocode, the same algorithm would look like this:

INPUT Listl
INPUT List2

Lengthl « LENGTH(List1)
Length2 « LENGTH(List2)

Result « FALSE

Indexl « @
Index2 « 0

REPEAT
iteml « List1[Index1]
REPEAT
item2 « List1[Index2]
IF iteml = item2
THEN
Result « TRUE
ENDIF
Index2 « Index2 + 1
UNTIL Result = TRUE OR Index2 >= Length2
UNTIL Result = TRUE OR Indexl >= Lengthl

OUTPUT Result

Notice that we have a nested loop. In the worse case scenario (where the two lists do not
have any common elements), we have to go through the outside loop for each element in
List1, and through the inside loop for each element in List2. Therefore, the total number of
steps is (roughly) a multiple of mn, where m and n are the number of elements in List1 and
List2 respectively. Therefore, this program has a time complexity of O(mn).

Example 4

Suppose we want to calculate the nth power of x, where n is a positive integer. In Python,
this would simply be x**n , but suppose we do not have the luxury of using ** , and
have to multiply repeatedly. The straightforward way to do it is

INPUT Xx
INPUT n

Result « 1
FOR count « 1 TO n
Result « Resultxx

ENDFOR

OUTPUT Result

which has a time complexity of O(n). Is there a better way to do it? Surprisingly, the answer is
yes.

We first define a function to convert n into binary notation.

FUNCTION Dec_to_Bin(n : INTEGER) RETURNS STRING
Result « '' // There is no standard way to express the empty

string in pseudocode. Sometimes @ is used as well.

Temp « n
REPEAT
IF Temp MOD 2 = 0
THEN
Result « Result & '0'
ELSE
Result « Result & '1'
ENDIF

Temp « Temp DIV 2
UNTIL Temp = @

RETURN Result
ENDFUNCTION

What is the time complexity of Dec_to_Bin? Go through the following algorithm for finding
X”™n to see why it works.

INPUT x
INPUT n

Str « Dec_to_Bin(n)

Temp < X
Result « 1
Length = LENGTH(Str) // Can you find what is Length in terms of

n?

FOR 1 « 1 TO Length
Temp < TempxTemp
IF MID(Str, Length-i, 1) =1
THEN
Result « ResultxTemp
ENDIF
ENDFOR

OUTPUT Result

What is the total time complexity? We called the function Dec_to_Bin when we were
finding Str so the time complexity of Dec_to_Bin plays a role here. In addition, we also
went through the loop Length times. Therefore, the time complexity of this algorithm is __.

Mathematical Formalities

Suppose we have two functions f(n) and g(n), such that there exist constants C and ng such

that f(n) < Cg(n) for all values of n > ng. Then we say that f(n) = O(g(n)).

For instance, if f(n) = 3n + 5 and g(n) = n?, then f(n) = O(g(n)) since f(n) < 1g(n) foralln > 4
(you can prove this with graphically or with algebra). However, g(n) # O(f(n)) since for every
value of C, we will have g(n) = Cf(n) once n is large enough.

Notice that if f(n) and g(n) are both polynomials of the same degree, then f(n) = O(g(n)) and
g(n) = O(f(n)). We say that f(n) and g(n) are of the same order.

On the other hand, suppose f(n) = O(g(n)) but g(n) # O(f(n)) (as in the example above). If
Algorithm A takes f(n) and Algorithm B takes g(n) steps, then we say that Algorithm A is
more efficient than Algorithm B, since the Algorithm A will take less time to compute the
result once n is sufficiently large. Notice that this doesn't mean Algorithm A takes less time
for all values of n. For instance, if if f(n) = 100n and g(n) = 0.01n2, f(n) will be larger than g(n)
for small values of n (in fact, up to 10,000). The point is that g(n) will eventually catch up and
overtake f(n).

We can therefore arrange functions in order of efficiency. A rough guide is

More efficient O(1), O(log n), O(,/n), O(n), O(n log n), O(n?), O(n3), ..., O(2"), O(3"), ...,
O(n!), ... Less efficient
In general, we say that an algorithm is efficient if it is O(nX) or faster. These algorithms are
known as polynomial-time algorithms. Algorithms which are slower (e.g. O(2")) are known
as non-polynomial time algorithms. Currently, there is intense research going on to prove
that there are some tasks which cannot be performed in polynomial time.

2020 JC1 H2 Computing 9569

22. Sorting Algorithms

One of the basic tasks a computer scientist needs to be able to do is sort, that is, to arrange
the elements of a list in a non-decreasing order. (The word 'non-decreasing' is used instead
of 'increasing' because of the possibility that the list may contain two or more copies of the
same element.) In other words, the list should be rearranged so that each element is less
than or equal to the element that comes after it.

Selection Sort

This is the simplest, and perhaps the most natural, sorting algorithm. However, it turns out to

be slow compared to other algorithms that we will learn. We go through the entire list, look
for the smallest element, and swap it with the element at index 0. This constitutes one pass.
In the next pass, we go through the list from index 1 to the end, look for the smallest
element, and swap it with the element at index 1. We repeat the process from index 2 to the
end, and so on. Once the correct element is placed in the second last slot, the last slot will
automatically have the largest element.

Example

[25, 34, 98, 7, 41, 19, 5] // START:
[25, 34, 98, 7, 41, 19, 5] // smallest element is 5

5, 34, 98, 7, 41, 19, 25] // swap it with list[0]
5, 34, 98, 7, 41, 19, 25] // smallest element in list[1:] is

N — —

5, 7, 98, 34, 41, 19, 25] // swap it with list[1]
5, 7, 98, 34, 41, 19, 25] // smallest element in list[2:] is

5, 7, 19, 34, 41, 98, 25] // swap it with list[2]
5, 7, 19, 34, 41, 98, 25] // smallest element in list[3:] is

5, 7, 19, 25, 41, 98, 34] // swap it with list[3]
5, 7, 19, 25, 41, 98, 34] // smallest element in list[4:] is

5, 7, 19, 25, 34, 98, 41] // swap it with list[4]
5, 7, 19, 25, 34, 98, 41] // smallest element in list[5:] is

[5, 7, 19, 25, 34, 41, 98] // swap it with list[5]
// since list[5] is also the
// second last element, we are done

[5, 7, 19, 25, 34, 41, 98] // END: 1list is sorted

The following code in Python shows one way to do it:

def selectionsort(lis):
n = len(lis)
for i in range(n-1):

smallest = i # to get the index of the smallest element in
for j in range(i+l, n):
if 1is[j] < lis[smallest]: # find the smallest element and get
smallest = j
lis[i], lis[smallest] = lis[smallest], lis[i] # swap the smallest e

mylist = [25, 34, 98, 7, 41, 19, 5]
selectionsort(mylist)
print (mylist)

What is the time complexity of this algorithm?

There are two loops, one for i and one for j . The innerloop runs n — i times for each
value of i, so the total number of times the inner loop runs is

(n-1) +(n-2)+(n-3) + ... +2

times. Since the number of steps in each loop is (roughly) constant, the time complexity of

this algorithm is O(n2).

Bubble Sort

Another natural way to sort a list is to do the following:

1. Compare the zeroth and first elements. If the zeroth is larger than the first, swap them.

2. Compare the first and second elements. If the first is larger than the second, swap them.

3. Compare the second and third elements. If the second is larger than the third, swap
them.

4. Going down the list, compare adjacent values as above until you reach the last two
elements.

By doing this, the largest element would end up as the last element. This constitutes one
pass. We now do a second pass on the list from the zerothto n — 1 th element, so that the
second largest element moves to the second last position. We then do a third pass to move
the third largest element to the third last position, and so on, for a total of n — 1 passes.

Example

[25, 34, 98, 7, 41, 19, 5] // START:
[25, 34, 98, 7, 41, 19, 5] // no swap since 25 < 34
[25, 34, 98, 7, 41, 19, 5] // no swap since 34 < 98
[25, 34, 7, 98, 41, 19, 5] // swap 98 and 7
[25, 34, 7, 41, 98, 19, 5] // swap 98 and 41
[25, 34, 7, 41, 19, 98, 5] // swap 98 and 19
[25, 34, 7, 41, 19, 5, 98] // swap 98 and 5
// end of first pass
// 98 is in the last position

[25, 3
[25, , 34, 41, 19,

4 98] // no swap since 25 < 34
7
[25, 7, 34, 41, 19,
7
7

98] // swap 7 and 34
98] // no swap since 34 < 41
98] // swap 41 and 19
98] // swap 41 and 5
// end of second pass

~-

~-

[25’ ’ 34, 19’ 41'
[25, , 34, 19, 5, 4

~-

= U100

~-

position

NN N

~- - -

~— o~

[7;
[7;
[7,

25,
25,
25,
25,

25,
19,
19,

position

[7
[7;
[5;

[5’

’ 19;
5,

34,
34,
19,
19,

19,
25,

19,

19,
19,
34,

25,
25,

25,

7, 19, 25,

&~ U1 U1 O

~-

34,
34,
34,

34,
34,

34,

34,

41,
41,
41,
41,

41,
41,
41,

41,
41,

41,

41,

98]
98]
98]
98]

98]
98]
98]

98]
98]

98]

98]

//

//
//
//
//
//
//

//
//
//
//
//

//
//
//
//

//
//
//

//

41 is in the second last

swap 25 and 7

no swap since 25 < 34

swap 34 and 19

swap 34 and 5

end of third pass

34 is in the third last position

no swap since 7 < 25
swap 25 and 19

swap 25 and 5

end of fourth pass

25 is in the fourth last

no swap since 7 < 19

swap 19 and 5

end of fifth pass

19 is in the fifth last position

swap 7 and 5
end of sixth pass
7 is in the sixth last position

END: list is sorted

Try to write your own code to implement bubble sort. A possible pseudocode version is

given below.

INPUT MyList
MaxIndex « LENGTH(MyList)

n « MaxIndex

FOR i « 1 TO (MaxIndex - 1)

order.
ENDFOR

lis =

def bubblesort(lis):

n = len(lis) -1

[25,

THEN
Temp « MyList[j]
MyList[j] « MyList[j+1]
MyList[j+1] « Temp

ENDIF
ENDFOR
ne<n-1// The next time you do the inner loop,

// we do not need to go all the way to the end,
// since the largest numbers are already in

34,

98,

7,

FOR j « 1 TO n
IF MyList[j] > MyList[j+1] // Remember, in Pseudocode,

41,

for i in range(n):
for j in range(n):

19,

5]

// the first element of the
// list has index 1, not 0.
// This carries out the swap.

if 1lis[j] > lis[j+1]:
lis[j], 1lis[j+1] = lis[j+1], lis[j]
n -=1
return 1lis
bubblesort(1lis)
[5, 7, 19, 25, 34, 41, 98]
What is the time complexity of this algorithm?
Similar to selection sort, the number of times the inner loop runs is

(n-1) + (n-2) +(n-=-3) + ... +2+1

times. Since the number of steps in each loop is (roughly) constant, the time complexity of

this algorithm is also O(n?).

Insertion Sort

In this particular sort, we consider the list as having a sorted part and an unsorted part. At

the beginning, the sorted part only consists of one element. One by one, elements from the
unsorted part are inserted into the sorted part in the correct location. At the end of the
algorithm, all the elements end up in the sorted part.

Example

In this example, the ~ symbol is the separator between the sorted part and the unsorted
part. The sorted part contains all the elements before © , and the unsorted part contains the
element ” is pointing to and everything else that comes after it. The element ” is pointing
to is called the key. It is the element that we are going to move from the unsorted part to the
sorted part.

[25, 34, 98, 7, 41, 19, 5] // START:
~ // The sorted part is [25],

// and the unsorted part is [34,
98, 7, 41, 19, 5].

// We now try to insert 34 into the
sorted part.

// Since 25 < 34, we do not need to
do anything.

[25, 34, 98, 7, 41, 19, 5] // The sorted part is [25, 34],
~ // and the unsorted part is [98,
7, 41, 19, 5].
// We now try to insert 98 into the

sorted part.

do anything.

[25, 34, 98, 7, 41, 19,
19, 5].

sorted part.

the element

right place,

smaller than it.

the way

[7, 25, 34, 98, 41, 19,
98],

19, 5].

sorted part.
the element
right place,

smaller than it.

98 and stop.

[7, 25, 34, 41, 98, 19,
41, 98],

5].

sorted part.
the element
right place,

smaller than it.

98,

25.

[7, 19, 25, 34, 41, 98,

34, 41, 98],

sorted part.

5]

5]

5]

5]

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//

//
//

Since 34 < 98, we do not need to
The sorted part is [25, 34, 98],
and the unsorted part is [7, 41,
We now try to insert 7 into the
We do this by swapping 7 with
before it until it is in the
i.e. the element before 7 is

In this case, 7 will swap all

to the beginning of the list.
The sorted part is [7, 25, 34,
and the unsorted part is [41,

We now try to insert 41 into the
We do this by swapping 41 with
before it until it is in the
i.e. the element before 41 is

In this case, 41 will swap with

The sorted part is [7, 25, 34,
and the unsorted part is [19,

We now try to insert 19 into the
We do this by swapping 19 with
before it until it is in the
i.e. the element before 19 is
In this case, 19 will swap with
then with 41, 32 and 25,

until it ends up between 7 and

The sorted part is [7, 19, 25,

and the unsorted part is [5].
We now try to insert 5 into the

// We do this by swapping 5 with
the element

// before it until it is in the
right place,

// i.e. the element before 5 is
smaller than it.

// In this case, 5 will swap all
the way

// to the beginning of the list.

[5, 7, 19, 25, 34, 41, 98] // The unsorted list is now empty.
// END: 1list is sorted

Try to write your own code to implement Insertion sort. A possible pseudocode version is
given below.

INPUT MyList
MaxIndex « LENGTH(MyList)

FOR i « 2 TO MaxIndex // Remember, in Pseudocode,
// the first element of the
// list has index 1, not 0.
Key « MyList[i]
CompareWithKey « i-1 // We start comparing with the
// element immediately before Key,
i.e.,
// the largest element in the sorted
part.
WHILE (MyList[CompareWithKey]l > Key) AND (CompareWithKey >
@) // The swapping

// happens inside
// this loop

MyList[CompareWithKey + 1] « MyList[CompareWithKey] //
Swap CompareWithKey
//
with the element
//
after it

CompareWithKey « CompareWithKey - 1 //
MyList[CompareWithKey] moves
// to the previous
item

ENDWHILE // We have reached an element smaller than Key,
// or all elements in the sorted part are larger
than Key

MyList[CompareWithKey + 1] « Key // Insert Key
ENDFOR

lis = [25, 34, 98, 7, 41, 19, 5]

def insertionsort(lis):
for i in range(l, len(lis)):

key = 1lis[1i]
compare = i-1
while lis[compare] > key and compare >= 0:
lis[compare+l] = lis[compare]
compare -= 1
lis[compare+l] = key
return lis

insertionsort(lis)
[5, 7, 19, 25, 34, 41, 98]

What is the time complexity of this algorithm?

Similar to the previous two sorting algorithms, we have an inner loop and an outer loop. In
the worst case scenario, the inner loop (the WHILE loop) needs to compare Key with all the
previous values, which happens when Key is smaller than all the elements in the sorted part.
In this case, it will run through i — 1 cycles of the loop. Therefore, in the worst case
scenario, the total number of times the inner loop runs is

1+2+3+ ...+ (n-=-1)

times. Since the number of steps in each loop is (roughly) constant, the time complexity of
this algorithm is O(n?).

Comparing what we have so far...

One common feature of the previous three sorting algorithms (other than the fact that they
are O(n?)) is that they only involve swapping elements within the list. This means that no
additional memory is required (except for an occasional Temp variable) as we are
rearranging data within the memory addresses already allocated to the original list. This also
means that the sequence of elements in the original list is destroyed when we carry out the
sorting algorithm. This is known as sorting in place.

Since all three algorithms are O(n?) in the worst case scenario, is there any reason for
choosing one above the other? We could compare best case scenarios as well. Notice that
the loops in bubble sort and selection sort are constant regardless of the arrangement of the
elements, so it is still O(n?). On the other hand, if the original list is already almost sorted,
the inner loop of insertion sort would not have to repeat so many times. In the best case
scenario, if the list happens to be already sorted, the inner loop would not run at all, and the
time complexity drops to O(n).

Does this mean that insertion sort is always better? Yes and no. For a list that is already
almost sorted, it would be the fastest algorithm. However, for a random list, the time
complexity is the same as the other two. We can look at the number of actual swaps made.
The steps in selection sort are mostly comparisons, and it makes at most n-1 swaps. On the

other hand, bubble sort and insertion sort could make as many as O(n?) swaps.

Depending on the nature of the elements in the list, if swapping two elements is extremely
time- or memory-consuming (e.g. the elements are very large or the storage device is slow),
then selection sort might be the better choice. On the other hand, if you have a reason to
believe that the list is already almost sorted - if most elements are somewhat near their final
location - then insertion sort might be better.

Is it possible to do better than O(n?)? Yes, and for that, we would need to use the power of
recursion.

Merge Sort

Merge sort is a recursive algorithm that is O(n log n), which is a marked improvement over

O(n?). However, it has two disadvantages. Firstly, the constant coefficient that we hid away
in the big-O notation is large, which means that for small values of n, other sorting
algorithms might be faster. Secondly, it does not sort in place, i.e. it makes multiple copies of
the input list, which takes up more memory. Therefore, merge sort can only be used when
there is the luxury of having enough memory for many copies of the list.

Merge sort works on the divide-and-conquer approach:

e Divide: Split the list into two smaller lists, preferably of almost equal length.

e Conquer: Sort each of the two smaller lists. We can do this recursively, by splitting them
again into even smaller lists, until we get lists of length 1, which do not need to be
sorted.

e Combine: Merge the two sorted smaller lists back into a longer sorted list.

Example
[25, 34, 98, 7, 41, 19, 5] // START
[l .
[23, 34, 98, 71 [41, 19, 5] // Divide
. . . .
[23, 34] [98, 7] [41, 19] [5] // Divide
. i .
[23]1 [34] [98] [7] [41] [19] [5] // Divide. A1l lists are of
length 1.
. i .
[23, 34] [7, 98] [19, 41] [5] // Combine
. . . .
[7, 23, 34, 98] [5, 19, 41] // Combine
Il i
[5, 7, 19, 23, 34, 41, 98] // END: list is sorted

Try to write your own code to implement Merge sort. A possible pseudocode version is given

below.

FUNCTION MergeSort(MyList: LIST) RETURNS LIST
MaxIndex « LENGTH (MyList)

IF MaxIndex > 1
THEN
Half « MaxIndex DIV 2
LeftList « LEFT(MyList, Half)
RightList « RIGHT(MyList, Half)

SortedLeftList « MergeSort(LeftList)
SortedRightList « MergeSort(RightList)

Result « Merge(SortedLeftList, SortedRightList)

ELSE
Result « MYLIST
ENDIF

RETURN Result
ENDFUNCTION

Note that we have made use of wishful thinking, using another function Merge that
merges two sorted lists into one.

FUNCTION Merge(MyListl : LIST[0:M-1], MyList2 : LIST[@:N-1])
RETURNS LIST

Lengthl « LENGTH(MyList1)

Length2 « LENGTH(MyList2)

TotalLength « Lengthl + Length2

DECLARE Result : LIST[0:M+N-1] // We are going to RETURN
Result.
// It is a list of length M+N
Posl <« @
Pos2 « @
PosResult « @

WHILE Posl < M AND Pos2 < N
IF MyList1[Pos1l] <= MyList2[Pos2]

THEN
Result[PosResult] « MyList1[Pos1]
Posl « Posl + 1
PosResult < PosResult + 1
ELSE
Result[PosResult] « MyList1[Pos2]
Pos2 « Pos2 + 1
PosResult « PosResult + 1
ENDIF
ENDWHILE

IF Posl =M
THEN
FOR X « Pos2 TO N-1
Result[PosResult] « MyList2[X]
PosResult « PosResult + 1
ENDFOR
ELSE
FOR X « Posl TO M-1
Result [PosResult] « MyList1[X]
PosResult « PosResult + 1
ENDFOR
ENDIF

RETURN Result
ENDFUNCTION

Try to write your own code to implement Merge sort.

lis = [25, 34, 98, 7, 41, 19, 5]

def merge(lisl, lis2): # Assume 1lisl and 1is2 are already sorted
result = []

while len(lisl) > 0 and len(lis2) > 0:
if 1isl[0] <= 1lis2[0]:
result.append(lisl.pop(0))
else:
result.append(lis2.pop(0))

if not lisl:
result.extend(1lis2)

else:
result.extend(1lisl)

return result

def mergesort(lis):

if len(lis) > 1:
half = len(lis) // 2
left, right = lis[:half], lis[half:]
sleft, sright = mergesort(left), mergesort(right)
result = merge(sleft, sright)

else:
result = lis

return result

mergesort(lis)

(5, 7, 19, 25, 34, 41, 98]

It can be shown that merge sort is O(n log n).

However, as we can see, it creates many new lists in the course of carrying out the function.
Therefore, it draws heavily on the computer's memory.

The merge sort algorithm was created by John von Neumann in 1948. In the 1980s and
1990s, other researches developed algorithms that perform merge sort in place (and hence
do not use an exponential amount of memory). These algorithms are beyond the scope of
the A-level syllabus.

Quicksort

Quicksort is another recursive sorting algorithm that uses a divide-and-conquer approach.

Unlike the merge sort algorithm described above, quicksort can be performed in place. The
main idea behind quicksort is as follows:

e Divide: Choose one element called the pivot. Rearrange the list so that all elements
smaller than the pivot are on the left of it, and all elements larger than the pivot are on
the right of it.

e Conquer: Sort each of the two smaller lists. We can do this recursively, by splitting them
again into even smaller lists until we get lists of length 1, which do not need to be sorted.

e Combine: Since the sort was performed in place, we do not need to do anything further!

A rough demonstration of the idea is shown using the Python code below. Note that this is
not a full implementation since it does not work in place. (It creates two new lists in each
step of the recursion.) It does, however, work recursively.

lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18]

def quicksort(lis):
n = len(lis)
if n == 0 or n == 1:
return lis
else:
lolist = []
hilist = []
pivot = 1lis[0]
for i in range(l, n):
if lis[i] < pivot:
lolist.append(lis[i])
else:
hilist.append(lis[i])
return quicksort(lolist) + [pivot] + quicksort(hilist)

print(quicksort(lis))

We shall see two possible implementations of quicksort.
The first is not the original implementation, but may be easier to understand and implement.

The main difficulty in the algorithm is the 'Divide' part. We will create a procedure called
Partition to do this. We divide the list into 4 sections:

1. Elements smaller than the pivot (starting from index 0);
2. Elements larger than the pivot (starting from index 1);
3. Elements which we do not know about yet (starting from index j);

4. The last element, which is the pivot.

At the beginning, the first two sections are empty, and all elements except the last (the pivot)
are in the third section. Therefore, i and j are both 0. We then look at the j th element
in the list (the start of the third section) and compare it with the pivot.

e |[fitis larger than the pivot, we simply increment j by 1, moving that element from the
third section to the second, without actually changing its location.

e [f it is smaller than the pivot, we swap it with element with index i , and then increment
both i and j by 1. This moves the element from the third section to the end of the
first section. We carry this out until the third section is empty, thatis, j is equalto n-
1.

Now, our list consists of elements smaller than the pivot, followed by elements larger than
the pivot, followed by the pivot itself. We swap the pivot with the element with index i (the
start of the second section), ensuring that our pivot is at the correct location, between the
two sections.

The algorithm is written below in pseudocode. Notice that the indices of MyList run from L
to R (instead of the more conventional 0 to n-1, oreven1to n). This is because we will
eventually have to carry out this procedure on a section of the original list, so the indices
themselves are also variables.

FUNCTION Partition(L : INTEGER, R : INTEGER, MyList : LIST)
RETURNS INTEGER
Pivot « MyList[R]

i<lL
j <L
REPEAT
IF MyList[j] > Pivot
THEN
j « _‘] + 1
ELSE // swap elements with index i and j
Temp « MyList[j]
MyList[j] « MyList[i]
MyList[i] « Temp
i«1i+1
j «] + 1
ENDIF
UNTIL j = R

MyList[R] « MyList[i] // swap elements with index i and R
(the pivot)
MyList[i] « Pivot

RETURN i
ENDFUNCTION

While the function does the work of sorting out the list, it also returns the index of the pivot
as an integer. This will be useful when we use the function to perform the quicksort later.

We can now carry out the 'Conquer' and 'Combine' parts of the algorithm.

PROCEDURE Quicksort(L : INTEGER, R : INTEGER, MyList : LIST)
IF R-L >= 1 // if the list has @ or 1 element (R -L < 1),
// then it is automatically already sorted.
THEN
PivotPos = Partition(L, R, MyList)
CALL Quicksort(L, PivotPos - 1, MyList)
CALL Quicksort(PivotPos + 1, R, MyList)
ENDIF
ENDPROCEDURE

Try to write your own code to implement quicksort.

lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18]

def partition(lis, L, R):
pivot = lis[R]
left, right = L, L

while right != R:
if lis[right] <= pivot:
lis[left], lis[right] = lis[right], lis[left]
left += 1
right += 1
lis[R], lis[left] = lis[left], pivot
return left

def quicksort(lis, L = None, R = None):
if None in (L, R):
L, R=0, len(lis) -1
if R - L >= 1:
pivot = partition(lis, L, R)
quicksort(lis, L, pivot - 1)
quicksort(lis, pivot + 1, R)
return lis

lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18]

print(quicksort(lis))

[0, 1, 2, 3, 4, 5,6, 7, 8, 9]
The second implementation is the original one described by Sir Charles Antony Richard
Hoare when he published the Quicksort algorithm in 1959. It differs from the first in the
implementation of Partition. It divides the list into only 3 sections:

1. 'Small' elements;
2. Elements which we do not know about yet;
3. 'Large' elements.

It makes use of two indices which start at the two ends of the list and gradually move
towards each other until they meet in the middle. These two indices separate the three
sections of the list. When they finally meet, the second section is empty, and the element to
which both indices point is the pivot.

At the beginning, the first and third sections are empty, so 1 isOand j is n -1.

e Look at the element with index i and the element with index j . If the smaller element
is on the right, we swap them, and then we swap the values of i and j , and then
move j closerto i by1. (If j > i,wedecrease j by1.If j < i, weincrease j
by 1.)

o If the smaller element is on the left, we move j closerto i by 1.

Eventually i and j will coincide, and the element with that index becomes the pivot. The
algorithm is written below in pseudocode.

FUNCTION Partition(L : INTEGER, R : INTEGER, MyList : LIST)
RETURNS INTEGER
i«lL
j <R
REPEAT
IF > i
THEN
IF MyList[j] < MyList[i]
THEN
// swap MyList[j] and MyList[i]
Temp « MyList[j]
MyList[j] « MyList[il]
MyList[i] « Temp

// swap j and i
Temp « j

j <1

i« Temp

// now j < i, so to move j closer to i,
add 1
j(—j+1
ELSE
jei-1
ENDIF
ELSE // when j < i
IF MyList[j] > MyList[il]
THEN
// swap MyList[j] and MyList[i]
Temp « MyListl[j]
MyList[j] « MyList[il]
MyList[i] « Temp

// swap j and i
Temp « j

j o<1

i« Temp

// now j > i, so to move j closer to i,
subtract 1
j<3-1
ELSE
j«j+1
ENDIF
ENDIF
UNTIL j = 1
RETURN i
ENDFUNCTION

The 'Conquer' and 'Combine' parts of the algorithm are the same as in the previous
implementation.

Try to write your own code to implement this version of Quicksort.

lis = [20, 47, 12, 53, 31, 84, 85, 96, 45, 18]

def partition(lis, L, R):
i, =L, R
while j != i:
if §j > 1i:
if 1lis[j] < lis[i]:
lis[i], 1lis[j] = 1lis[j], lis[i]
i, 3 =3, i+ 1
else:
j-=1
else:
if 1lis[j] > lis[i]:
lis[i], 1lis[j] = 1lis[j], lis[i]
i, 3 =3, 1i-1
else:
j+=1
return i

def quicksort(lis, L = None, R = None):
if None in (L, R):
L, R=0, len(lis) -1
if R -L >= 1:
ppos = partition(lis, L, R)
quicksort(lis, L, ppos - 1)
quicksort(lis, ppos + 1, R)
return lis

quicksort([3, 4, 5, 5, 6, 7, 8, 91])
[3, 4, 5, 5, 6, 7, 8, 9]

It can be shown that both implementations of Quicksort are O(n?) in the worse case
scenario. However, if we consider all possible permutations of a list and take the average, it
turns out that on average, it is O(n log n). In other words, a randomly chosen arrangement of
the list can be be sorted in O(n log n) time, on average. This, combined with the fact that
quicksort works in place, makes it one of the most popular sorting algorithms.

Summary

These are only a handful of the numerous sorting algorithms that have been developed over
the decades. There is no one best method for sorting because they differ so much in terms
of time complexity, memory use and ease of implementation. A summary of the time
complexities of the various sorting algorithms is given below.

Time complexity Time complexity
(best case) (average case)
(not in syllabus) (not in syllabus)

Time complexity

. ?
Algorithm Inplace? /0 o} case)

Selection sort Y 0(n?) 0(n?) 0(n?)
Bubble sort Y 0(n?) 0(n?) 0(n?)
Insertion sort Y 0(n?) O(n) 0(n?)
Merge sort N O(nlogn) O(nlogn) O(nlogn)

Quicksort Y 0(n?) O(nlog n) O(nlog n)

So what does Python do?

The sort function and the sorted method in Python are implemented using Timsort,
named after Tim Peters, one of the main developers of Python. It is a hybrid between
insertion sort and merge sort. Firstly, it looks for runs, sequences of increasing or
decreasing numbers that already occur inside the list naturally. Since Python was developed
to deal with real-world data, such sequences can be expected to occur with fairly high
frequency. While most runs may be short, there could be a few long ones. Python uses
Insertion sort to combine the shorter runs before merging them together. Timsort is O(n log
n) in the worse case and O(n) in the best case scenario.

Interactive applets

e https://csfieldguide.org.nz/en/interactives/sorting-algorithms/
e https://visualgo.net/en/sorting
o https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

Further reading

o https://classic.csunplugged.org/sorting-algorithms/
o https://www.toptal.com/developers/sorting-algorithms
e http://computationaltales.blogspot.com/2011/04/why-tailors-use-insertion-sort.html

Youtube videos

o https://www.youtube.com/watch?v=Ns4TPTC8whw (Selection sort)

e https://www.youtube.com/watch?v=yIQuKSwPIro (Bubble sort)

e https://www.youtube.com/watch?v=lyZQPjUT5B4 (Bubble sort)

e https://www.youtube.com/watch?v=6Gv8vg0OkcHc (Bubble sort)

e https://www.youtube.com/watch?v=R0alU379I3U (Insertion sort)

e https://www.youtube.com/watch?v=pcJHkWw]NI4 (Insertion sort and Selection sort
compared)

e https://www.youtube.com/watch?v=XagR3G_NVoo (Merge sort)

e https://www.youtube.com/watch?v=KF2j-9iSf4Q (Merge sort)

e https://www.youtube.com/watch?v=MZaf_91ZCrc (Quicksort)

o https://www.youtube.com/watch?v=ywWBy6J59z8 (Quicksort)

o https://www.youtube.com/watch?v=XE4VP_8Y0OBU (Quicksort)

o https://www.youtube.com/watch?v=SLauY6PpjW4 (Quicksort)

e https://www.youtube.com/watch?v=kgBjXUE_Nwc (Sorting and Big-O notation)

Some of these videos may discuss how to implement the algorithms in languages other than
Python. The basic underlying ideas are the same, but they are expressed using different
syntax.

https://csfieldguide.org.nz/en/interactives/sorting-algorithms/
https://visualgo.net/en/sorting
https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html
https://classic.csunplugged.org/sorting-algorithms/
https://www.toptal.com/developers/sorting-algorithms
http://computationaltales.blogspot.com/2011/04/why-tailors-use-insertion-sort.html
https://www.youtube.com/watch?v=Ns4TPTC8whw
https://www.youtube.com/watch?v=yIQuKSwPlro
https://www.youtube.com/watch?v=lyZQPjUT5B4
https://www.youtube.com/watch?v=6Gv8vg0kcHc
https://www.youtube.com/watch?v=ROalU379l3U
https://www.youtube.com/watch?v=pcJHkWwjNl4
https://www.youtube.com/watch?v=XaqR3G_NVoo
https://www.youtube.com/watch?v=KF2j-9iSf4Q
https://www.youtube.com/watch?v=MZaf_9IZCrc
https://www.youtube.com/watch?v=ywWBy6J5gz8
https://www.youtube.com/watch?v=XE4VP_8Y0BU
https://www.youtube.com/watch?v=SLauY6PpjW4
https://www.youtube.com/watch?v=kgBjXUE_Nwc

2020 JC1 H2 Computing 9569

23. Searching Algorithms

Besides sorting that has been covered in the previous chapter, another basic task a
computer scientist needs to be able to do is search, that is, to retrieve information stored
within some data structures.

Linear Search

Suppose we take an integer as an input, and we wish to search for this integer in an existing

array (list).

Starting from the first element in the array, we check each element in turn until the search
value is found or we reach the end of the array. This is called a linear search.

Identifier Explanation
MyList Data structure (array) to store seven integers
MaxIndex The number of elements in the array

SearchValue The value we are searching for

TRUE if the value is found

Found FALSE if the value is not found

Index Index of the array element currently being processed

A pseudocode algorithm for linear search is given below. (In this case, the array index starts
from 1.)

INPUT SearchValue
MaxIndex <« LENGTH(MyList)
Found « FALSE

Index « 0

REPEAT
Index « Index + 1
IF MyList[Index] = SearchValue
THEN
Found « TRUE
ENDIF
UNTIL FOUND = TRUE OR Index >= MaxIndex

IF Found = TRUE
THEN
OUTPUT "Value found at location:" Index
ELSE
OUTPUT "Value not found"
ENDIF

The condition in the REPEAT...UNTIL loop allows us to exit the loop once the search
element is found. Using Found makes it easier to read; it is initialised to FALSE before

entering the loop and set to TRUE once the value is found.

If the value is not in the array, the loop terminates when Index is greater than or equal to
MaxIndex , which happens when we reach the end of the array.

Try writing the algorithm in Python.

import time
MyList = [1, 6, 3, 2, 7, 8, 4, 9, 5]

def linear search(item, 1lst):
index = 0
while index < len(lst):
if lst[index] == item:
return True, index
index += 1
return False

def linear search 2(item, 1lst):
index = 0
lst.append(item)
while True:
if lst[index] == item:
break
index += 1
del lst[index]
if index == len(lst):
return False
else:
return True, index

start = time.time()
print(linear search(7, MyList))
print(linear search(5, MyList))
print(linear search(0, MyList))
print(time.time()-start)

start = time.time()

print(linear search 2(7, MyList))
print(linear search 2(5, MyList))
print(linear search 2(0, MyList))
print(time.time()-start)

(True, 4)

(True, 8)

False
0.0004279613494873047
(True, 4)

(True, 7)

False
0.0002028942108154297

Binary Search

If we know that the list we are searching from has been sorted, we can use a different

technique.

We can look at the middle entry in the list. For example, if the search value is larger than the
middle entry, we only need to search in the second half of the list. After that, we look at the
middle entry in the second half (i.e. approximately at the 3/4 mark of the original list). If the
search value is smaller than this, we know that it is in the third quarter of the original list. By

continuing to halve the section of the list, we eventually narrow it down until we find the
search value or discover that it is not in the list. Since we keep dividing the list into two
sections, this is known as a binary search.

A pseudocode algorithm for binary search is given below. (In this case, the array index starts
from 1.)

INPUT SearchValue
Found « FALSE
SearchFailed « FALSE
Left « 1

Right « MaxIndex

WHILE NOT Found AND NOT SearchFailed
Middle « (Left + Right) DIV 2
IF MyList[Middle] = SearchValue

THEN
Found < TRUE
ELSE
IF Left >= Right
THEN
SearchFailed « TRUE
ELSE
IF MyList[Middle] > SearchValue
THEN
Right « Middle - 1
ELSE
Left « Middle + 1
ENDIF
ENDIF
ENDIF
ENDWHILE

IF Found = TRUE
THEN
OUTPUT "Value found at location:" Middle
ELSE
OUTPUT "Value not found"
ENDIF

Try writing the algorithm in Python.

MyList = [1, 2, 3, 4, 5, 6, 7, 8, 9]

def binary search(item, 1lst):
found, failed = False, False
left, right, middle = 0, len(lst), None
while (not found) and (not failed):
middle = (left + right) // 2
if lst[middle] == item:
found = True
elif left >= right:
failed = True
elif 1st[middle] > item:
right = middle - 1
else:
left = middle + 1
if found == True:
return True, middle

elif failed == True:
return False

print(binary search(7, MyList))
print(binary search(5, MyList))
print(binary search(0, MyList))
(True, 6)

(True, 4)

False

What is the time complexity of linear search and binary search in the worst case scenario?

Hash Table Search
Hash Table

Another method of storing data in an array so that we can access them easily is to use the
concept of a hash table.

Comprising a key and the record, every piece of data in a hash table has a unique key. For
example, student data can use the NRIC number as the key, and the record can contain the
name, class, etc.

The idea behind the hash table is to store the value in such a way that we can calculate the
index, or address, from the key. When we wish to search for a record, we calculate the
address from the key and go to that address to access the record. The process of
calculating the index from the key is called hashing.

Ideally, we would choose a function such that every key value would give a different address
(mathematically known as a one-one function). However, this may not always be possible. If
two different key values inadvertently hash to the same address, this creates a collision.
There are some ways to handle collisions:

e Chaining: Create a linked list for collisions with the start pointer at the hashed address.

e Using overflow areas: All collisions are stored in a separate area reserved for overflows.
This is known as closed hashing.

e Using neighbouring slots: Perform a linear search from the hashed address to find a
nearby empty slot. This is known as open hashing.

Example

A shop wishes to store customer records in an array. For simplicity, suppose that the array
has 10 slots with indexes from 0 to 9. Each customer has a unique customer ID, which is a
five-digit number from 10001 to 99999.

One possible hashing function (not a very good one!) is to find the remainder when the ID is
divided by 10. This gives us a number from 0 to 9, which can be the index.

FUNCTION Hash(Key) RETURNS INTEGER
Address <« Key MOD 10
RETURN Address

ENDFUNCTION

Suppose we have three customers with IDs 45876, 32390 and 95312. They can be stored in
indexes 6, 0 and 2 respectively.

Subsequently, when the shop is going to store a customer record with ID 64636, there will
be a collision at index 6. If this customer's record is to be stored at index 6, it will overwrite
the record for the customer with ID 45876. To resolve the collision using open hashing, the
customer record with ID 64636 can be stored in the next available space, which is at index 7.

If another customer record with ID 23467 is to be stored, since the space at index 7 has
been taken up by ID 64636, it can be stored in the next available space, which is at index 8.

When searching for records, we need to take into account the fact that some key values may
not be at the correct addresses. Adjacent addresses have to be searched too when open
hashing is applied. On the other hand, we also know that the record we are searching for
does not exist if the key hashes to a location that is empty.

The following pseudocode shows how to insert a record into a hash table, and search for a
record using the key. The hash table has indexes from @ to Max .

PROCEDURE Insert(NewRecord)
Index « Hash(NewRecord.Key)
WHILE HashTable[Index] IS NOT empty // in the event of
collision(s)
Index « Index + 1 // go to next slot in
the array
IF Index > Max // at the end of the
array,
THEN // wrap around to the
beginning
Index « @
ENDIF
ENDWHILE
HashTable[Index] « NewRecord // insert the record
ENDPROCEDURE

FUNCTION FindRecord(SearchKey) RETURNS Record
Index « Hash(SearchKey)
WHILE (HashTable[Index].Key <> SearchKey) AND
(HashTable[Index] IS NOT empty)

Index « Index + 1 // go to next slot
IF Index > Max // at the end of the
array,
THEN // wrap around to the
beginning
Index « 0
ENDIF
ENDWHILE
IF HashTable[Index] IS NOT empty // if the record found
THEN
RETURN HashTable[Index] // return the record
ENDIF
ENDFUNCTION

Dictionary

Python dictionary is a data type that is an unordered collection of key-value pairs. The key
is the term used to look up the required value. (For example, in a real-life dictionary, the key
is the word and the value is the definition.) It is defined using curly braces { } . The key-
value pairs are separated using a colon : . The values can be any data types, but the keys
must be immutable, such as integers, strings or tuples.

A dictionary is implemented using a hash table, so that values can be accessed directly by
hashing the key.

As an example, an English-Malay dictionary is shown, where the key is the word in English
and the value is the corresponding Malay word.

dic = {'sun':'hari', 'moon':'bulan', 'fire':'api', 'water':'air', 'wind':'ang
print(dic)

print(dic['moon']) # look up a value using the key

dic['sky'] = 'langit' # add a new key-value pair
print(dic)

dic['long'] = 'panjang' # change or update a value
print(dic)

Note that the key types may be different, as long as they are immutable.

demo = {2:['a','b','c'], (2,4): 27, 'x':{1:2.5, 'a':3}} # the value can be an
print (demo)

print(demo[2]) # look up values using the keys
print(demo[(2,4)1])
print(demo['x"'])

print(demo['x"']1[1]) # look up a value inside the inner dictionary using i

print('a' in demo) # do these keys exist?
print('x' in demo)

print(len(demo)) # get the number of key-value pairs

for key in demo: # literates through the keys
print(key) # and display them

for key in demo: # literates through the keys
print(demo[key]) # and display the values

items = demo.items()) # get all the key-value pairs

keys = demo.keys()) # get all the keys as a list

values = demo.values()) # get all the values as a list

print(tuple(items)) # display all the key-value pairs as a tuple
print(list(keys)) # display all the keys as a list
print(list(values)) # display all the values as a list

2021 JC2 H2 Computing 9569
24. Relational Database: SQL

Introduction

Imagine a situation where you are part of the school administration team in the olden days,
having to manage hundreds and thousands of physical files of staff and student records in
multiple cabinets.

What are some of the issues that you may encounter?

With the advancement of technology, we no longer have to keep and manage physical records.

A database is a collection of data stored in an organised or logical manner. Storing data in a
database allows us to access and manage the data. Some examples of databases in real-life
include student records, supermarket inventory and contact list.

In general, there are two types of databases: relational and non-relational. In this chapter,
we shall look into the former.

A relational (SQL) database is a collection of relational tables with a fixed schema, which is
the precise description of the data to be stored and the relationships between them. In this
model, the data are stored in relational tables and represented in the form of tuples as follows.

<TableName> (<Fieldl>, <Field2>, ..)

Attributes of Relational Database

A table is a two-dimensional representation of data stored in rows and columns. Each table is
made up of records and fields.

Below is an example of a table called studentMD10, showing data of students from an
imaginary form class MD10.

RegNo Name Gender MobileNo
1 Adam M 92313291
2 Adrian M 92585955
3 Agnes F 83324112
4 Aisha F 88851896
5 Ajay M 94191061
6 Alex M 98675171
7 Alice F 95029176
8 Amy F 98640883
9 Andrew M 95172444
10 Andy M 95888639

A record is a complete set of data about a single entity in the table. In the table above, there
are 10 records, each referring to the complete set of data of a particular student.

A field or column refers to one type of data about the entities in the table. In the table above,
there are 4 fields: RegNo, Name, Gender and MobileNo.

Quick Check
Express the table StudentMD10 using the tuple representation mentioned in the previous
page.

StudentMD10 (RegNo, Name, Gender, MobileNo)

Keys in Relational Database

A candidate key is a minimal set of fields that can uniquely identify each record in a table. It
should never be empty.

A primary key is a candidate key that is most appropriate to become the main key for a table.
It uniquely identifies each record in a table and should not change over time. That is, a primary
key tells a particular record apart from another record.

Quick Check
Which of the fields in the table StudentMD10 is a suitable primary key?

RegNo

A secondary key is a candidate key that is not selected as a primary key.

A composite key is a combination of two or more fields in a table that can be used to uniquely
identify each record in a table. Uniqueness is only guaranteed when the fields are combined.
When taken individually, the fields do not guarantee uniqueness.

Quick Check

A table called studentMD1011 is shown below.
RegNo Name Gender FormClass
1 Adam M MD10
2 Adrian M MD10
3 Agnes F MD10
4 Aisha F MD10
5 Ajay M MD10
6 Alex M MD10
7 Alice F MD10
8 Amy F MD10
9 Andrew M MD10
10 Andy M MD10
1 Adam M MD11
2 Bala M MD11
3 Bee Lay F MD11
4 Ben M MD11
5 Boon Kiat M MD11
6 Boon Lim M MD11
7 Chee Seng | M MD11
8 Colin M MD11
9 Daniel M MD11
10 Eleanor F MD11

Which two fields form the composite key for the table? RegNo and FormClass

A foreign key is a field in one table that refers to the primary key in another table.

To illustrate this concept, take a look at another table below called ClassInfo with

FormClass chosen to be the primary key.

FormClass | FormTutor | BaseClass
MD10 Peter Lim F3.1
MD11 Susan Tan | F3.2

Notice that the primary key (PK) in the table C1lassInfois related or linked to the FormClass
field in table StudentMD1011. This makes FormClass in the table StudentMD1011 a foreign

key (FK).

ClassInfo StudentMD1011
FormClass (PK) D Reglo
FormTutor Name
Base(Class Gender
FormClass (FK)

Data Redundancy

Data redundancy refers to the same data being stored more than once.

Take a look at the table below.

RegNo Name Gender FormClass | FormTutor
1 Adam M MD10 Peter Lim
2 Adrian M MD10 Peter Lim
3 Agnes F MD10 Peter Lim
4 Aisha F MD10 Peter Lim
5 Ajay M MD10 Peter Lim
6 Alex M MD10 Peter Lim
7 Alice F MD10 Peter Lim
8 Amy F MD10 Peter Lim
9 Andrew M MD10 Peter Lim
10 Andy M MD10 Peter Lim

As we can see, the data for FormClass and FormTutor are repeated for students who are
in the same form class. This may lead to potential issues on insertion, updating and deletion
of data, such as:

Insertion

A new student cannot be inserted unless a form class and a form tutor have been
assigned.

Update Should Mr Peter Lim quit the school, all the records in the table would need to
be updated. Should we miss any record, it would lead to inconsistent data.
Deletion | Should all the records in the table be deleted, information on form class and form

tutor would be lost.

Data Dependency

Suppose we have the following table:

Student (MatricNo, Name, Gender, FormClass, FormTutor)
MatricNo is a unigue number assigned to every student in the college.
Functional dependency

Attribute Y is functionally dependent on attribute X (usually the primary key), if for every
valid instance of X, the value of X uniquely determines the value of Y, i.e. X > Y.

MatricNo uniquely identifies Name because if we know the MatricNo, we can know the
Name associated with it. Therefore, we can say Name is functionally dependent on MatricNo,
i.e.

MatricNo = Name
Transitive dependency
A functional dependency is said to be transitive if it is indirectly formed by two functional
dependencies. Z is transitively dependent on X if Y is functionally dependent on X, but X is

not functionally dependent on Y, and Z is functionally dependent on Y. In other words, X 2> Z
is a transitive dependency if the following hold true:

e XY
e Y does not > X
e Y>Z

FormClass is functionally dependent on MatricNo, but MatricNo is not functionally
dependent on FormClass, i.e.

MatricNo = FormClass

On the other hand, FormTutor is functionally dependent on FormClass, i.e.
FormClass = FormTutor

Therefore, we can conclude that FormTutor is transitively dependent on MatricNo, i.e.
MatricNo = FormTutor

Normalisation

Normalisation is the process of organising the tables in a database to reduce data
redundancy and prevent inconsistent data. There are at least three normal forms:

o first normal form (1NF)

e second normal form (2NF)

e third normal form (3NF)

First Normal Form (1NF)

For a table to be in 1NF, all columns must be atomic, i.e. the information cannot be broken

down further.

Consider the following table.

MatricNo | Name | Gender | Form | Form Base | CCAlInfo
Class | Tutor Class
1 Adam | M MD10 | Peter Lim F3.1 Tennis
Teacher IC = Adrian Tan
2 Adrian | M MD10 | Peter Lim F3.1 Choir
Teacher IC = Sanjay Vittal,
Art Club
Teacher IC = Nur Fauziah
3 Adam | M MD11 | Susan Tan | F3.2 Rugby
Teacher IC = Zoe Lim
4 Bala M MD11 | Susan Tan | F3.2 Tech Council
Teacher IC = Lilian Phua
5 Bee F MD11 | Susan Tan | F3.2 Choir
Lay Teacher IC = Sanjay Vittal,
Chess
Teacher IC = Edison Poh

For this example, assume that every form class has only one form tutor, and each CCA has

only one teacher IC.

The table above is not in 1NF because the CCATnfo column contains multiple values.

In order for the table to be in 1NF, we can split CCAInfo into two single-value columns:
CCAName and CCATeacherIC. Notice that the students with MatricNo 2 and 5 have multiple
CCAs. We keep this information intact by splitting their records into multiple records, each
corresponding to a different CCA. The resulting table is shown below.

Matric | Name Gender | Form | Form Base | CCA CCA

No Class | Tutor Class | Name TeacherlC

1 Adam M MD10 | Peter Lim F3.1 Tennis Adrian Tan
2 Adrian M MD10 | Peter Lim F3.1 Choir Sanjay Vittal
2 Adrian M MD10 | Peter Lim F3.1 Art Club Nur Fauziah
3 Adam M MD11 | Susan Tan | F3.2 Rugby Zoe Lim

4 Bala M MD11 | Susan Tan | F3.2 Tech Council | Lilian Phua
5 Bee lLay | F MD11 | Susan Tan | F3.2 Choir Sanjay Vittal
5 Bee Lay | F MD11 | Susan Tan | F3.2 Chess Edison Poh

The values for CCAName and CCATeacherIC are now atomic for each record.

The primary key for the above table shall be the composite key formed by MatricNo and

CCAName.

Second Normal Form (2NF)

For a table to be in 2NF, it must satisfy two conditions:
o The table should already be in 1NF.

e Every non-key attribute must be fully dependent on the entire primary key. This means

no attribute can depend on part of the primary key only.

Name, Gender, FormClass, FormTutor and BaseClass is dependent on only part of the

primary key, MatricNo.

CCATeacherIC, on the other hand, is dependent only on CCAName.

Thus, we decompose the 1NF table into three tables shown below.

Student
MatricNo | Name Gender | FormClass FormTutor BaseClass
1 Adam M MD10 Peter Lim F3.1
2 Adrian M MD10 Peter Lim F3.1
2 Adrian M MD10 Peter Lim F3.1
3 Adam M MD11 Susan Tan F3.2
4 Bala M MD11 Susan Tan F3.2
5 Bee Lay F MD11 Susan Tan F3.2
5 Bee Lay F MD11 Susan Tan F3.2
StudentCCA CCAInfo
MatricNo CCA CCA CCA
Name Name TeacherlC
1 Tennis Tennis Adrian Tan
2 Choir Choir Sanjay Vittal
2 Art Club Art Club Nur Fauziah
3 Rugby Rugby Zoe Lim
4 Tech Council Tech Council | Lilian Phua
5 Choir Choir Sanjay Vittal
5 Chess Chess Edison Poh

Quick Check

What should be the primary or composite key for each of the three tables above?

The primary key for table student should be MatricNo.

The composite key for table studentCCa should be MatricNo and CCAName.

The primary key for table CCAInfo should be CCAName.

Third Normal Form (3NF)

For a table to be in 3NF, it must satisfy two conditions:
o The table should already be in 2NF.
o The table should not have transitive dependencies.

Quick Check
Explain the transitive dependency found in the Student table.

FormTutor and BaseClass are dependent on FormClass and FormClass is dependent
on MatricNo. Therefore, FormTutor and BaseClass are transitively dependent on
MatricNo.

To remove the transitive dependency, we decompose the 2NF Student table into two tables
shown below.

Student FormInfo

MatricNo | Name Gender Form Form Form Base
Class Class Tutor Class

1 Adam M MD10 MD10 Peter Lim F3.1

2 Adrian M MD10 MD11 Susan Tan F3.2

3 Adam M MD11

4 Bala M MD11

5 Beelay |F MD11

MatricNo remains the primary key for the Student table.
FormClass shall be the primary key of the newly formed table called FormInfo.

The final design after normalisation is represented below.
Student (MatricNo, Name, Gender, EQETQ;§§§)

FormInfo (FormClass, FormTutor, BaseClass)

StudentCCA (MatricNo, CCAName)

CCAInfo (CCAName, CCATeacherIC)

The primary key for each table is indicated by underlining one or more attributes.
Each foreign key is indicated by using a dashed underline.

Note:

In the H2 Computing 9569 syllabus, candidates are required to reduce data redundancy to
3NF only. Nevertheless, going through 1NF and 2NF may help in some situations.

Entity-Relationship (E-R) Diagram

An entity-relationship (E-R) diagram is a data modelling technique that illustrates the entities
of a database and the relationships among those entities. It is useful in the planning of the
design of relational databases.

For the purpose of the syllabus, we shall only cover a simplified convention for the drawing of
E-R diagrams using crow’s foot notation.

An entity is a specific object of interest. Nouns are usually used to name entities. Entities are
represented by rectangles.

e.g. Student

A relationship describes the link between two entities. One of the following relationships can
exist between two entities:

e one-to-one

Entity 1 Entity 2

For example, at a concert with reserved seating, each ticket entitles someone to a
particular seat and each seat is linked to only one ticket.

Ticket Seat

e one-to-many

Entity 1 Entity 2

For example, a form class can have many students, but a student can belong to only
one form class.

Form Class Student

e many-to-many

Entity 1 Entity 2

For example, a CCA can have many students, and a student can join many CCAs.

Student CCAlInfo

To implement a many-to-many relationship in a relational database, we usually
decompose a many-to-many relationship into two (or more) one-to-many relationships.

e.g.

Student StudentCCA CCAlnfo

Other symbols used to describe relationships include:

H One (and only one)

O+ Zero orone

< One or many

O< Zero or many

Quick Check
Refer to the following normalised tables covered earlier.

Student (MatricNo, Name, Gender, FormClass)

FormInfo (FormClass, FormTutor, BaseClass)

StudentCCA (MatricNo, CCAName)

CCAInfo (CCAName, CCATeacherIC)

Draw an E-R diagram to model the simple school database described above.

FormInfo Student Student CCAInfo

CCA

10

Quick Check
A school library contains books that can be on loan to borrowers.

A borrower can take one or more loans.

Each loan record belongs to only one borrower.

A book can be loaned many times.

A publisher publishes one or more books.

A book can be published by zero or one publisher.

(e.g. exam papers and lecture notes are not published by an official publishing house.)

Draw an E-R diagram to model the school library database described above.

Book
Borrower J_<{ Loan

[Publisher]

Structured Query Lanquage (SQL)

Structured Query Language (SQL) is a standard computer language for the operation and
management of relational databases. It is a language used to query, insert, update and modify
data.

SQL became a standard of the American National Standards Institute (ANSI) in 1986, and of
the International Organisation for Standardisation (ISO) in 1987. Since then, the standard was
updated several times. Most major relational databases support this standard, but have their
own proprietary extensions.

There are many types of SQL database engines. A database engine is the software that a
database management system (DBMS) uses to create, read, update and delete (CRUD) data
from a database.

We are going to use SQL.ite, a widely used database engine, for the purpose of the syllabus.
It is a popular choice as embedded database software for local/client storage in application
software, such as web browsers.

Python’s IDLE comes with a built-in module for SQL.ite3.

To visualise the databases that we are going to encounter throughout the course of this study,
we shall make use of DB Browser for SQLite.

?SQLite /3

11

Database Operations

In industry-based database applications, all four categories of SQL commands listed below
are required.

o Data Definition Language (DDL) defines database schemas.
o Data Manipulation Language (DML) is used to retrieve and modify data.
o Data Control Language (DCL) is used to control access to a database.

¢ Transaction Control Language (TCL) is used to manage changes to a database,
usually at transactional level.

SQL Commands
] |
| | [|
DDL DML DCL TCL
CREATE INSERT GRANT COMMIT
ALTER SELECT REVOKE SAVEPOINT
DROP UPDATE ROLLBACK
RENAME DELETE
TRUNCATE MERGE
COMMENT CALL
EXPLAIN PLAN
LOCK TABLE

Some of the more advanced commands under DCL and TCL are more relevant to industry-
specific roles, such as database administrators.

For the purpose of our learning, we only need to be able to understand and apply these basic
CRUD database operations:

Operation SQL Command
CREATE INSERT
READ SELECT
UPDATE UPDATE
DELETE DELETE

12

SQL Data Types

Each field in an SQL table has to be associated with one data type. The following table shows

some of the common data types.

Data Type | SQL Syntax Description

String CHAR (x) Fixed length characters (x can be from 1 to 255)
VARCHAR (x) Variable length characters (x can be from 1 to 65535)
TEXT Equivalent to VARCHAR (65535)

Numeric INTEGER Integers
REAL Real numbers

Boolean BOOL True or False

Creating and Manipulating SQL Database

Refer to the school library database that we have discussed earlier on Page 11.

Open sgl lecture.db in DB Browser for SQLite. Three tables - Book, Publisher and
Unused (which shall be deleted later on), have been defined.

The summary of the tables required in this particular database, together with the fields and

their constraints, are shown below.

Borrower
Field Data Type Constraint
BorrowerlD Numeric PRIMARY KEY, AUTOINCREMENT
FirstName String NOT NULL
Surname String NOT NULL
ContactNum Numeric
Loan
Field Data Type Constraint
LoanID Numeric PRIMARY KEY, AUTOINCREMENT
BorrowerlD Numeric FOREIGN KEY to BorrowerID in Borrower table
BookID Numeric FOREIGN KEY to BookID in Book table
DateBorrowed | String (Desired format: YYYYMMDD)
Book
Field Data Type Constraint
BookID Numeric PRIMARY KEY, AUTOINCREMENT
BookTitle String NOT NULL
PublisherlD Numeric FOREIGN KEY to PublisherIDin Publisher table
Damaged Numeric NOT NULL
(0 means undamaged, 1 means damaged)
Publisher
Field Data Type Constraint
PublisherID Numeric PRIMARY KEY, AUTOINCREMENT
PublisherName | String NOT NULL

13

DDL: CREATE

The CREATE command allows us to make a new table.

CREATE TABLE <table name> (
<columnl name COLUMN1 TYPE COLUMN1 CONSTRAINT (S)>,
<column2 name COLUMN2 TYPE COLUMN2_ CONSTRAINT (S)>,

PRIMARY KEY (<columnl name>, <column2 name>, ..),
FOREIGN KEY (<column_name>) REFERENCES <table name>(<column name>)

The field constraints that we need to know are as follows:

e PRIMARY KEY
e TFOREIGN KEY .. REFERENCES ..
e NOT NULL
A value must be inserted into the field.
e UNIQUE
No two records can repeat the same value within the field.
e AUTOINCREMENT
The integer value is automatically given by the database when not specified (+1).

The following SQL statements, separated by a semi-colon, create the Borrower and Loan
tables respectively in the database.

CREATE TABLE Borrower (
BorrowerID INTEGER PRIMARY KEY AUTOINCREMENT,
FirstName VARCHAR(30) NOT NULL,
Surname VARCHAR (30) NOT NULL,
Contact INTEGER

) ;

CREATE TABLE Loan (

LoanID INTEGER PRIMARY KEY AUTOINCREMENT,
BorrowerID VARCHAR (30) NOT NULL,
BookID VARCHAR (30) NOT NULL,
DateBorrowed VARCHAR (30) NOT NULL
)
DDL: DROP

The DROP command allows us to delete an entire table and all the records inside.

DROP TABLE <table name>

e.g. DROP TABLE Unused

14

DML: INSERT

The INSERT command allows us to insert a new record in a table.

INSERT INTO <table name>(<columnl name, column2 name,
VALUES (<columnl value, column2 value, ..>)

)

Refer to the Publisher table below.

PublisherlD | PublisherName
NPH

Unpop
Appleson
Squirrel

Yellow Flame

Al WIN =

e.g. INSERT INTO Publisher VALUES (6, 'BigBooks')
OR

INSERT INTO Publisher (PublisherName) VALUES ('BigBooks')

Either statement inserts a new publisher named 'BigBooks' with PublisherID =
6. It is not necessary to specify PublisherID in this case since it is incremented

automatically.

As a quick exercise, insert the following records into the Borrower and Loan tables.

Borrower
BorrowerlD | FirstName Surname ContactNum
1 Peter Tan 999
2 Sarah Lee 81111123
3 Kumara Ravi 94456677
4 Some User

Loan
LoanID BorrowerlD BookID DateBorrowed
1 3 2 20190220
2 3 1 20181215
3 2 3 20181231
4 1 5 20190111

15

DML: SELECT

The SELECT command allows us to retrieve data from the database.

SELECT <columnl name, column2 name, ..>
FROM <table name>

WHERE <condition(s)>

ORDER BY <column_ name> ASC/DESC

Refer to the Book table below.

BookID | BookTitle PublisherlD | Damaged
1 The Lone Gatsby 5 0
2 A Winter’s Slumber 4 1
3 Life of Pie 4 0
4 A Brief History of Primates 3 0
5 To Praise a Mocking Bird 2 0
6 The Catcher in the Eye 1 1
7 H2 Computing Ten Year Series 0

To select all fields from a table, we use *.

e.g.

SELECT * FROM Book

To select only one or a subset of fields, we use the field names separated by commas.

e.g.

SELECT BookTitle FROM Book
SELECT BookID, BookTitle FROM Book

To select only rows meeting certain conditions, we use WHERE.

e.g.

SELECT BookTitle from Book WHERE Damaged = 1
This statement returns the titles of all the damaged books.

SELECT * from Book WHERE PublisherID IS NOT NULL
This statement returns all the books with PublisherID.

SELECT * from Book WHERE PublisherID = 4 AND Damaged = 0
This statement returns all the books published by a certain publisher with ID no. 4 and
are not damaged.

To order the selected records according to some field values in ascending or descending order,
we use ORDER BY .. ASC/DESC.

e.g.

SELECT BookID, BookTitle FROM Book ORDER BY PublisherID ASC
This statement returns all the book IDs and titles arranged in an ascending order of
PublishedID.

16

DML: UPDATE

The UPDATE command allows us to edit the data values in a database. One or more records
may be updated at the same time.

UPDATE <table name>
SET <columnl name = columnl value, column2 name = column2 value, .>

WHERE <condition(s)>

e.g. UPDATE Book SET Damaged = 1
WHERE BookTitle = 'To Praise a Mocking Bird'
This statement updates the condition of the book titled ‘To Praise a Mocking Bird’ to
damaged.

UPDATE Book SET BookTitle = 'Book: ' || Title
This statement updates the values of BookTit1le such that each book title now starts
with ‘Book: ‘. Note the use of | | for string concatenation.

DML: DELETE

The DELETE command allows us to delete existing records in a table.

DELETE FROM <table_pame>
WHERE <condition(s)>

e.g. DELETE FROM Publisher WHERE PublisherID = 6
This statement deletes the record having PublisherID = 6.

DELETE FROM Publisher
This statement deletes all the records in the Publisher table.

17

Quick Check
For the Book table, write an SQL statement to insert an undamaged book titled “Eleventh
Night” with BookID no. 8 and PublisherID no. 2

INSERT INTO Book
VALUES (8, 'Eleventh Night', 2, 0)

For the Book table, write an SQL statement to update the condition of the book titled
“Eleventh Night” to damaged.

UPDATE Book

SET Damaged = 1
WHERE BookTitle = 'Eleventh Night'

For the Book table, write an SQL statement to retrieve the titles of all the books with
publishers and are damaged.

SELECT BookTitle FROM Book
WHERE PublisherID IS NOT NULL AND Damaged = 1

For the Borrower table, write an SQL statement to delete all the records without contact
numbers.

DELETE FROM Borrower

WHERE ContactNum IS NULL

What is the difference between the two commands below?
DROP TABLE Tablel

DELETE FROM Table?

DROP TABLE deletes the table and all the records inside. Since the table has been deleted,
it is no longer possible to add records into Tablel anymore.

DELETE FROM does not delete the table, but only all the records inside. That means it is
possible to add records again into Table?2.

18

JOIN

The JOIN command allows us to combine data from two tables.

Inner join returns the Cartesian product of rows from the tables, i.e. it combines each row in

the first table with each row in the second table.

For example, to check the name of the publisher of each of the books in the library database,
we can write the following SQL statement.

SELECT * FROM Book, Publisher
BookID BookTitle PublisherlD Damaged PublisherlD PublisherName
1 The Lone Gatsby 5 0 1 NPH
1 The Lone Gatsby 5 0 2 Unpop
1 The Lone Gatsby 5 0 3 Appleson
1 The Lone Gatsby 5 0 4 Squirrel
1 The Lone Gatsby 5 0 5 Yellow Flame
2 A Winter’'s Slumber 4 1 1 NPH
2 A Winter's Slumber 4 1 2 Unpop
2 A Winter's Slumber 4 1 3 Appleson
2 A Winter's Slumber 4 1 4 Squirrel
2 A Winter's Slumber 4 1 5 Yellow Flame
3 Life of Pie 4 0 1 NPH
3 Life of Pie 4 0 2 Unpop
3 Life of Pie 4 0 3 Appleson
3 Life of Pie 4 0 4 Squirrel
3 Life of Pie 4 0 5 Yellow Flame
4 A Brief History Of Primates 3 0 1 NPH
4 A Brief History Of Primates 3 0 2 Unpop
4 A Brief History Of Primates 3 0 3 Appleson
4 A Brief History Of Primates 3 0 4 Squirrel
4 A Brief History Of Primates 3 0 5 Yellow Flame
5 To Praise a Mocking Bird 2 0 1 NPH
5 To Praise a Mocking Bird 2 0 2 Unpop
5 To Praise a Mocking Bird 2 0 3 Appleson
5 To Praise a Mocking Bird 2 0 4 Squirrel
5 To Praise a Mocking Bird 2 0 5 Yellow Flame
6 The Catcher in the Eye 1 1 1 NPH
6 The Catcher in the Eye 1 1 2 Unpop
6 The Catcher in the Eye 1 1 3 Appleson
6 The Catcher in the Eye 1 1 4 Squirrel
6 The Catcher in the Eye 1 1 5 Yellow Flame
7 H2 Computing Ten Year Series 0 1 NPH
7 H2 Computing Ten Year Series 0 2 Unpop
7 H2 Computing Ten Year Series 0 3 Appleson
7 H2 Computing Ten Year Series 0 4 Squirrel
7 H2 Computing Ten Year Series 0 5 Yellow Flame

19

The resulting table is a big table having many records with inconsistent data for PublisherID.
In order to retrieve only the useful records, we can add a condition as follows.

SELECT * FROM Book, Publisher
WHERE Book.PublisherID = Publisher.PublisherID

BookID BookTitle PublisherlD Damaged PublisherlD PublisherName
1 The Lone Gatsby 5 0 5 Yellow Flame

2 A Winter's Slumber 4 1 4 Squirrel

3 Life of Pie 4 0 4 Squirrel

4 A Brief History Of Primates 3 0 3 Appleson

5 To Praise a Mocking Bird 2 0 2 Unpop

6 The Catcher in the Eye 1 1 1 NPH

The table above is more meaningful as it links the book titles to the correct publishers.
However, notice that H2 Computing Ten Year Series has been omitted as it has no
PublisherID.

In such a case, we need to use left outer join, which takes into consideration all the records
from one table and records from the other that meet the join conditions.

SELECT <columnl name, column2 name, ..>
FROM <Table A>

INNER / LEFT OUTER JOIN <Table B>

ON <condition(s)>

Inner Join Left Outer Join

Table A ‘ Table B Table A ‘ Table B

SELECT * FROM Book
LEFT OUTER JOIN Publisher
ON Book.PublisherID = Publisher.PublisherID

BookID BookTitle PublisherlD Damaged PublisherlD PublisherName
1 The Lone Gatsby 5 0 5 Yellow Flame

2 A Winter’'s Slumber 4 1 4 Squirrel

3 Life of Pie 4 0 4 Squirrel

4 A Brief History Of Primates 3 0 3 Appleson

5 To Praise a Mocking Bird 2 0 2 Unpop

6 The Catcher in the Eye 1 1 1 NPH

7 H2 Computing Ten Year Series 0

20

Quick Check

Write an SQL statement to retrieve the titles of all the books that are not damaged with their
publisher names.

SELECT BookTitle, PublisherName FROM Book, Publisher
WHERE Book.PublisherID = Publisher.PublisherID AND Book.Damaged = 0

AGGREGATE FUNCTIONS

There are a few aggregate functions that we can use in SQL statements to calculate results
from a given database:

e MIN (minimum value)

¢ MAX (maximum value)

e SUM (sum of all values)

e COUNT (number of values)

OPERATORS
We have seen some operators being used in the examples earlier. These operators are often
used in the SELECT statements, but can be used in other statements like UPDATE. The

following are the three types of operators that we are expected to know.

Comparison Operators

= < >

| = <= >=
Logical Operators

OR IS I

AND IS NOT (string concatenation)

Arithmetic Operators

+ * %

- /

21

Python and SQL.ite

DB Browser for SQLite is a convenient program for us to experiment with SQL statements and
examine the results. However, it is not an appropriate program to use if we want to customise
or restrict how the contents of a database are modified or presented.

Suppose we have a database that stores information about the books in a library. We should
not use DB Browser for SQLite for users to search the database as not everyone is familiar
with SQL statements. That aside, malicious users may run harmful statements, e.g. DROP
TABLE to delete the database.

As such, a developer typically write a custom program to control how users interact with a
database, which has an interface that is easy to understand and use. Based on the users’
inputs, the program would then generate the appropriate SQL statements in the background
and run them to produce the intended results. In this way, the users are prevented from
modifying the database.

We shall learn how to write Python programs that can interact with SQLite databases using
the built-in sglite3 module.

Quick Check
Which of the following is not a valid reason why DB Browser for SQLite should not be
accessible to the users of a public library?

A Users may use the program to insert fake data into the database.

B Users may use the program to drop tables from the database.

C Users may use the program to perform a query that returns nothing.
D Users may not know how to perform the query using the program.

Loading a Database

Program 1: 1oad example.py

import sglite3

connection = sqglite3.connect ("library.db")

S N

connection.close ()

The connect () method (line 3) takes in a string that contains the path and filename of a
database file and returns a Connection object. If no path is included, the file is assumed to
be in the same directory as the Python file. Furthermore, if the specified file does not exist, an
empty file will be created with the given filename instead.

After all operations with the database are complete, the close () method (line 4) of the

Connection object should then be called. This ensures that the database file is closed
properly, but does not save any modifications that have been made to the data.

22

Executing SQL Statements

Program 2: create example.py

import sglite3

connection = sglite3.connect ("library.db")
connection.execute ("CREATE TABLE Book " +

"(ID INTEGER PRIMARY KEY, Title TEXT)")
connection.commit ()
connection.close ()

~ o U1 bW DN

The execute () method (line 4) takes in a string containing the SQL statement we wish to
run.

The commit () method (line 6) saves the change(s) made to the database.

After running the program above, we can use DB Browser for SQLite to check that a table
called Book has indeed been created.

However, if we try to run the program again, we will get the following error:

Traceback (most recent call last):
File "create example.py", line 5, in <module>
"(ID INTEGER PRIMARY KEY, Title TEXT)")
sglite3.0OperationalError: table Book already exists

This demonstrates that calling execute () is just like running regular SQL statements in the
"Execute SQL" tab of DB Browser for SQLite. Any errors caused by running SQL statements
are reported as Python exceptions.

Committing Changes and Rolling Back

Program 3: insert example incomplete.py

"VALUES (0, 'Example Book')")

1 import sglite3

2

3 connection = sglite3.connect ("library.db")

4 connection.execute ("INSERT INTO Book (ID, Title) " +
5

6

connection.close ()

The program above runs with no errors. However, if we open 1ibrary.db using DB Browser
for SQLite, we can see that the inserted data is missing from the Book table.

A transaction is a unit of work that is performed against a database. Using INSERT, UPDATE
or DELETE command opens a transaction that can either be committed or rolled back.

23

Program 4: insert example.py

import sglite3
connection = sqglite3.connect ("library.db")
connection.execute ("INSERT INTO Book (ID, Title) " +

"VALUES (0, 'Example Book')")
connection.commit ()
connection.close ()

~N o O W N

With a call to commit () added on line 6, the data are inserted and saved correctly.

Program 5: rollback example.py

1 import sqglite3

2

3 connection = sglite3.connect ("library.db")

4

5 connection.execute ("INSERT INTO Book (ID, Title) " +
6 "VALUES (1, 'Rollback Book'")")

7 connection.execute ("INSERT INTO Book (ID, Title) " +
8 "VALUES (2, 'Also Rollback Book')")
9 connection.rollback ()

10

11 connection.execute ("INSERT INTO Book (ID, Title) " +
12 "VALUES (3, 'Committed Book')")
13 connection.commit ()

14

15 connection.close ()

The rollback() method (line 9) discards any changes done by the preceding SQL
statements. In the example shown above, the first two INSERT statements are rolled back so
that they have no effect on the database. On the other hand, the last INSERT statement is
committed so it does affect the database.

This behaviour of SQLite is useful as sometimes we may wish to discard any modifications
since the last transaction was opened. For instance, in our library example, we may start the
process of placing a book on loan, but discover partway that the borrower has already reached
his limit of borrowed books. We can discard all the changes made since the transaction was
opened by calling the Connection object's rollback () method.

Warning: Starting with Python 3.6, commands that control the structure of the database, such
as CREATE TABLE and DROP TABLE, do not open a transaction and will generally take effect
immediately. This means that, by default, it is not possible to roll back such changes
automatically.

24

Parameter Substitution

Program 6: delete example.py

1 import sglite3

2

3 connection = sqglite3.connect ("library.db")

4

5 # Insert some rows first so we have something to delete
6 connection.execute ("INSERT INTO Book (ID, Title) "™ +

7 "VALUES (4, 'Extra Book')")

8 connection.execute ("INSERT INTO Book (ID, Title) " +

9 "VALUES (5, 'Also Extra Book')")

10 connection.commit ()

11

12 # Ask for ID and delete the corresponding row

13 book id = input ("Enter Book ID to delete: ")

14 connection.execute ("DELETE FROM Book WHERE ID = ?", (book id,))
15 connection.commit ()

16

17 connection.close ()

We often need to include some data that are provided by the user. For instance, we may want
the user to enter the ID of a book to delete from the database. This requires us to generate a
DELETE statement with the entered ID in its WHERE clause.

We may be tempted to use string concatenation to generate the required SQL statement,

€.g. connection.execute ("DELETE FROM Book WHERE ID = " + book id)

Unfortunately, this is insecure as special characters or keywords in the user's input are not
escaped, thus malicious users can use this loophole to inject his own SQL statements.

We should use parameter substitution to safely include data that is provided by the user. To
do this, we use the question-mark character ? as placeholders for any data provided by the
user. We then provide a second argument to execute () thatis a tuple of values to fill in the
placeholders.

Parameter substitution follows the same order in which the placeholders appear in the SQL
statement. This is illustrated by the following diagram:

v

execute(" ", (2, 4))

1st tuple item replaces
1st placeholder

2nd tuple item replaces
2nd placeholder

25

Quick Check
As mentioned previously, the following string concatenation is not safe.

connection.execute ("DELETE FROM Book WHERE ID = " + book id)

Suggest an input for book 1id that will delete all the rows in the Book table.

1 or 1

Retrieving Data from a Database

As we have already learned, the SELECT command is used to select data from the database.
When we run a SELECT command in DB Browser for SQLite, the selected rows are usually
displayed in a table.

In Python, however, we must access the selected rows using a Cursor object that is returned
by the execute () method. This cursor can go through the selected rows, one by one, using
either a for loop or the fetchone () method. Each iteration returns a tuple of the columns
in the current row.

The two programs below print out all the book titles in the Book table.

Program 7: forloop example.py

import sqglite3

connection = sglite3.connect ("library.db")
cursor = connection.execute ("SELECT ID, Title FROM Book")
for row in cursor:

print (row[1]) # Title is the second item in the tuple

~N o U W DN

connection.close ()

Program 8: fetchone example.py

1 import sglite3

2

3 connection = sglite3.connect ("library.db")

4 cursor = connection.execute ("SELECT ID, Title FROM Book")

5 row = cursor.fetchone /()

6 while row is not None:

7 print (row[1]) # Title is the second item in the tuple
8 row = cursor.fetchone ()

9

connection.close ()

The fetchone () method (Program 8 line 5) will advance the cursor to the next row, so calling
it repeatedly will iterate through the selected rows until the cursor reaches the end and returns
None.

26

Program 9: fetchall example.py

1 import sglite3

2

3 connection = sqglite3.connect ("library.db")

4 cursor = connection.execute ("SELECT ID, Title FROM Book")

5 rows = cursor.fetchall ()

6 for row in rows:

7 print (row[1]) # Title is the second item in the tuple
8 connection.close ()

Alternatively, instead of going through the rows one by one using a cursor, we may wish to
fetch all the rows at once and keep them in a 1list.

The fetchall () method (line 5) returns a 1ist of tuples with each tuple containing the
selected columns for a single row.

Program 10: row factory example.py

import sqglite3

connection = sglite3.connect ("library.db")
connection.row factory = sglite3.Row
cursor = connection.execute ("SELECT ID, Title FROM Book")
for row in cursor:

print (row["Title"]) # row is now a dictionary
connection.close ()

O J oy U b w N

Yet another alternative is to configure the SQLite connection so that each row is retrieved as
a dictionary that maps column names to field values instead. To do this, we set the
connection object's row factory attribute to the built-in sgqlite3.Row class (line 4). This
lets us change the ordering of columns in the SELECT statement without having to modify the
code for extracting individual column values.

Quick Check
Refer to Program 10.

The SQL statement on line 5 is replaced with one of the following options. Which option
would cause an error on line 7 when the program is run?

A SELECT * FROM Book

B SELECT ID FROM Book

C SELECT Title FROM Book

D SELECT Title, ID FROM Book

27

sqglite3 Module Summary

connect (filename)

Creates a Connection object using SQLite file with
the given filename

Row

Can be wused as a Connection object’s
row factory so that fetchone() returns a
dictionary that maps column names to field values
instead of returning a tuple of values

Connection Class Summary

commit ()

Saves changes to (but does not close) SQLite file

close ()

Closes (but does not save changes to) SQLite file

execute (sql)

Runs the given SQL statement on the database and
returns a Cursor object

execute (sql, values tuple)

Runs the given SQL statement (first argument) after
substituting question mark(s) with the corresponding
value(s) in the given tuple (second argument) and
returns a Cursor object

rollback ()

Undoes any changes made since the last call to
commit ()

row factory

Can be set to Row so that fetchone () returns a
dictionary that maps column names to field values
instead of returning a tuple of values

Cursor Class Summary

fetchone () Returns a tuple of values from next row of the query
result or None if there are no more values (or a
dictionary that maps column names to field values
if row factory is set to Row)

fetchall() Calls fetchone () repeatedly until it returns None

and returns a 1ist of the non-None results

28

2021 JC2 H2 Computing 9569
25. Non-Relational Database: MongoDB

Introduction

Relational Key-Value Column-Family
| o — W]
| vy} wiznanns 8
= .] ;l.lij
Graph
Analytical (OLAP) :” Document
EHH | P 2
il | wac @ Q
® ® 0 O

In the previous chapter, we have learnt about relational (SQL) database involving fixed
schema, which works well with structured data. However, with the increasing number of
ways to generate and gather data, we often need to deal with unstructured data.

A non-relational (NoSQL) database uses a storage model optimised for the specific

requirements of the types of data being stored in it instead of using tabular schema of rows
and columns found in a relational database.

’ mongo

For the purpose of the syllabus, we shall focus on MongoDB, a type of document database,
which deals with JSON (JavaScript Object Notation) documents.

Recall that in a hash table, each key points to a single value or data item. Python
dictionary is implemented using a hash table, so that the values stored can be accessed
directly by hashing the relevant keys. A document in MongoDB is akin to dictionary.

Here are the terms used in MongoDB with the corresponding terms in SQL for comparison.

MongoDB Term | SQL Term

Database Database
Collection Table
Document Row

Field Field / Column

SQL VS NoSQL Databases

SQL

NoSQL

Has fixed, predefined schema

No predefined schema, thus dynamic and
can change easily

Data are stored in tables with a fixed data
type in each field

Data are stored as collections of documents
with no fixed data types

Joins are used to get data across tables,
thus easier to use for complex queries

No join operations

The choice of database to use depends on the types of data being stored, as well as the
nature of the tasks that the database is required to perform.

SQL databases should be used if:

o the data stored has a fixed schema with the atomicity, consistency, isolation and
durability (ACID) properties critical to the database

o complex and varied queries will be frequently performed

e a high number of simultaneous transactions will be performed

Atomicity

A transaction takes place completely or does not happen at all.

Consistency

Integrity constraints are maintained at all times.

Isolation Multiple transactions can occur concurrently without leading to the
inconsistency of database state.
Durability Once a transaction has been completed, the updates and modifications to

the database are saved even if the system fails or restarts.

NoSQL databases should be used if:

o the data stored has a dynamic schema, i.e. unstructured data with flexible data types

e data storage needs to be performed quickly

e simple queries are often made due to better performance speed

o there will be an extremely large amount of data, i.e. big data

NoSQL databases address the shortcomings of SQL databases as follows:

SQL databases have predefined schemas that are difficult to change. Should we
wish to add a field to only a small number of records, we need to include the field for
the entire table.

Therefore, it can be difficult to support the processing of unstructured data using SQL
databases, unlike in NoSQL databases where data are stored in documents that
need not be of the same format.

Unlike NoSQL databases, relational databases do not usually support hierarchical
data storage where less frequently used data are moved to cheaper, slower storage
devices.

This means that the cost of storing the same amount of data in an SQL database is
more expensive than in a NoSQL database.

An SQL database is stored in one server, which makes the database unavailable
when the server fails.

NoSQL databases, on the other hand, are designed to take advantage of multiple
servers so that if one server fails, the other servers can continue to support
applications.

SQL databases are mainly vertically scalable, which means that improving the
performance usually requires upgrading the existing server with faster processors
and more memory space. Such high-performance components can be expensive and
upgrades are limited by the capacity of a single machine.

On the other hand, NoSQL databases are horizontally scalable, which means that
the performance can be improved by simply increasing the number of servers. This is
relatively cheaper as mass-produced average-performance computers are easily
available at low prices.

Python and MongoDB

To interact with MongoDB databases, we need to first connect to the MongoDB server. The
server window should remain open as long as we are accessing the database.

B ' MongoDB Server - O X

{ v: 2, key: { version: 1 }, name: "incompatible_with_version_32", ns: "admin.system.version" }
2018-11-12T11:46:50.018+0800 I INDEX [initandlisten] building index using bulk method; build
may temporarily use up to 500 megabytes of RAM

2018-11-12T11:46:50.025+0800 I INDEX [initandlisten] build index done. scanned © total records. © sec
s

2018-11-12T11:46:50.026+0800 I COMMAND [initandlisten] setting featureCompatibilityVersion to 3.4
2018-11-12T11:46:50.300+0800 I NETWORK [threadl] waiting for connections on

Just like how Python can interact with SQLite databases, it can also do the same with
MongoDB databases. For the purpose of the latter, we use the built-in pymongo module.

Connecting to a Database

Program 1: access.py

import pymongo
client = pymongo.MongoClient ("127.0.0.1", 27017)
databases = client.database names ()

print ("The databases in the MongoDB server are:")
print (databases)

O J o U Ww N

client.close ()

The MongoClient () method (line 3) connects to the local MongoDB database, which is at
port 27017 by default. The port number can be seen when we start the MongoDB server.
The IP address 127.0.0.1 is the localhost IP address.

The database names () method (line 4) retrieves the names of the databases as a 1ist.

The close () method (line 9) closes the connection to the server.

Inserting Documents

Program 2: insert.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 coll.insert one({" id":1, "title":"Johnny Math",
"genre":"comedy"})

8 coll.insert one({"title":"Star Walls"™, "genre":"science
fiction"})

9 coll.insert one({"title":"Detection"}) #no genre

10

11 list to add = []

12 list to add.append({"title":"Badman", "genre":"adventure",
"year":2015})

13 list to add.append({"title":"Averages", "genre":["science
fiction", "adventure"], "year":2017})

14 list to add.append({"title":"Octopus Man",
"genre":"adventure", "year":2017})

15 list to add.append({"title":"Fantastic Bees",
"genre":"adventure", "year":2018})

16 list to add.append({"title":"Underground", "genre":"horror",
"year":2014})

17 coll.insert many(list to add)

18

19 ¢ = db.collection names ("entertainment")

20 print ("Collections in entertainment database: ", c)
21

22 client.close()

Program 2 above demonstrates two ways of inserting documents.

The get database () method (line 4) and get collection () method (line 5) allows us
to access a specific database and a collection respectively. They are created when not
already available in the server.

The insert one () method (lines 7-9) allows the insertion of one document at a time.
The insert many () method (line 17) allows the insertion of multiple documents in a 1ist.

Note that MongoDB assigns a unique _id to each document inserted. The value of id can
be customised during the insertion process (line 7), but in so doing, we cannot run Program
2 again until we remove this document. Otherwise, the program will produce an error as we
cannot have more than one document of the same _id. When we run Program 2 again with
line 7 commented out, duplicates of the other documents will be created.

It is possible to write a program to read data from a delimited text file and insert the
documents into the database. An input file (with each row containing the name and the age
of a user) and parts of the program are given below.

Input File: input.txt

Amanda, 45
Bala, 28
Charlie, 33
Devi, 29

Fill in the blanks below.

Program 3: insert from txt.py

1 import pymongo, csv

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("users")

6

7 with open('input.txt') as csv _file:

8 csv_reader = csv.reader (csv file, delimiter="',")
9 for row in csv_reader:

10 coll.insert one({"name":row[0], "age":int(row[l])})
11

12 client.close()

Retrieving Documents

The following is a list of commonly used query operators.

Seq Equal to
Sne Not equal to
Sgt Greater than
{'field': {'Sop': ..}}
Sgte Greater than or equal to
$1t Less than
Slte Less than or equal to
Sor Logical OR
{'Sor': [{'fieldl': ..}, {'field2': ..}, ..1}
$and Logical AND
{'$Sand': [{'fieldl': ..}, {'field2': ..}, ..1}
$not Logical NOT (also retrieve documents that do not have rield)
{'field': {'$Snot': {..}}}
Sexists | Retrieve documents that have the named field
{'field': {'Sexists': True/False}}
$in Retrieve documents that have at least one of the items in the 1ist
{'field': {'S$in': ['iteml', 'item2', ..]}}
$nin Retrieve documents that do not have at least one of the items in the 1ist

{'field': {'$nin': ['iteml', 'item2', ..1}}

Program 4: viewl.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 result = coll.find()

8 print ("All documents in movies collection: ")

9 for document in result:

10 print (document)

11 print ("Document count in movies collection:", result.count())
12 print ()

13

14 query = {'genre':'adventure',6 'year': {'Sgt': 2016}}
15 result = coll.find(query)

16 print ("All movie titles with adventure genre after 2016:")
17 for document in result:

18 print (document['title'])

19 print ("There are", result.count(), "such movies.")
20 print ()

21

22 result = coll.find one({'genre':'adventure'})

23 print ("One movie with adventure genre:", result)

24

25 client.close()

The find () method (lines 7 and 15) returns a Cursor of the documents in the movies
collection. When a query is not supplied as an argument, it returns all the documents
available in the collection. The result can then be printed by means of a loop. Each
document is in the form of dictionary in Python.

The find one () method (line 22) retrieves only one document according to the order of
insertion into the collection.

The count () method (lines 11 and 19) returns the number of documents.

Program 5: view2.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 result = coll.find({'genre':{'Sin':['adventure', 'comedy']}})
8 print ("All movies with adventure or comedy genre:")
9 for document in result:

10 print (document)

11 print ()

12

13 query = {'genre':{'Sexists':False}}

14 result = coll.find(query)

15 print ("All movies without genre:")

16 for document in result:

17 print (document['title'])

18

19 client.close()

Quick Check
Modify the program above to print out:
- all movies without ‘adventure’ and ‘comedy’ as their genres in lines 7-11
- the movie title and how many years ago was the movie released for all movies with
year given in lines 13-17

result = coll.find({'genre':{'Snin':['adventure', 'comedy']}})
print ("All movies without adventure and comedy genres:")

4

query = {'year': {'Sexists':True}}
result = coll.find(query)
print ("All movies with year given:")
for document in result:
age = 2021 - document|['year']
print (" - Title: ", document['title'],
", no. of year(s) since release: ", age)

Updating Documents

Program 6: update.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)
4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 result = coll.find()

8 print ("All documents in movies collection:")
9 for document in result:

10 print (document)

11 print ()

12

13 search = {'year':{'Sgt':2016}}

14 update = {'S$set':{'year':2015}}

15 coll.update one (search, update)

16

17 result = coll.find()

18 print ("All documents in movies collection after 1lst update:")
19 for document in result:

20 print (document)

21 print ()

22

23 search = {'year':{'$eq':2015}}

24 update = {'Sunset':{'year':0}}

25 coll.update many (search, update)

26

27 result = coll.find()

28 print ("All documents in movies collection after 2nd update:")
29 for document in result:

30 print (document)

31 print ()

32

33 client.close ()

The $set operator (line 13) is called to edit the value(s) of key(s).

The update one () method (line 15) updates the first document that matches the given
criteria.

The sunset operator (line 24) is called to remove key-value pair(s).

The update many () method (line 25) updates all the documents that match the given
criteria.

10

Deleting Documents

Program 7: delete.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 result = coll.count()

8 print ("Document count in movies collection:", result)

9

10 coll.delete one({'year':2017})

11

12 result = coll.count/()

13 print ("Document count in movies collection after 1st deletion
one:", result)

14

15 coll.delete many({'year':{'Sexists':'false'}})

16

17 result = coll.count/()

18 print ("Document count in movies collection after 2nd deletion
one:", result)

19

20 client.close()

The delete one () method (line 10) deletes the first document that matches the given
criteria.

The delete many () method (line 15) deletes all the documents that match the given
criteria.

11

Dropping a Collection

Program 8: drop collection.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)

4 db = client.get database("entertainment")

5 coll = db.get collection("movies")

6

7 result = coll.count()

8 print ("Document count in movies collection:", result)

9

10 db.drop collection("movies")

11

12 result = coll.count/()

13 print ("Document count in movies collection after dropping:",
result)

14

15 client.close()

The drop collection () method (line 10) removes the collection with all the documents
inside it.

Dropping a Database

Program 9: drop database.py

1 import pymongo

2

3 client = pymongo.MongoClient ("127.0.0.1", 27017)
4 db = client.get database("entertainment")

5

6 client.drop database ("entertainment")

.

8 databases = client.database names ()

9 print ("The databases in the MongoDB server are:", databases)
10

11 client.close()

The drop database () (line 6) method removes the entire database with all the collections
and the documents inside it.

12

pymongo Module Summary

MongoClient (IP, port)

Creates a MongoDB Cclient object via connection
to the given IP address and port number

Client Class Summary

database names ()

Shows all the databases in a 1ist

get database (name)

Declares a Database object of the given name

drop_database (name)

Deletes a Database object of the given name

close ()

Closes the connection to MongoDB

Database Class Summary

collection names ()

Shows all the collections in a 1ist

get collection (name)

Declares a Collection object of the given name

drop collection (name)

Deletes a Collection object of the given name

Collection Class Summary

insert one (nosgl)

Inserts one document given the nosqgl statement

insert many(list of nosql)

Inserts multiple documents given the
list of nosqgl statements

find ()

Returns a Cursor of documents

find one (nosql)

Returns the first document that matches the given
nosql statement

update one (nosqgll, nosqgl2)

Finds the first document that matches the given
nosqgll statement and updates it given the
nosqgl?2 statement

update many(nosqgll, nosqgl2)

Finds all documents that match the given nosgll
statement and updates them given the nosgl2
statement

delete one (nosqgl)

Deletes the first document that matches the given
nosqgl statement

delete many (nosqgl)

Deletes all documents that match the given nosql
statement

count ()

Returns the number of documents

13

14

2021 JC2 H2 Computing 9569
26. Data Management and Privacy

Introduction

Data management is an administrative process that involves acquiring, validating, storing,
protecting and processing required data to ensure their integrity, accessibility and privacy for
the users.

The value of physical equipment is often far less than that of the data it contains. The loss of
data can be costly, even more so if they fall into the hands of unauthorised individuals. With
more data handled across the globe, data protection and privacy is now more crucial than
ever.

Backup and Archive

Backup and archive are two terms that are often mentioned in the same breath. On the
surface, they may seem almost analogous, but are not the same. The table below highlights
the key differences between the two.

Backup

Archive

Nature of data

Live data that are frequently
overwritten

e.g.
Drafts of newspaper articles
before publication are crucial

Data that will not be subjected to
any more changes

e.g.
Old newspaper articles, going as
far back as the very first

Since the author of a newspaper
article is still working on it
retrieval of previous drafts
should not take long to restore
should an error happen.

should the computer encounter | publication.
an error.
Data retention Short-term Long-term
e.g. e.g.
Drafts of newspaper articles can | Old newspaper articles are
be deleted as soon as the final | retained indefinitely for future
version is published. reference.
Retrieval speed Should be fast Can be slow
e.g. e.g.

Since old newspaper articles are
not likely to be used as frequently
as the recent ones, they could be
stored in an inconvenient
location. Preservation of the
information is more important
than making it readily accessible.

Version Control and Naming Convention

Version control is the practice of tracking and managing changes to data.

More often than not, several people are involved in a project over an extended period of time.
Without proper controls, this can quickly lead to confusion as to which version is the most
recent.

The usefulness of version control is as follows:

o Along with proper documentation, it allows for tracking of changes made to a particular
project. A version control table can be maintained, noting the changes and their dates.

For instance, in the case of a software, the members of the development team will
have a clear idea of what are the features that have been implemented and others that
still require implementation.

o It provides an efficient mechanism for backup with the ability to roll back to previous
versions. Should serious issues be discovered in the current version, developers can
roll back to the previous functioning version.

Naming convention should be established along with version control. For file names to be
meaningful and easily retrievable, they have to be consistent with agreed vocabulary,
numbering, punctuation, date format, etc. in a specific order.

As a simple example:

¢ Any major changes to a file can be indicated by:
‘vO1’ refers to the first version,
‘vO2’ refers to the second version, etc.

¢ Any minor changes can be indicated by:
‘v01.01’ refers to the first minor change made to the first version
‘v03.02’ refers to the second minor change made to the third version, etc.

Data Privacy

Data privacy is the requirement for data to be accessed by or disclosed to authorised
individuals only. It is crucial that unauthorised people do not have access to data they are not
supposed to have. Unfortunately, in today’s digitised society, it is easier than ever to gather
someone else’s personal data.

For instance, data on which websites you frequently visit can reveal which products you are
more likely to purchase as a shopper. This information can be highly valuable to an advertiser.
As more services become available online, the risk of fraudulent use of data increases.
Nowadays, with a photo of your identity card, a person can impersonate you and register for
a new phone line on a telco website. Previously such a transaction would have required the
person to personally register over the counter with the physical identity card. As technology
becomes increasingly more powerful, machines can gather information on a person easily,
like performing facial recognition on surveillance videos to track down the whereabouts of an
individual in a particular area.

Personal Data Protection Act

In Singapore, personal data' is protected under the Personal Data Protection Act (PDPA),
a law comprising various rules that govern the collection, use, disclosure and care of personal
data. It recognises both the rights of individuals to protect their personal data, including rights
of access and correction, as well as the needs of organisations to collect, use or disclose
personal data for legitimate and reasonable purposes.

It takes into account the following:

e Consent — Organisations must obtain an individual's knowledge and consent to collect,
use or disclose his/her personal data (with some exceptions).

¢ Notification — Organisations must inform individuals of the purposes for collecting,
using or disclosing their personal data.

e Appropriateness — Organisations may collect, use or disclose personal data only for
purposes that would be considered appropriate to a reasonable person under the given
circumstances.

e Accountability — Organisations must make information about their personal data
protection policies available on request. They should also make available the business
contact information of the representatives responsible for answering questions relating
to the organisations’ collection, use or disclosure of personal data.

To administer and enforce the PDPA, the government set up the Personal Data Protection
Commission (PDPC) in 2013.

T Personal data refers to data, whether true or not, about an individual who can be identified from that
data; or from that data and other information to which the organisation has or is likely to have access.

3

Organisations are required to abide by the following main personal data obligations:

1. Consent Obligation
Only collect, use or disclose personal data for purposes for which an individual has given his
or her consent.

2. Purpose Limitation Obligation

An organisation may collect, use or disclose personal data about an individual for the purposes
that a reasonable person would consider appropriate in the circumstances and for which the
individual has given consent.

3. Notification Obligation
Notify individuals of the purposes for which your organisation is intending to collect, use or
disclose their personal data on or before such collection, use or disclosure of personal data.

4. Access and Correction Obligation

Upon request, the personal data of an individual and information about the ways in which his
or her personal data has been or may have been used or disclosed within a year before the
request should be provided. However, organisations are prohibited from providing an
individual access if the provision of the personal data or other information could reasonably
be expected to cause harmful effects. Organisations are also required to correct any error or
omission in an individual’s personal data that is raised by the individual.

5. Accuracy Obligation

Make reasonable effort to ensure that personal data collected by or on behalf of your
organisation is accurate and complete, if it is likely to be used to make a decision that affects
the individual, or if it is likely to be disclosed to another organisation.

6. Protection Obligation

Make reasonable security arrangements to protect the personal data that your organisation
possesses or controls to prevent unauthorised access, collection, use, disclosure or similar
risks.

7. Retention Limitation Obligation

Cease retention of personal data or remove the means by which the personal data can be
associated with particular individuals when it is no longer necessary for any business or legal
purpose.

8. Transfer Limitation Obligation

Transfer personal data to another country only according to the requirements prescribed under
the regulations, to ensure that the standard of protection provided to the personal data so
transferred will be comparable to the protection under the PDPA, unless exempted by the
PDPC.

9. Accountability Obligation

Make information about your data protection policies, practices and complaints process
available on request. Designate a Data Protection Officer to ensure that your organisation
complies with the PDPA.

More information on PDPA are available at the PDPC website: http://www.pdpc.gov.sqg/

http://www.pdpc.gov.sg/

Example: Use of NRIC/FIN

The Singapore National Registration Identification Card (NRIC) number is a unique
identifier assigned to Singapore citizens and permanent residents. Similarly, the Foreign
Identification Number (FIN) is a unique identifier that is assigned to foreigners living in
Singapore. The NRIC/FIN contains personal information about the individual, such as his/her
date of birth and residential address. As unique identifiers like NRIC and FIN are permanent,
irreplaceable and often used in a variety of government transactions, we need to be careful
with such data.

Individuals should not readily provide their NRIC/FIN and personal particulars to other people
or companies. Consent is required before organisations can obtain a person’s data. Under the
PDPA, from 1 September 2019, organisations? are generally not allowed to collect, use or
disclose NRIC numbers (or copies of NRIC), except in the following circumstances:

e Collection, use or disclosure of NRIC numbers (or copies of NRIC) is required under
the law (or an exception under the PDPA applies), or

e Collection, use or disclosure of NRIC numbers (or copies of NRIC) is necessary to
accurately establish or verify the identities of the individuals to a high degree of fidelity.

For example, a medical clinic needs to see the NRIC of a patient to identify the person. The
clinic will need to keep the NRIC number, name, residential address and contact number of
the person with the medical notes for future reference. The PDPA allows for that. However, a
shopping mall cannot collect the photographs of NRICs of all the shoppers that want to
participate in their lucky draw. It is unnecessary to collect the photographs to verify the lucky
draw participant. Instead, the participants can be identified with their mobile number or be
asked to give the last 4 characters of the NRIC (i.e. partial NRIC) for verification purposes.
This reduces the security risks if the data collected is unintentionally revealed.

Imagine that you work for a telephone company.
¢ When can you ask for someone’s NRIC?
¢ What should the company do to ensure that personal data of customers are protected?

A handphone company can ask for your NRIC to verify your identify (e.g. to check that you
are indeed the person registering for a new mobile phone). The company may obtain the NRIC
number to run necessary checks. For example, by law, each person is allowed to register up
to 3 prepaid cards. The company uses your NRIC number to check that you have not
exceeded the limit.

The company should ensure that the data is stored securely, for example, encrypted and
stored in an intranet rather than on the Internet. There should be user authentication required
before someone is allowed to access the data.

2 Note that PDPA does not apply to public agencies and organisations acting on behalf of them, thus,
for example, the police can collect your personal information, including NRIC/FIN. Data collected by
public agencies are protected by other acts.

Example: Do Not Call Registry

Have you ever received calls from unknown companies who seem to know your name and
perhaps try to sell products to you? Your telephone number could have been gathered from
unexpected sources, such as a lucky draw form that you filled up long ago. With technology,
companies can easily gather and consolidate personal information. It can even automate the
making of such calls.

To prevent you from getting unnecessary marketing calls, you can register in the Do Not Call
(DNC) Registry to opt out of marketing messages and calls. The PDPA prohibits
organisations from sending marketing messages to Singapore telephone numbers, including
mobile, fixed-line, residential and business numbers that are registered with the DNC Registry.

There are three DNC registers that individuals can choose to register in:
¢ No Voice Call Register
o No Text Message Register
o No Fax Message Register

Registering the phone number in each register is to opt out of receiving marketing messages
through voice calls, text messages and fax messages.

Note that organisations that have an ongoing relationship with a subscriber or user of a
Singapore telephone number may send marketing messages on similar or related products,
services and memberships to that Singapore telephone number via text or fax without
checking against the DNC Registry. However, each exempt message must also contain an
opt-out facility that the recipient may use to opt out from receiving such telemarketing
messages. If a recipient opts out, organisations must stop sending such messages to his/her
Singapore telephone number after 30 days.

You can take various measures to protect your personal data. Do not reveal your personal
data to unknown sources. For phone calls, ensure that the caller is who he or she is before
giving your personal information. For websites and applications, read the privacy or data
protection policies of the website to understand how your data are used before agreeing with
the terms.

| have agree with the Terms and Conditions.

| agree to the collection, use, disclosure or otherwise processing of
my personal data in accordance with the Privacy Policy.

If you have queries on personal data, or to withdraw consent, you can contact the data
protection officer (DPO). Under PDPA, companies are required to appoint one or more
persons to be DPO to oversee the data protection responsibilities within the organisation and
ensure compliance with the PDPA.

Also be careful when throwing away papers containing your personal data, such as application
forms or letters from schools, banks etc. Tear or shred them so that people cannot use them
to obtain personal data about yourself.

Let’s Apply!
Read the following excerpt, which is an adaptation of an actual case, and answer the
questions that follow.

A pre-school organised a school trip for interested students and their parents. To verify that
only authorised parents turned up for the school trip, the pre-school teacher collected the
parent’s personal data (like identity card numbers).

A few days before the school trip, the teacher sent a file of the consolidated name list to the
parents’ WhatsApp chat group to remind those who signed up about the school trip. The file

contained a table that included the names of the students, along with the contact number
and identity card numbers of the parents attending.

(a) In what way was the PDPA breached in the scenario above?

The teacher released the personal data of some parents to other parents without their
permission.

(b) What precautions can a teacher take to prevent a similar accident from happening?

The teacher should have messaged each parent directly to remind the parents of the school
trip rather than messaging everyone in a group chat to minimise the possibility of accidental
leakage of personal data.

(c) What should the teacher do to the personal data obtained after the school trip?

The teacher should delete the personal data if they are not required after the school trip.
Any printed copy of the data should be shredded to prevent leakage of personal data.

2021 JC2 H2 Computing 9569
27. Hypertext Markup Language (HTML)

Introduction

Open a web browser, such as Google Chrome, and visit www.example.com. You should see
a simple web page as shown in the following screenshot.

[Example Domain X

= C ® www.example.com e

Example Domain

This domain is established to be used for illustrative examples in documents. You
may use this domain in examples without prior coordination or asking for permission.

More information...

How do you think web pages like this one are made?

Just like how programs are written in a programming language, such as Python, web pages
are written using the Hypertext Markup Language (HTML). Unlike programming languages
that are specialised for describing step-by-step instructions, HTML is used to describe the
structure of web pages. It provides control over how contents (e.g. words, images, sounds,
etc.) are displayed on the website.

To view the HTML source code of a web page in Chrome, we can press Ctrl-U. Alternatively,
we can do a right-click and select “View page source”. Try this now for the web page on
wWww.example.Ccom.

Examine the HTML source code on the web browser. Do you see that the contents of the web
page are surrounded by text enclosed in angle brackets (i.e. < and >)? The text surrounded
by angle brackets are special processing instructions for the web browser called tags.

You may also notice that there is a portion in the HTML document that does not include tags.
That is written in the Cascading Style Sheets (CSS) language that controls the appearance
of the web page. We shall cover CSS in the next chapter.

http://www.example.com/
http://www.example.com/

Anatomy of an HTML Document

Most tags consist of a start tag and an end tag. This is unlike Python that uses indentation to
represent the start and the end of a block of code. Start tags may also have one or more
attributes.

Start Tag Contents End Tag
A 1 1
| LL| 1
<a /example”>More information...
Example 1
<!DOCTYPE html>
<html>
<head>
<title>Tab title</title>
</head>
<body>
<hl>This is my 1lst header.</hl>
</body>
</html>
<!-- Add your comments here. -->
Tag Purpose
<!DOCTYPE> Declares the type and the version of the
document.
<!DOCTYPE html> indicates that it is
written in HTML5
<html> Contains the entire document
<head> Contains the metadata of a document
<body> Contains the Vvisible elements of a
document
<title> Adds a title to the web page
<hl>, <h2>, <h3>, <h4>, <h5>, <h6> | Six levels of headings
<!-- comments --> Comments

A start tag that comes with a matching end tag, such as <body> and <h1>, corresponds to a
normal element that may contain a combination of text and others. On the other hand, a start
tag that does not have a matching end tag, such as <! DOCTYPE> and , corresponds to
a void element that does not have any contents.

HTML tags are used to describe the structure of a web page by organising its contents into a
tree of elements. In general, each start tag corresponds to a single element. Take a look at
how the following HTML snippet is represented as a tree.

<body>
<hl>Mood Tracker</hl>
<p>
Today's Mood:

</p> Mood Tracker Today’s Mood:
</body>

Header Tags

Example 2

<!DOCTYPE html>

<html>
<body>
<h1>This is my 1lst header.</hl>
<h2>This is my 2nd header.</h2>
<h3>This is my 3rd header.</h3>
<h4>This is my 4th header.</h4>
<h5>This is my 5th header.</h5>
<h6>This is my 6th header.</h6>
</body>
</html>

Notice how the headers are arranged in descending order of size from h1 to h6.

Text Formatting Tags

Example 4

<!DOCTYPE html>

<html>
<body>
<hl>This is my 1lst header.</hl>
<p><u>This is my lst paragraph.</u></p>
<p>This is my 1lst statement
 and 2nd statement.</p>
<hr>
<p>This is my <i>last statement.</i></p>
</body>
</html>
Tag Purpose
<p> Adds a new paragraph
 Bolds texts
<i> Italicises texts
<u> Underlines texts

 Adds a line break
<hr> Adds a horizontal line and line break

Note that some characters have special meanings in HTML. To display them as texts, they
need to be escaped using character references that start with an ampersand (&) and end with

a semi-colon (;).

Character & < > "
Character

& < > "
reference b 9 e

Some browsers may be able to interpret the above characters correctly and display them as
intended without using the character references. However, it is best practice to use the
character references to avoid ambiguity.

Quick Check
1. Underline the tags having normal elements and circle the tags having void elements.

<!DOCTYPE html>
<html>

<head><title>Welcome Page</title></head>

<body>
<hl>Welcome to our Computing department!</hl>

<p>Feedback:</p>
<textarea name="feedback">Type here.</textarea>
<p><input type="submit"></p>

</body>

</html>

2. Create the following web page. Save your file as quiz.html.

[Python X
C © file:///C:/Users/user/Desktop/quiz.html

Python Quiz

Python is an easy-to-use interpreted language.

How much do you know about Python?

Question 1

Who created Python?

Question 2

Is === a valid operator in Python 37

Unordered and Ordered Lists

Can you spot the difference in the next two examples?

Example 5

<!DOCTYPE html>

<html>
<body>
<hl><u>About me</u></hl>
<p>I am a student studying in ACJC.</p>
<p>The following are my hobbies:</p>

Eating</1li>
Sleeping</1li>
Watching TV</1i>

</body>
</html>

Example 6

<!DOCTYPE html>

<html>
<body>
<hl><u>About me</u></hl>
<p>I am a student studying in ACJC.</p>
<p>The following are my hobbies:</p>

Eating</1li>
Sleeping</1li>
Watching TV</1li>

</body>
</html>
Tag Purpose
 Creates an unordered list where items are marked with bullet points
 Creates an ordered list where items are marked with numbers
 Marks the individual items in a list

Tables

Example 7

<!DOCTYPE html>

<html>
<body>
<hl>About me</hl>
<p>I am a student studying in ACJC.</p>
<h2>Here are my O-Level results:</h2>
<table>
<th>Subject</th>
<th>Grade</th>
<tr>
<td>English Language</td>
<td>Al</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Al</td>
</tr>
</table>
</body>
</html>
Tag Purpose
<table> Creates a table
<th> Table header
<tr> Table row
<td> Table data within a row

Note that CSS is required to show table borders.

Images and Links

Search for a picture of a dog from the Internet and save it as dogl . jpeg. Afterwards, create
the following HTML document and put it in the same directory as the image file.

Example 8

<!DOCTYPE html>

<html>
<body>

Go to google.com
</body>
</html>
Tag Purpose
 Displays an image
src= is followed by the (path of the) filename in quotation marks
alt=is followed by a text to be displayed if there is an issue with the file
<a> Anchor tag to create a link

href= is followed by the URL in quotation marks

When creating a link to an external website, the link provided must be an
absolute URL. It is necessary to include the “http://” to ensure that the
browser does not interpret it as something that resides in our file system.

Example 9

Create a directory with the following structure and include the necessary files. The following
HTML code is to be included in a HTML document named urll.html.

URL

master_images

.« monkey1.jpg

URL1
images

.| dogl.jpg
url1.html

<!DOCTYPE html>

<html>
<head>
<title>URL1</title>
</head>
<body>

</body>
</html>

If the path is not specified, it is assumed that the image file is in the same folder as the HTML
document.

If the image file is located in a sub-folder inside the same folder as the HTML file, the path
should be specified in the following format: “folder name/image name”

If the image is located in a folder that is outside of the one where the HTML file resides in, we
can use the “. .” to go to the parent directory, i.e. one level up.

Example 10

To the directory in Example 9, let us now include a folder named URL2. Create a new HTML
document to your liking and name it hello.html. The following HTML code is to be included
in a HTML document named ur12.html.

URL
master_images
./ monkey1.jpg
URL1

images

] dogl.jpg
url1.html
URL2
hello.html
url2.html

<!DOCTYPE html>

<html>
<head>
<title>URL2</title>
</head>
<body>
This is a link to Google

This links to hello.html

This links to urll.html
</body>
</html>

10

Forms

A form on a web page allows users to enter data that are sent to a server for processing. An
example of a simple form is shown below.

Feedback Form

Nmnal |

Did you enjoy the event?

OYes ONo

Which activities went well?

[Activity 1 [Activity 2 []Activity 3

Feedback:

Enter feedback here.

Upload file: Browse...

Example 11

<!DOCTYPE html>

<html>
<head>
<title>Form 1</title>
</head>
<body>
<form action='http://www.example.com'>
<hl>Feedback Form</hl>
<p>Name: <input name="username" type="text" value=""></p>
<p>Did you enjoy the event?</p>
<input type="radio" name="choicel" value="yes">Yes
<input type="radio" name="choicel" value="no">No

<p>Which activities went well?</p>
<input type="checkbox" name="choice2" value="actl">1lst
<input type="checkbox" name="choice2" value="act2">2nd
<input type="checkbox" name="choice2" value="act3">3rd

<p>Feedback:</p>
<textarea name="feedback">Enter feedback here.</textarea>
<p>Upload file: <input name="some file" type="file">

<p><input type="submit" value="Submit"></p>
</form>
</body>
</html>

11

Each form is contained in a separate <form> tag with an action attribute set to the URL
where the submitted data will be sent to. In future practical tasks, we will learn how to write a
Python program that runs on a web server to process the submitted data.

Inside the <form> tag, each <input> and <textarea> tag represents an input control
with a unique name attribute to allow the server to retrieve these inputs.

Tag Purpose

<input type = 'text'> Creates a text field

<input type = 'checkbox'> Creates a checkbox

<input type = 'radio'> Creates a radio button

<input type = 'file'> Creates a field for the uploading of file

<input type = 'submit'> Creates a submit button

<input type = 'hidden'> Creates a hidden text field, which is typically used to

include information not to be seen by the user, e.g.
which database to update the submitted information into

<textarea> Creates a multi-line text box

rows=x and cols=y can be used to specify the number
of rows and columns respectively

Grouping of HTML Code

The example below shows how <div> can be used to organise HTML code into blocks, which
is particularly useful when we want to add a style to one part of our web page.

Example 12

<!DOCTYPE html>

<html>
<body>
<div style="color:red">
<hl>This is my 1lst division.</hl>
<p>I have some words here.</p>
</div>
<div style="color:green">
<hl>This is my 2nd division.</hl1>
<p>I have more words here.</p>
</div>
</body>
</html>

12

Example 13

Another tag, , achieves a similar outcome, but it is typically used to separate a line of
code into multiple parts.

<!DOCTYPE html>

<html>
<body>
<p>Span is used to break up a long
line of code into multiple portions,
 each with their own
styling.</p>
</body>
</html>
References

HTML tags: https://www.w3schools.com/tags/default.asp
HTML special characters: https://www.w3schools.com/html/html_entities.asp

13

https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/html/html_entities.asp

2021 JC2 H2 Computing 9569

28. Cascading Style Sheets (CSS)

Introduction

We have been able to create simple web pages using HTML such as the one shown below.

The Benefits of CSS

Without CSS, web pages may look rather boring. For instance, by default, all text is black and set
in a serif font. Tables are also displayed without borders. Here is a comparison of web pages

without CSS and web pages with CSS:

Without CSS With CSS
Background is white by default Background color can be customised
Text is black by default Text color can be customised
Text uses a serif font by default Text font can be customised

Tables are displayed without borders Tables can be displayed with borders

Comments

Submit Comment

While it is possible to add styles directly into our HTML code, it makes the code long and

difficult to read. With the help of Cascading Style Sheets (CSS), we can improve
appearance of web pages greatly with almost no change to the HTML code.

The Benefits of CSS

Without CSS, web p

black and set in & rif font. Tables are also dis
comparison of web pages without CSS and web p:

i

[Wihoutcss | With 55

Background is white by default Background color can be customised

Text is black by default Text color can be customised

Text uses a serif font by default Text font can be customised

Tables are displayed without borders || Tables can be displayed with borders
Comments

pages may look rather boring. For instance, by default, all text is
without borders. Here is a

the

Just like how abstraction is useful when we do Python programming, a computer science
principle called separation of concerns applies here, where a program is divided into distinct
sections such that each section only deals with one aspect of the final product and has minimal

knowledge of the other parts.

Take a look at www.csszengarden.com. Click on any of the available designs to see how
changing CSS can dramatically affect the appearance of a web page without modifying its
HTML. You may view the source code to check that the HTML code is exactly the same for

each design.

http://www.csszengarden.com/

Anatomy of CSS

CSS is made up of multiple rules. Each rule starts with one or more selectors separated by
commas, followed by curly braces surrounding a number of declarations. Each declaration is
made of two parts: a property name and one or more values separated by spaces. Multiple
declarations in a rule are separated by semicolons.

{
font-family: ;
Rule font-style: ; ’ } Declarations

}_'_l

Property

Example 1

Use Notepad++ to type the CSS code below and save it in a folder as stylel.css.

hl {
background: red;
color: blue;
text-align: right;
}

h2, h3 {
font-family: sans-serif;
font-style: italic;
font-size: 36px;

We also need a HTML code in the same folder that uses the CSS file above.

<!DOCTYPE html>

<html>
<head>
<title>Example 1</title>
<link rel='stylesheet' href='stylel.css'>
</head>
<body>
<hl>This is my 1lst header.</hl>
<h2>This is my 2nd header.</h2>
<h3>This is my 3rd header.</h3>
</body>
</html>

Notice that we have added a <1ink> tag under the head element. The rel attribute (short
for ‘relationship’) has a value of 'stylesheet', which indicates that the hyperlink a CSS file.

Colours

As seen in the Example 1, background and color properties to set the background and text
colour of elements respectively.

The following are some of the colour names that can be used for the two properties

orange yellow green blue purple

silver white transparent
(no colour)

gray

If a desired color does not match any of the above names, we can also specify a colour in
terms of its RGB (red, green and blue) components. Each component is expressed as an
integer between 0 to 255 (inclusive) and the color is written as rgb (R, G, B).For example,
the following CSS code sets the page background to a shade of pale yellow.

{ background: 7ol

The same color can be expressed as three hexadecimal numbers of two digits each (including
a leading zero if needed). The color can thus be written as #RRGGBB, where RR is the red
component, GG is the green component and BB is the blue component, all in hexadecimal. For
example, the same shade of pale yellow can also be written as follows.

{ background: S

Notice that £ £ is the integer 255 in hexadecimal, while 80 is the integer 128 in hexadecimal.
Also note that the hexadecimal digits are not case sensitive.

For convenience, if each of the three hexadecimal numbers is made of repeated digits (e.g.
00, 11, 22, ..., FF), then the colour can be shortened to #RGB. For example, while #FFFF80
cannot be shortened, the color #00FFCC can be shortened to #0FcC.

Typography
CSS Result
{ font-family: P This is an example of a paragraph.
{ font-family: i} | This is an example of a paragraph.

The font-family property specifies which typeface is used to display the text. A serif font
such as ‘Times New Roman’ has lines extending from the ends of each letter stroke. Such fonts
are traditionally used for long pieces of printed text. A sans-serif font such as ‘Arial’, however,
does not have these additional lines. The browser will use the first font in the list that is
installed. A specific font name can also be specified. In such a case, it must be enclosed in
quotation marks, e.g. ‘Comic Sans MS’.

CSs

Result

{ font-size: ;

This is an example of a paragraph.

The font-size property can be used to specify text size in pixels.

CSS

Result

{ font-style:

This is an example of a paragraph.

{ font-weight:

This is an example of a paragraph.

{

font-style: ;

font-weight: ;
}

This is an example of a paragraph.

The font-style property specifies whether an italic font is used (i.e. normal or italic).
On the other hand, the font-weight property specifies whether a bold font is used (i.e.

normal or bold).

CSS

Result

{ text-align: ;

This is an example of a paragraph with enough
content to see how text-align works.

{ text-align:

This is an example of a paragraph with enough
content to see how text-align works.

{ text-align:

This is an example of a paragraph with enough
content to see how text-align works.

{ text-align:

This is an example of a paragraph with enough
content to see how text-align works.

The text-align property specifies how the text is aligned.

CSS

Result

{ text-decoration:

; 1+ | This is an example of a paragraph.

{

text-decoration:

; This-is-an-example-of-a-paragraph:

The text-decoration property specifies whether additional elements of the font are
displayed. The most common values of this property are none, underline and line-

through.

Box Model

Notice that some HTML tags such as <h1> and <p> always start on a new line and force the
following element to also start on a new line. On the other hand, tags such as and <i>,
do not. This is because the former have a block appearance by default, while the latter have
an inline appearance by default.

The box model is illustrated below.

width

(includes contentonly)

A
A4

Cascading Style

Sheets control the height
appearance of HTML (includes contentonly)
elements. ,

border I

Property Name Description
border Specifies the thickness of the optionally-coloured border around the
element
margin Specifies the thickness of the transparent space surrounding the
border
padding Specifies the thickness of the space between the content and the
border that is filled with the element's background colour or pattern
width Specifies the element content's width, regardless of the surrounding
margin, border and padding
height Specifies the element content's height, regardless of the
surrounding margin, border and padding

When setting a box's width and height or the thickness of its margin, border and padding, we
must specify a unit of measurement, commonly in pixels.

CSS Result

. . . his is an example of a paragraph with a 5 pixel thick red
{ border: 5Spx solid red; } Eorder written using the <p> tag.

To specify that a border should be drawn with a solid colour, we use the value of a thickness,
followed by a space, the word so11id, another space and finally the colour we wish to use for
the border.

CSS Result
{ border-bottom: 1lpx solid gray; } This is an example of a paragraph.
{ border-left: 1lpx solid gray; } [This is an example of a paragraph.
{ border-top: 1lpx solid gray; } This is an example of a paragraph.
{ border-right: lpx solid gray; } This is an example of a paragraph.

By default, the margin, border and padding properties control the appearance for all four sides
of the element's box. However, we can append -bottom, —~left, -top or —right to any of
these properties so that we control the appearance for only one side of the box.

CSS Result

{ This is an

background: silver; example of a

margin-left: auto; Paragraphthat
. . is forced to be
margin-right: auto; only 100 pixels
width: 100px; wide and
} centered.

Example 2

Use Notepad++ to type the CSS code below and save it in a folder as styles2.css.

table {
border: lpx solid black;
width: 50%;
height: 30px;
border-collapse: collapse; <!-- What is this used for? -->

}

th, td {
border: 1lpx solid red;
text-align: center;

By using the CSS code above, we can create proper tables defined by the following HTML
code.

<!DOCTYPE html>

<html>
<head>
<title>Example 2</title>
<link rel='stylesheet' href='style2.css'>
</head>
<body>
<h2>0-Level Results</h2>
<table>
<th>Subject</th>
<th>Grade</th>
<tr>
<td>English Language</td>
<td>A2</td>
</tr>
<tr>
<td>Mathematics</td>
<td>Al</td>
</tr>
<tr>
<td>Computing</td>
<td>Al</td>
</tr>
</table>
</body>
</html>

Types of Selectors

The elements that are affected by each CSS rule are determined by the selectors at the start
of that rule. We shall look at four types of selectors.

Element Selector

An element selector picks out all elements of a particular type from the HTML document. We
have been using this particular selector in the examples thus far. An example is shown below.

{ color: ; font-style: ;o)

Based on this rule, all p elements on the web page will appear as blue italic text.

What if we only want selected parts to be stylised? There is a way in which we can fine-tune
our selection by making use of two special attributes that are valid for all HTML tags.

Id Selector

An id selector picks out the unique element that has a particular value for its id attribute. To
use an id selector, we enter a hex symbol (#) followed immediately by the desired element's
id attribute value. Since id attributes on a web page cannot be repeated, an id selector will
always pick out exactly one element if it exists.

For instance, suppose we have the following HTML and CSS files in the same folder.

id-example.html

<!DOCTYPE html>

<html>
<head>
<title>ID Selectors Example</title>
<link stylesheet id-example.css">
</head>
<body>
<p>This is a normal paragraph.</p>
<p special">This paragraph is special.</p>
<p>This is a normal paragraph.</p>
</body>
</html>

id-example.css

{ color: H

If we open id-example.html, we see that only the second p element with an id of
"special" is formatted as red.

Class Selector

A class selector picks out all elements that are associated with a particular class. To use a

class selector, we enter a period (.) followed immediately by the class name we wish to
reference.

For instance, suppose we have the following HTML and CSS files in the same folder.

class-example.html

<!DOCTYPE html>

<html>
<head>
<title>Class Selectors Example</title>
<link stylesheet class—-example.css">
</head>
<body>
<p>This is the main paragraph.</p>
<p info">This is the first information.</p>
<p info">This is the second information.</p>
</body>
</html>

class-example.css

{ color: silver; }

If we open class-example.html, we see that only the second and third p elements with a
class of info are formatted as silver.

Descendent Selectors

Sometimes, it is necessary to select an element only if it has a parent element that matches
another selector. This can be achieved using the descendent selector. To use a descendent
selector, separate any two selectors using a space: the corresponding rule will only be applied
for elements that match the selector on the right and have a parent element that matches the
selector on the left.

For instance, suppose we have the following HTML and CSS files in the same folder.

descendent-example.html

<!DOCTYPE html>

<html>
<head>
<title>Descendent Selectors Example</title>
<link stylesheet descendent-example.css">
</head>
<body>
<hl>Heading with <i>Italics</i></hl>
<p>This paragraph has <i>italics</i>.</p>
<i>Bare italics</i>
</body>
</html>

descendent-example.css

{ color: .

If we open descendent-example.html, we should see the following.

Heading with Italics

This paragraph has italics.
Bare italics

Only the p element has its italics portion formatted as red. The other i elements remain
unformatted as they do not match the specific requirements of the selector, which requires the
i element to be a descendent of a p element.

References

CSS properties: https://www.w3schools.com/cssref/default.asp
CSS selector: https://www.w3schools.com/cssref/css selectors.asp

10

https://www.w3schools.com/cssref/default.asp
https://www.w3schools.com/cssref/css_selectors.asp

29 Computer Networks

Introduction

A computer does not need to be a stand-alone device. It can be connected with other
computers. For example, computers in a classroom can be connected to each other to share
files. When this is done, they form a network.

A network allows computers to
e communicate with one another
share information centrally
share copies of software
give access to data and program files to multiple users.

On the other hand, because it is more difficult to control access to a network, the files stored
on a network are also less secure than files stored on a standalone computer. Network security
will be discussed in a future chapter.

Local Area Networks (LANSs)

In a LAN, the computers are usually in the same building, or even the same room. In addition
to sharing files, they can also share hardware such as printers, scanners, and other
peripherals.

Typically, computers in the LAN are connected using cables or wireless signals. As electrical
signals deteriorate as they travel along a cable, there is a maximum length for the cable (about
300m). For a wireless LAN, there needs to be a central router that broadcasts a signal to which
all computers on the network connect. Security systems need to be put in place to ensure that
unauthorised computers do not connect to the wireless network.

A device is also needed for the central storage of files. This is carried out by a computer that
controls the network, which is known as a server. The server plays additional roles as well.

o Afile server is responsible for storing program files, the network operating system, and

users’ data files

e A domain controller server is responsible for the authentication of user log-ons.

e A print server is responsible for managing shared devices.
In a small network with a few computers, these functions may be carried out by a single
network server. If the server fails, then all work has to be stopped across the LAN. This makes
the server a vulnerability. The other computers in the network are known as clients.

The communications around such a system are difficult to control, therefore all the computers
in the network must follow a set of instructions. The network operating system provides
those instructions, carrying out tasks such as

e controlling access to the network

¢ management of the filing system

¢ management of all applications and programs available from the server

¢ management of all shared peripherals e.g. printers.

Structure and hardware in a LAN

The way that computers are connected in a network is called its topology. Each topology has
its own advantages and disadvantages, and this affects both the hardware components that
would be used. Two common topologies are the bus and star topologies. Note that the
pictures illustrate the connections between the computers, and may not reflect how the
computers are physically placed relative to each other.

a. Bus b. Star
Computer Computer Computer Computer
Computer | Computer
| | | | | AN Computer ~~
Computer Computer Computer Computer

In a bus topology, all the computers are connected to a central communication line, called the
bus. The bus topology was popularised in the 1990s when Ethernet arose as a standard for
communication.

Star topologies have been used since the 1970s when the common paradigm was that of a
large central computer serving many users. As each users’ individual terminal grew into a full
computer, a star topology emerged naturally. Nowadays, it is common in wireless networks
where communication is by means of radio broadcast and the central machine, or access
point, is the focus around which all communication is coordinated.

Bus and star networks may be connected into bigger, more complicated networks.

=—— Hub =
 Port A [N
|

- ll

A hub or receives all the data from individual computers and broadcasts them back to all the
devices on it.

A switch is more sophisticated, as it reads the destination label of the data and sends it only
to the device for which the data is intended. This reduces the amount of traffic on the network.
It sets up a temporary dedicated circuit between the sender and receiver, and releases the
circuit once the data is transferred.

Port A Port B
12-34-56-78-9A-BC | 12-3A-56-78-9A-BC
12-38-56-78-9A-BC | 12-36-56-78-9A-BC

A
—

& G'
—
VB Port B 12-36-56-78-9A-BC

0 —)—1l I:l:l:l:l:lIlIl]I"_e Segmerllt1 _I_')

| 12-38-56-78-9A-BC | 12-3A-56-78-9A-BC

A bridge connects two LAN segments. Each device has a MAC (media access control)
address (an address or serial number given to it by the manufacturer) and the bridge
maintains a table showing which MAC addresses are connected to which port. It does not vet
the data’s content to see whether it should be transferred.

192.80.0.1 192.80.1.1

© |
Router 1 ” B ‘
— .
192.80.1.3

192.80.0.2 192.80.2.1

192.80.2.2
]
192.80.0 192.80.2
Router 2
y BB N

___‘ Intranet server
%’ 192.80.2.3

213.97.56.19
Router 3 + Firewall

_/\ Host Name IP address MAC address

R ..~ | Web Server | 213.97.56.20 | 00-BF-99-20-56-13
Router 1 192.80.0.1 00-09-94-39-3B-9A
Router 2 192.80.0.2 21-00-98-8D-66-E2

A router is similar to a bridge, but it also exercises a degree of decision making. It can decide,
based on the sender and the receiver, whether to allow data to be transmitted from one device
to another. It can therefore be used as a security device.

Finally, a gateway connects a LAN to a WAN (possibly the Internet). It ensures that data
transmitted between one side and the other is appropriate and monitors the usage of the
connection. It can be considered a single point of entry to a LAN from a larger network.

Wide Area Networks (WANSs)

In a WAN, the distances between the computers are much further. A WAN may be spread
across a country or even internationally. It is thus not possible to connect the computers
directly using cables or wireless signals.

One way that computers can be connected is by using existing infrastructure such as the
telephone network.

In the past, the digital electrical signals produced by a computer were different from the
analog signals transmitted by the telephone lines are different. A device called a modem
(short for modulator-demodulator) was needed to convert the digital computer signals to
analog signals for the telephone network. At the receiving end, another modem would convert
the analog signals back to digital signals for the receiving computer.

The table below shows a comparison between a typical LAN and a typical WAN today.

LAN WAN
It is used by an organisation or company | It is used by an organisation or company to
within a site or branch connect sites or branches
It is owned by the organisation or company | It is be owned by the organisation or
company

It is one of many individual LANs at one site | It is leased from a public switched telephone
network (PSTN) company

A dedicated communication link is provided
by the PSTN

The transmission medium is twisted pair | The transmission medium is fibre-optic cable
cable or WiFi
The LAN contains a device that allows | Transmission within the WAN is from switch
connection to other networks to switch

A switch connects the WAN to each site
There are end-systems connected which are | There are no end-systems connected to the
user systems or servers WAN

The Internet

One of the WANSs developed in the US in the 1970s was known as ARPANET, named after
the Advanced Research Projects Agency (ARPA) in the US Department of Defense. This
network comprised mostly computers in military installations and research universities.

In the 1980s, the widespread use of Personal Computers (PCs) led to the creation of the first
LANs. Over time, many of these networks, which were originally designed as independent,
stand-alone networks, were eventually linked to each other, creating an inter-networking,
which was shortened to Internet.

The Internet can be described as a WAN, but this severely understates its size and complexity.
Furthermore, it is not centrally designed or organised, but evolved organically to arrive and its
current form and will continue evolving in the future. Therefore, there is no agreed definition
of its structure.

However, a hierarchy does exist within the structure of the Internet. An Internet Service
Provider (ISP) was originally conceived to give Internet access to an individual or company.
These are now called access ISPs, and they connect to middle tier or regional ISPs which are
in turn connected to first tier or backbone ISPs. An ISP is a network and connections between
ISPs are handled by Internet Exchange Points (IXPs). The first tier ISPs and content
providers can be considered to be at the top of the hierarchy.

/ | \ \ T - Tier-1 1SPs
SN\ N -

\ R G- Sou P |
// / ;&\\\ N
A H A Y N R W A 7/ R VS,

While it is common in everyday language to talk about the Internet and the World Wide Web
(WWW) as the same thing, this is not correct. The World Wide Web is a distributed application
available on the internet. Specifically, it consists of a (very large) collection of websites, each
of which contains one or more webpages.

— Tier-2 ISPs

The Internet has the following functions:
¢ Providing content from the World Wide Web
e Electronic mail
o File transfer

Intranets

An intranet is a network offering the same facilities as the Internet but solely from within a
particular organisation. Information is made available from a web server and clients access
material using web browser software.

Access to the intranet is usually restricted to people within the organization, and security can
be ensured by using passwords and secure transmission lines. Different levels of password
can be used to ensure that only specific people can access specific facilities on the intranet.

As there is a smaller volume of content on an intranet, it is more likely to be relevant to the
organization. Furthermore, the amount of control means it is more likely to be correct, relevant
and updated. As membership is restricted (and users could be identified), this means that
comments are also more likely to be relevant and sensible

Some parts of an intranet may be made available to outside users. This access is called an
extranet.

Communication protocols

When data is being transferred in a computer system, rules need to be set up for how the
transfer is to be done. The set of rules is known as a protocol.

Some items covered by protocols include:
e The wire connecting two parts of the system, and the type of connections used
o The bit rate used (the rate at which data is being sent and received) must be the same
for the sender and receiver
e The parity used (the system being used to check for mistakes in data transmission)

When two devices communicate with each other, the initial contact is a signal called a
handshake signal. This is data exchanged so that both devices can establish that they are
ready for the communication to start and they agree on the rules being used.

Informally, a data transmission between two devices may look something like this:

Sender: “Hello Receiver, | have data for you.”
Receiver: “Hello Sender, | am ready.”

Sender: “Here comes the data.”

Sender. DATA

Sender: “That was the data. Did you receive it?”
Receiver: “l received something but | think it's wrong.”

Sender: “Here comes the data (again).”

Sender. DATA

Sender: “That was the data. Did you receive it?”
Receiver: “Yes, it’s correct. I'm ready for more data.”

etc.

The communication between the sender and the receiver which is not the actual DATA consists
of handshaking and other overheads. In some networks, as much as 40% or more of the
transmitted data consists of these overheads. This increases the time needed to move DATA
through the network, but it is necessary to ensure that the message is received correctly.

Packet switching

When a message is sent from one computer to another (particularly over a WAN), the
computers may not be directly connected to each other. The message would then have to
pass through other devices.

For example, the diagram below shows a network. The devices, labelled A to E, are called
nodes, and are connected via communication lines.

It is easy for A to send a message to B or E as A is connected to both B and E directly.
However, there is no direct connection between A and C, therefore, other nodes are needed
to relay the message. However, other nodes may also be sending messages to one another
on the same network at the same time, and each communication line can only be used for one
message at a time. To ensure that messages to not get confused, garbled or lost, it is
necessary to have a system to relay messages so that they reach their destination.

Two common methods for doing this are packet switching and circuit switching.

In packet switching, the message is split into a number of equally-sized packets (also called
datagrams). Each packet is given a label which consists of the address of the destination,
and a packet sequence number. These packets are sent along the communication lines to the
destination. Each time a packet reaches a node (an intersection point), the node decides which
direction to send it on to.

For example, one packet may go from Ato E. If E can send it to C directly, E does so. However,
the connection between them may be used for another message at the same time. In this case,
E may choose to wait, or send it to D, which can send it to C.

When C receives all the packets, they are likely to be out of sequence. C needs to reassemble
the original message in the correct order.

In circuit switching (out of syllabus), the network reserves a route from A to C. The message
is then sent from A to C (via the relay nodes) as one continuous message and does not need
to be reassembled when it arrives. However, circuit switching means that part of the network
cannot be used by anyone else for the duration of the transmission.

TCP/IP protocol suite

A collection of related protocols is known as a protocol suite. The dominant protocol suite for
Internet use is known as TCP/IP, which can be explained using the diagram of a network

below.

—_—

Application|<€------ Logical peer-to-peer relationship ---—- »|Application

I o {dej“tical n]essages) I
TCP/IP

Network | € - === ~- Network [-== === === »| Network

1 | a5
|

suite

Transport | € ------ Logical peer-to-peer relationship ====~ > ?—protocol
A

A

Y

s orsssssnavveseassassassansans |dentical pad/._etg » l

Protocol stack for Protocol stack Protocol stack for
one end-system for a router another end-system

The figure shows a stack of layers for a protocols where:

Each layer except the physical layer represents software installed on an end-system
or a router

The software for each layer must provide the capability to receive and to transmit data
in full-duplex mode to an adjacent layer. This means that data can be transmitted in
both directions simultaneously.

A protocol in an upper layer is serviced by protocols in the lower layers.

The roles of the layers are summarized as follows:

The Physical layer protocols specify details about the transmission medium and
hardware, e.g. electrical properties, radio frequencies, and signals.

The Data Link layer consists of the network software that actually transfers data. It
must deal with communication details particular to the individual network in which the
computer resides. Specifications about network addresses, packet size, error reporting,
protocols used to access the underlying medium, and hardware addressing are here.

The Network layer protocols specify details about communication between two
computers across multiple networks (e.g. across the Internet). The Internet addressing
structure, the format of the Internet packets, the method of dividing a large Internet
packet into smaller packets for transmission, and mechanisms for reporting errors are
here. Examples of Network later protocols are IP, IGMP, ICMP, ARP.

The Transport layer protocols provide for communication from an application on one
end-system to an application on another end-system. Specifications about the
maximum rate a receiver and accept data, mechanisms to avoid network congestion,

and techniques to ensure data is received in the correct order are here. Examples of
Transport layer protocols are TCP, UDP, SCTP.

e The Application layer specify how a pair of applications interact when they
communicate, such as details about the format and meaning of messages that
applications can exchange and procedures to be followed. When a programmer builds
an application to communicate across a network, the programmer is devising a layer
5 protocol. Specifications for file transfer (FTP), email exchange (SMTP, POP3, IMAP),
web browsing (HTTP and DNS), voice telephone service, smartphone apps, and video
teleconferencing are here.

Therefore, an application on one end-system can behave as though there were a direct
connection with an application running on a different end system.

The TCP/IP protocol suite operates at the top three layers. The lower layers operate with a
different protocol suite (e.g. Ethemet). A router does not know about the application or
transport layers.

Some of the protocols in the TCP/IP suite include the following:

e Application layer: HTTP, SMTP, DNS, DTP, POP3
e Transport layer: TCP, UDP, SCTP
e Network layer: IP, IGMP, ICMP, ARP
The range of protocols encompassed in the TCP/IP suite is very wide and is still evolving.

We will examine some of the protocols — in particular, HTTP, TCP and IP, in more detail.

TCP

When an application on one end-system sends data to another end-system, the application is
controlled by an application-layer protocol. The protocol transmits data to the transport layer,
where the transmission control protocol (TCP) operates. The TCP protocol is responsible
for ensuring the safe delivery of data to the receiver. It creates packets to hold all the data,
where each packet consists of the header plus the user data.

TCP also ensures that any response is sent back to the application protocol. For example,
one item in the header of the data is the port number that identifies the application layer
protocol (e.g. 80 for HTTP). The packet must also include the port number for the application
layer protocol at the receiving end-system. If the packet is one of a sequence, the header must
also include the sequence number to ensure that the data is correctly assembled by the
receiving end-system.

The TCP protocol is connection-oriented. It establishes an end-to-end connection between
two host computers using a three-way handshake. The communication goes roughly like this:

e The sender sends a packet which includes the synchronization sequence bits so that
all packets will be received in the correct order.

e The receiver responds by sending back a packet containing an acknowledgement with
its own synchronization sequence bits.

e The sender sends an acknowledgement that it received the receiver’'s packet
e The transmission from sender to receiver can now take place.

TCP uses Positive Acknowledgement with Retransmission (PAR), meaning that it
automatically re-sends a packet if it has not received a positive acknowledgement after a
certain time interval. This allows missing packets to be identified and re-sent.

However, TCP is not concerned with the address of the receiving end-system.

IP_addressing
An |IP address is used to define where and to data is being transmitted. The aim is to assign

a unique, universally recognised address for each device connected to the Internet.

Currently the Internet functions with IP version 4 (IPv4) addressing, which is based on 32 bits
(four bytes) being used to define an IPv4 address. These 32 bits allow 232, or approximately
4.3 billion different addresses. IPv4 was devised in the late 1970s, before the advent of the
PC and, later, smartphones and other networked devices, and therefore did not anticipate the
sudden growth in the number of networked devices. In fact, not all 4.3 billion addresses are
available to be used. As the number of internet users in the world grows, and as each person
has multiple devices, the system will become inadequate very soon.

The original system was designed as a hierarchical address with a group of bits defining a
network (a netlD) and another group of bits defining a host on the network (a hostID).

For example, consider the IP address below. The first 16 bits are the netlD and the next 16
bits are the hostID.

10111110 000011110001100111110000

netlD hostID

As 32 bits is very long, it is common to abbreviate the IP address using dotted decimal
notation. Each set of 8 bits (1 byte) is converted into its denary equivalent.

10111110 000011110001100111110000

190 15 25 240

The IP address above would thus be abbreviated as 190.15.25.240. The netID is 190.15 and
the hostID is 25.240.

Networks are split into five different classes, as shown below. The class identifier is the first
few (1 to 4) bits of the netID. This also tells you how long the netID is.

Network | IPv4 range Class Number of | Number | Type of
class identifier | remaining | of bits | network
bits in | in
netlD hostID
A 0.0.0.0 to 127.255.255.255 0 7 24 Very large
B 128.0.0.0 to 191.255.255.255 | 10 14 16 Medium
C 192.0.0.0 t0 223.255.255.255 | 110 21 8 Small
D 224.0.0.0 t0 239.255.255.255 | 1110 - - Multi-cast
E 240.0.0.0 to 255.255.255.255 | 1111 - - Experimental

For example, a class A network IP address would be 29.68.0.43.

29 68 0 43
0 001110101000100 00000000 00101011.
glasslD hostiD
netlD

10

A class C network IP address would be 193.15.25.240.

193 15 25 240
110 00001000011110001100111110000.
classID Tosftm_/
netlD

Notice that a class A network can have 2%* = 16,777,216 possible hosts whereas a class C
network can only have 28 = 256 possible hosts.

This system does not permit a lot of flexibility. For example, a network with only 300 hosts
needs to be classified as a class B network, which actually allows for 2'® = 65,536 hosts. There
will be many potential IP addresses left unused.

To address this problem, a system called classless inter-domain routing (CIDR) was
developed to increase flexibility. A suffix is used with the IP address to indicate how many bits
are used for the netlD. For example, the IP address 195.12.6.14/21 means that the first 21
bits are the netID.

195 12 6 14 21
1100001100001100 00000110 00001110/00010101
—
netlD (21bits) hostID (11bits) suffix

Another possible way to improve efficency in IP address allocation is to use sub-netting.
Consider an organization with about 150 computers in 7 LANSs.

If each LAN connects to the internet using its | If, instead, the entire organization was
own gateway, it would look like this: allocated just one class C netID, it would
only have 256 IP addresses.

Head office
_r[eaenat—| Tian ead

office LAN
__—>| Gateway }—»l LAN ﬂ /
:lilGaltewayI ['LAN2 = —/ i
The ——>| Gateway LAN 3 j ————>| LAN2
Internet |
— | Gateway LAN 4 ‘\>

Router
__—>|Eateway i—»rLAN 5 | \
—>[cateway}—>{1ane6 sAA

The 150 computers would be spread out
among 7 class C networks. As each class C Within th at it d h ¢
network can have 256 IP addresses, there ithin the ‘organization, 1t wou ave 1o

. work out how to allocate these 256 IP
::/ZiIZblft?Jlutoén:y7$§0C:I(ielrjire]:td IP address addresses between the 7 LANs. (One

solution is to have the first three bits of the
hostID indicate the number of the LAN and
the remaining five bits identify the computer
in the LAN.)

A third solution is called network address translation (NAT). This connects an intranet to
the Internet using a NAT box, which has only one IP address which is visible over the internet
so it can be used as a sending address or receiving address.

Internally, the IP addresses in the intranet come from ranges of IP addresses which are
reserved for private networks. Each of these addresses occurs once in a network, but can be

11

used simultaneously by other private networks. There is no knowledge of this on the Internet
or any other private network.

The agreed ranges for private networks are 10.0.0.0 to 10.255.255.255, 172.16.0.0 to
172.31.255.255, and 192.168.0.0 to 192.168.255.255. (You do not need to memorise this.)

In time to come, however, the number of devices connected to the Internet will ultimately
increase beyond the 4.3 billion unique addresses available under IPv4. A new system, IPv6,
is being developed to increase the number of available addresses. This is a 128 bit system,
so there are 22 = 3.4 x 10% possible addresses. Because of their length, the 128 bits are
broken into eight 16-bit chunks, and each chunk is converted into a 4-digit hexadecimal
number. An example of an IPv6 address is (notice the colon (:) being used as a separator
instead of the dot (.))

A8FB:7A88:FFF0:0FFF:3D21:2085:66FB:FOFA.

DNS

When we access a webpage or an email box, we are actually receiving data another device
via the Internet. This device would have its own IP address. However, we (humans) do not
want to remember many individual IP addresses using the dotted decimal system. Therefore,
in 1983, the domain name system (DNS) was introduced, which allocates human-readable
domain names for Internet hosts and provides a system for finding the IP address for a given
individual domain name.

The system is stored as a hierarchical distributed database which is installed on a large
number of domain name servers covering the entire Internet. The domain name servers are
connected in a hierarchy, with powerful replicated root servers at the top of the hierarchy
supporting the entire Internet. The DNS name space, the set of possible names, is divided
into non-overlapping zones. Each zone has a primary name server with the database stored
on it, and secondary servers get information from the primary server.

There are more than 250 top-level domains which may represent countries (.sg, .my, .uk) or
generic organizations (.com, .org, .edu, .gov).

The domain is named by the path upward from it. For example, acjc.moe.edu.sg refers to
the .acjc subdomain within the .moe subdomain in the .edu domain of the .sg top-level domain.
The domain name is part of a universal resource allocator (URL) which identifies a webpage,
or an email address.

When a domain name is typed into a web browser, the following steps take place.

1. The web browser asks the DNS server for the IP address of the website.

2. If the domain is under the jurisdiction of that server, then the correct IP address can
be sent back to the user's computer.

3. If it is not under the server’s jurisdiction, it may be in the server's cache of recently
requested IP addresses. The IP address can still be retrieved and sent back to the
user's computer.

4. If not, the DNS server sends out a request a root server, which provides an address
for a DNS server with jurisdiction over the top-level domain, which can provide an
address for a DNS server for the next level domain, and so on, until a server which can
provide the IP address is found.

5. The first DNS server adds the IP address and associated URL into its cache, and
sends it to the user’'s computer.

6. The user's computer communicates with the website server and the required pages
are downloaded and displayed on the web browser.

12

Client-server architecture

In the 1980s, the traditional architecture of a mainframe computer with connected terminals
was still in common use. As PCs became more common, the client-server architecture was
developed, in which networked PCs (the clients) had access to one or more devices acting as
servers.

The essence of the client-server architecture as it was first conceived is a distributed computer
system where a client carries out part of the processing and a server carries out another part.
In order for the client and server to cooperate, software called middleware has to be present.
This basic concept still holds in present-day client-server applications but the language used
to describe how they operate has changed.

A simple example would be a shared printer. In this case, the printer plays the role of a server
(the print server) and the other computers are clients which send requests to the printer to
be carried out — in this case, printing documents.

A summary of the interaction between the client and server is shown below.

Server Application Client Application

Starts first Starts second
Does not need to know which client will | Needs to know which server to contact
contact it

Initiates contact when communication is
needed

Communicates with server by sending and
receiving data

Can terminate after interacting with server

Waits passively for contact from a client

Communicates with client by sending and
receiving data

Continues to run after servicing one client,
and waits for next client

Most instances of applications that follow the client-server paradigm have the following general
characteristics.

Server software

Client software

Consists of a special-purpose, privileged
program dedicated to providing a service

Consists of an arbitrary program that
becomes a client temporarily whenever
remote access is needed

Is invoked automatically when a system
boots, and continues to execute through
many sessions

Is invoked directly by a user, and executes
for only one session

Runs on a dedicated computer system

Runs locally on a user’s device

Waits passively for contact from arbitrary
remote clients

Actively initiates contact with a server

Can accept connections from many clients at
the same time but (usually) offers only one
service

Can access multiple services as needed, but
only contacts one remote server at a time

Requires powerful hardware and

sophisticated operating system

Does not
hardware

require especially powerful

The server is now a web server which is a suite of software that can be installed on virtually
any computer system. A web server provides access to a web application. The client is the
web browser software. The middleware is now the software that supports the transmission of
data across a network together with the provision for scripting.

13

It is worth emphasising that the original uses of the web involved a browser displaying web
pages which contained information. There was provision for downloading of this information
but the web pages were essentially static. For a client-server application, the web page is
dynamic which means that what is displayed is determined by the request made by the client.
In this context, there is almost no limit to the variety of applications that can be supported. The
only requirement is that the application involves user interaction.

The most obvious examples of a client-server application can be categorised as e-commerce
where a customer buys products online from a company. Other examples are: e-business,
email, searching library catalogues, online banking or obtaining travel timetable information.
Most applications require a web-enabled database to be installed on the server or accessible
from the server.

Thin and Thick Clients

The client-server model offers thin clients and thick clients. These refer to both hardware
and software.

Thin client Thick client
Description Heavily dependent on having a | Can work offline or online, still able
server to allow constant access to | to do processing whether it is
files and allow applications to run | connected to server or not
uninterrupted
Examples:
Needs to be connected (via |e Normal PC/laptop/tablet
LAN/WAN or Internet) toapowerfl." ° Computer game that can run
computer or server to allow independently or online
processing to take place, otherwise
it will not work
Examples:
o Web browser
e POS terminal at supermarket
that needs to be connected to
the server to find prices, charge
customers, etc
Hardware Less expensive to expand (low- | More robust (device can carry out
advantages powered and cheap devices can be | processing even when not
used) connected to server)
All devices are linked to a server | Clients have more control (they can
(data updates and new software | store their own programs and files)
installation done centrally)
Server offers protection against
hacking and malware
Hardware High reliance on the server — if the | Less secure (relies on clients to
disadvantages | server goes down or if there is a | keep their own data secure)
break in communications, the
devices cannot work Each client needs to update data
and software individually
Despite cheaper hardware, the
start-up costs are generally higher
than for thick clients

14

Data integrity issues, since many
clients access the same data which
leads to inconsistencies

Software

Always relies on a connection to
remote server or computer to work

Requires very few local resources
(such as SSD, RAM or computer
processing time)

Relies on good, stable and fast
network connection to work

Data is stored on remote server or
computer

Can run some features of the
software even when not connected
to a server

Relies heavily on local resources

More tolerant of a slow network
connection

Can store data on local resources

15

2021 JC2 H2 Computing 9569
30. Socket Programming

Introduction

Suppose we have two Python programs running at the same time. How can we send data
from one program to the other and vice versa? Most operating systems provide a powerful
mechanism to do this called sockets.

Program A \ (Program B

[bytes >

bytes

J Socket \

We can picture a socket connection as a pipe between two running programs. The pipe is
bidirectional and can carry data, represented by bytes, in both directions.

There are many kinds of sockets, but the kind that is most often discussed is called an Internet
socket. Internally, Internet sockets deliver data using the same Transmission Control
Protocol and Internet Protocol suite (TCP/IP) that is used to transmit data over the Internet.
This means that Internet sockets can deliver data between any two programs, even programs
that that are running on different computers, as long as the two computers can access each
other over the network.

In reality, however, data that are transmitted through an Internet socket may pass through
multiple devices before reaching the destination. Any of these devices can steal or modify the
data that passes through a socket unless we encrypt the data first. An illustration of sockets
that shows how the data pass through multiple devices is shown below.

Computer X Computer Y
Intermediary Intermediary
Device Device
Program A — (N Program B

[bytes [bytes [bytes >
bytes bytes bytes

-_ =

As networks can become congested, we cannot assume that data sent over Internet sockets
will be transmitted instantaneously. For instance, a program may receive only the first half of

1

a message before the second half arrives some time later. To avoid working with incomplete
data, we will need to define a protocol so that the start and end of messages can be detected
unambiguously.

IP Addresses and Port Numbers

Each end of a socket is associated with a running program and is uniquely identified by a
combined IP address and port number. The IP address identifies which device that end of
the socket is attached to and the port number identifies which program on that device is using
the socket.

Program A Program B

IP address: 192.168.1.20 IP address: 192.168.1.17

Recall that there are two kinds of IP addresses in use today: IPv4 addresses and IPv6
addresses. Currently, IPv4 addresses are more frequently encountered than IPv6 addresses,
so to simplify our discussion, we will be working with IPv4 addresses only.

Some IPv4 addresses are reserved for special use and have specific meanings. Two important
special IPv4 addresses are:

e 127.0.01 refers to the local computer
¢ 0.0.00 refers to all IP addresses for local computer

On each device, port numbers are used to distinguish between attached sockets. The device
also keeps track of which program is associated with each port and which port numbers are
still available for use by new sockets.

Port numbers can range from 0 to 65,535. However, the first 1,024 port numbers are reserved
for specific kinds of programs and should not be used for other purposes. For instance, port
80 and port 443 are reserved for use by web server programs.

Creating a Socket Connection

Creating a socket connection is a multi-step process that requires one program to be the
server and another program to be the client. The server's IP address and port number for
accepting connections must also be known ahead of time by the client.

First, the server creates a passive socket, binds it to the pre-chosen port number and listens

for an incoming connection. A passive socket is not connected and merely waits for an
incoming connection.

Listening...

Server: 192.168.1.20

Next, the client initiates a connection request using the server's IP address and port number.
If no server is listening on the chosen port, the connection will be refused.

On the other hand, if the connection request reaches an IP address and port number that a
server is listening on, the server accepts and creates a new socket for the requesting client
using a dynamically assigned port number.

Accepted!

Server: 192.168.1.20 Client: 192.168.1.17

The passive socket goes back to listening for new connections while the client and server can
now exchange data using the newly-created socket.

Listening...
New socket may re-use port number =
but must have unique IP address and
port number on other end

Server: 192.168.1.20 Client: 192.168.1.17

Note that the newly-created socket is symmetrical: data sent on one end is received on the
other end and vice versa. Once a socket is established, it can send data both from the client
to the server and vice versa.

Unicode and Encodings

Before we can start writing Python code to create our own sockets, we need understand that
socket work at a very basic level, so they can only send and receive data in the form of raw
bytes. In other words, we must be able to encode the data into a sequence of 8-bit characters
using Python's bytes type.

Thankfully, a Python str can be easily converted into bytes using the str.encode ()
method and vice versa using the bytes.decode () method.

This encoding and decoding is necessary as internally, a Python str is actually treated as a
sequence of numbers called Unicode code points. There are over a million possible code
points, so it is not always possible to represent each code point using just 8 bits. Instead, the
Unicode standard defines an encoding called UTF-8, so code points can be represented using
bytes in a space-efficient and consistent manner.

To enter a sequence of bytes directly in code, we can use a bytes literal that starts with the
letter b, followed by a sequence of bytes (in the form of ASCII characters) enclosed in

matching single or double quotation marks. Note that most escape codes that work for str
literals also work for bytes literals.

b'Raw bytes’

N
Converts bytes to
b'Raw bytes'.decode() using UTF-8 encoding
S
N
Converts to bytes
.encode() using UTF-8 encoding
S

Using the socket Module

The methods of the socket class are summarised in the table below.

Method Description

bind((host, port)) Binds socket object to the given address tuple, where
host is an IPv4 address and port is a port number

listen() Enables socket to listen for incoming connections from
clients
accept () Waits for an incoming connection and returns a tuple

containing a new socket object for the connection and an
address tuple (host, port), where host is the IPv4
address of the connected client and port is its port
number

connect ((host, port)) Initiates a connection to the given address tuple (host,
port), where host is the IPv4 address of the server and
port is its port number

recv (max_bytes) Receives and returns up to the given number of bytes from
the socket
sendall (bytes) Sends the given bytes to the socket

We can now create a basic server program. For example, let the program listen for a client on
port 12345, accepts a connection request, sends b'Hello from server\n' to the client
through the socket and finally closes the socket.

Program 1: basic_server.py

1 import socket

2

3 my socket = socket.socket ()

4 my socket.bind(('127.0.0.1", 12345))

5 my socket.listen()

6

7 new socket, address = my socket.accept ()
8 print ('Connected to: ' + str(address))

9 new socket.sendall (b'Hello from server\n')
10

11 new socket.close()

12 my socket.close ()

On line 7, socket.accept () returns a tuple of the newly created socket and a nested
address tuple. We store both the new socket and the address tuple in two variables named
new socket and address respectively. Note that new socket is the socket that we
actually use to send and receive data.

If everything is working correctly, the server should appear stuck shortly after it is started. This
is because the socket.accept () method is blocking' the program and prevents it from
continuing until a connection request is received.

To create a client that can connect to this server, start a second copy of Python. For instance,
if we use IDLE on Windows, open the Start Menu and run IDLE again. Move any windows
from the first copy of Python to one side so the two copies of Python are clearly separated.

3
& &

File Edit Shell Debug Options Window Helf File Edit Shell Debug Options Wind. Helf

Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40)
[MSC v.1900 €4 bit (AMDE4)] on win32 [MSC v.1900 €4 bit (AMDé4)] on win32

Type "copyright", "credits" or "license()" for more Type "copyright", "credits" or "license()" for more
information. information.

File Edit Format Run Options Window Helg

 File E ' - Ln:3 Cok:4

socket

my_socket = socket.socket()
my_socket.bind(('127.0.0.1 ', 12345))
my_socket.listen()

new_socket, addr = my_socket.accept()
print ('Connected to: ' str(addr))
new_socket.sendall (b'Hello from server\n')
new_socket.close ()

my_socket.close()

Ln: 12 Cok:0

Create a new Python program using the second copy of Python. If we use IDLE, select "New
File" using the shell window that is not running the server.

(& [Python 3.6.4 Shell - [m} X
File Edit Shell Debug Options Window Help File Edit Shell Debug Options Window Help
Python 3.6.4 (v3.6.4:d48eceb, Dec 19 2017, 06:54:40) New File Ctr+N ceb, Dec 19 2017, 06:54:40)
[MSC v.1900 €4 bit (AMD&4)] on win32 Open= Ctrl+0 k)] on win32

= "copy P — " " n " - Pp— nse ()" for more
Type "copyright", "credits" or "license() for more Open Module... Alt+M B" or "license ()" for more
information.
s Recent Files

Module Browser Alt+C

Path Browser

& Save Ctrl+S
File Edit Format Run Options Window Help Save As... CtrlShift+S
{ - Save Copy As... Alt+Shift+S

Ln:3 Cok:4

socket
Print Window Ctrl+P
my_socket = socket.socket()
my_socket.bind(('127.0.0.1', 12345)) Close Alt+F4
my_socket.listen() Exit Ctrl+Q

new_socket, addr = my_socket.accept ()
print ('Connected to: ' + str(addr))
new_socket.sendall (b'Hello from server\n')
new_socket.close ()

my_socket.close()

Ln: 12 Cok:0

" A “blocked” process means that it is waiting for an event to occur.

We shall now create the following basic client program that asks for the server's IP address
and port number, requests for a connection, receives and prints at most 1024 bytes from the
server and finally closes the socket.

Program 2: basic _client.py

1 import socket

2

3 my socket = socket.socket ()

4

5 address = input ('Enter IPv4 address of server: ')
6 port = int (input ('Enter port number of server: '))
5

8 my socket.connect ((address, port))

9 print (my socket.recv(1024))

10

11 my socket.close ()

Online 9, the argument for socket . recv () is required and should be set to a relatively small
power of 2. In this case, we use a value of 2" or 1024. For more information, see:
https://docs.python.org/3/library/socket.html#socket.socket.recv

Run this program using the second copy of Python, ensuring that the server started previously
is still running. At this point, the client should be prompting for the address and port number of
the server. Use the special IPv4 address 127.0.0.1 that refers to the local machine and enter
12345 as the port number. The client should successfully connect to the server and print out
the bytes that were received. At the same time, the server program should become unstuck
and end normally.

) L Python 36.4 Shell - 0 X

File Edt Shell Debug Options Window Help
> Veal €8 Vav nwes owalioe

Type "copyright®, "credits®™ or "license()* for more

Users\user\Desktop\basic

k6 Cokd L8 Cokd
=y _socket = socket.socket()

addzess = input('E ’)

port = int (input (£))

my socket.connect((address, port))
t.recv(i024))

b1 Cok0 L1 Cokd

Quick Check

Modify the code to demonstrate that data can be sent in the opposite direction. The client
should send b'Hello from client\n' tothe server and the server should print out any
bytes that are received from the client.

https://docs.python.org/3/library/socket.html%23socket.socket.recv

Designing a Protocol

The two programs from the previous section have a hidden flaw: when using the basic server
program to send longer sequences of bytes, only part of the data may be successfully
transmitted even if we increase the maximum number of bytes that socket.recv () can
receive.

To understand why, suppose that the sequence of bytes being sent is long enough that it
needs to be sent as multiple packets. We can simulate this by breaking the sequence into two
pieces and calling socket.sendall () twice, once for each piece. To simulate a busy
network that may delay transport of the second packet, we also import the t ime module and
call time.sleep () before sending the second piece.

Program 3: basic server split.py

1 import socket, time

2

3 my socket = socket.socket ()

4 my socket.bind(('127.0.0.1", 12345))
5 my socket.listen()

6

7 new socket, address = my socket.accept ()
8 new socket.sendall (b'Hello fr')

9 time.sleep (0.1)

10 new_ socket.sendall (b'om server\n')
11

12 new socket.close()

13 my socket.close ()

Run this version of the server, then run the client such that both programs run simultaneously
on the same machine. This time, the client should receive only the first piece of data. If the
client has closed the socket, the server may also produce an error when trying to send the
second piece of data.

N
L& =
File Edit Shell Debug Options Window Help
LIlLELl APWY dUUlless UL SELveLD L7 ..W.W. 1

Enter port number of server: 12345
b'Hello from server\n'

RESTART: C:\Users\user\Desktop\chat

client.py
Enter IPv4 address of server: 127.0.0.1
Enter port number of server: 12345
bE'Hello fr°'

N v
Ln: 13 Col: 4

This example illustrates that, in general, we should never assume that socket.recv () will
receive all the bytes that were sent over at one go. The only way to be certain that any received
data is complete is to agree beforehand on a protocol or set of rules for how communication
should take place. For instance, we can agree beforehand that any data we transmit will
always end with a newline character \n and that the data itself will never contain the \n
character. This very simple protocol allows us to detect the end of a transmission easily by
just searching for the \n character.

The following updates the client so that it uses the \n character to detect when the message
ends. This new client calls socket.recv () continuously and appends the received bytes to
a variable named data until the \n character is encountered.

Program 4: basic client protocol.py

1 import socket

2

3 my socket = socket.socket ()

4

5 address = input ('Enter IPv4 address of server: ')
6 port = int (input ('Enter port number of server: '))
5

8 my socket.connect ((address, port))

9

10 data = b'"'

11 while b'\n' not in data:

12 data += my socket.recv(1024)

13 print (data)

14

15 my socket.close ()

With this new client, all the data sent by the server up to and including the \n character is
successfully received and printed.

L&‘ —

File Edit Shell Debug Options Window Help

LiIlLZLl APWYT dlldlesSs UL SELWEL.D L7 .W.W. 4 A

Enter port number of server: 12345

bBE'Hello fr!

RESTART: C:\Users\user\Desktop\chat

client.py

Enter IPv4 address of server: 127.0.0.1

Enter port number of server: 12345

b'Hello from serverin'

e W
Ln: 18 Col: 4

Iterative and Concurrent Servers

Currently, the server program exits immediately after it finishes working with a client. In reality,
we often want the server program to run continuously so that it is always listening and available
for multiple clients to send connection requests. We can do this by putting the code that deals
with a client in an infinite loop.

Program 5: basic_server iterative.py

1 import socket

2

3 my socket = socket.socket ()

4 my socket.bind(('127.0.0.1"', 12345))

5 my socket.listen()

6

7 while True:

8 new socket, addr = my socket.accept ()
9 new socket.sendall (b'Hello from server\n')
10 new socket.close()

To interrupt a program that is running in an infinite loop, press Ctrl-C. In IDLE, we can also
restart the shell using Ctrl-F6.

Internally, the server's passive socket keeps a queue of connection requests that have been
received. A request is removed from this queue each time socket.accept () is called to
create a connection. If the queue is empty, socket.accept () will block the program until a
connection request is received, as expected.

Since socket.accept () is called each time the infinite loop repeats, our program is able to
handle multiple clients by processing them one at a time. This means that our program works
as an iterative server. lterative servers are easy to write, but limited as they can only handle
one client at a time.

Alternatively, we could have written our server such that it starts a thread that runs
simultaneously with the main program each time a client tries to connect. This makes the
program more complicated to write, but will let it to handle multiple clients at the same time,
hence making it a concurrent server. We will, however, only work with iterative servers at
this level.

Example: Chat Program

We now have all the tools needed to write a simple chat client and server such that two users
can take turns sending single lines of text to each other. One user would be running the server
and the other user would be running the client.

Since each message is restricted to a single line, we can be certain that the newline character
\n will never be part of a message. This means that we can adopt a similar protocol of using
\n to detect the end of a message.

10

Let us use a different port number of 6789 and create the following chat server program that
repeatedly prompts the user for some text, sends that text to the client (after encoding it into
bytes), then receives and prints out the client's response.

Program 6: chat server.py

1 import socket

2

3 listen socket = socket.socket()

4 listen socket.bind(('127.0.0.1"', 6789))

5 listen socket.listen()

6

7 chat socket, address = listen socket.accept ()
8

9 while True:

10 data = input ('INPUT SERVER: ') .encode ()
11 chat socket.sendall (data + b'\n"')

12 print ("WAITING FOR CLIENT...")

13 data = b'"'

14 while b'\n' not in data:

15 data += chat socket.recv(1024)

16 print ('CLIENT WROTE: ' + data.decode())

The client program is similar, except the order of sending and receiving is reversed.

Program 7: chat client.py

1 import socket

2

3 chat socket = socket.socket ()

4

5 address = input ('Enter IPv4 address of server: ')
o port = int (input ('Enter port number of server: '))
7

8 chat socket.connect ((address, port))

9

10 while True:

11 print ("WAITING FOR SERVER...'")

12 data = b'"'

13 while b'\n' not in data:

14 data += chat socket.recv (1024)

15 print ('SERVER WROTE: ' + data.decode())

16 data = input ('INPUT CLIENT: ') .encode ()

17 chat socket.sendall (data + b'\n")

11

Run the server and client using two different copies of Python. Once again, since the server
is running on the same machine as the client, we can use 127.0.0.1 as the server's |IPv4

address and 6789 as the port number.

File Edit Shell Debug Options Window felf
IYPE CUPYLiigiic ; Cituils Wi Zicensc () LUi WUic
information.

= RESTART: C:\Users\user\Desktop\chat_

server.py
INPUT SERVER
WAITING FOR C e
CLIENT WROTE: Great!

v are you doing?

INPUT SERVER: v
Ln:7 Col: 0
Socket

listen_socket = socket.socket()

listen_socket.bind(('127.0.0.1"', €789))

listen_socket.listen()

chac_scckec, addr = l;sce:_sccket.accept()
data = input ('INPUT SERVER: ').encode()
chac_sccke: sendall (data ‘\n')
print(TING FOR CLIENT...')
data =

b'\n data:
data += chat_sccke:.zecv(lQlM
RC ' 4+ data.decode())

print ('CLIENT WROTE:

Ln:1 Col: 0

[& *Python 3.6.4 Shell* -] X
File Edit Shell Debug Options Window Help

KELOIAK1I: U: \USELS\USEIl\UESKLUp\caac

-~

)R SERVER...

v

Ln: 12 Col: 0
L)

T socket
chat_socket = socket.socket ()

address =
port = int

chat_socket.connect ((address, port))

data D
b'\n" data:
data += chat_socket.recv (1024
print(: ' 4+ data.decode())
data = i (" CLIENT: ').encode()
chac_socket.sendall(data 4+ b'\n")
v

Ln: 1 Col: 0

Quick Check

the shell (in IDLE).

exiting.

Currently, there is no way to exit our chat programs other than to press Ctrl-C or to restart

Modify chat server.py and chat client.py so that both programs exit once the
message 'quit' is sent by any user. Ensure that all sockets are closed properly before

Example: Turn-Based Game

So far, we have been responsible for writing both the server and client programs. Sometimes,
however, both server and protocol designs may be based on an existing standard or
developed by someone else. To write a client that can communicate with an existing server,
we need to study its code and follow the expected protocol.

Conversely, sometimes the client may be developed by someone else and we need to write a
server to communicate with it. In either case, it is important to start by understanding the

protocol being used.

To demonstrate how to do this, let us examine the server program for a simple turn-based 2-
player game of Tic-Tac-Toe. First, we create a simple library that defines some constants and

a TicTacToe class to handle the game logic.

12

Program 8: tictactoe.py

1 N =3 # Size of grid

2 WIDTH = len(str (N ** 2)) # Width for each cell
3 PLAYERS = ('0O', 'X") # Player symbols

4

5 class TicTacToe:

6

7 def init (self):

8 self.board = []

9 for i in range(N):

10 self.board.append([None] * N)

11

12 def render row(self, row_index):

13 start = row index * N + 1

14 row = self.board[row index].copy()

15 for column index in range (N) :

16 if row[column index] is None:

17 cell = str(start + column_ index)
18 else:

19 cell = PLAYERS[row[column index]]
20 if len(cell) < WIDTH:

21 cell += ' ' * (WIDTH - len(cell))
22 row[column index] = ' ' + cell + ' '
23 return '|'.join(row) + '\n'

24

25 def render board(self):

26 rows = []

27 for row _index in range (N) :

28 rows.append(self.render row(row_ index))
29 divider = '-' * ((WIDTH + 3) * N - 1) + '\n'
30 return divider.join (rows)

31

32 def make move (self, player index, cell index):
33 cell index -= 1

34 self.board[cell index // NJ][

35 cell index % N] = player index

36

37 def is valid move(self, cell index):

38 if cell index < 1 or cell index > N ** 2:
39 return False

40 cell index -= 1

41 return self.board[cell index // N][

42 cell index % N] is None

43

44 def is full (self):

45 for row index in range(N):

46 for column_ index in range (N) :

47 if self.board[row index] [

48 column_index] is None:

49 return False

50 return True

51

13

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

def get winner (self):
Check diagonals
if self.board[0][0] is not None:
found = True
for i in range(N):
if self.board[0][0] != self.board[i][i]:
found = False
break
if found:
return self.board[0] [0]
if self.board[0] [N - 1] is not None:
found = True
for i in range (N):

if self.board[0] [N - 1] != self.board[i][N - i - 17:
found = False
break
if found:

return self.board[0] [N - 1]

Check rows and columns
for i in range(N):
if self.board[i][0] is not None:
found = True
for j in range(N):

if self.board[i][0] != self.board[i][]]:
found = False
break
if found:

return self.board[i] [0]
if self.board[0][i] is not None:
found = True
for j in range(N):

if self.board[0][i] != self.board[j][i]:
found = False
break
if found:

return self.board[0] [1i]

No matching lines were found, so no winner
return None

14

The table below summarises the methods in TicTacToe class.

Method

Description

render row (row index)

Returns a string representation of the specified row,
e.g.

render board /()

11213
4 | 51 6
71 8 1 9

make move (player index,
cell index)

Modifies the board such that the specified cell is
marked with the symbol for the specified player

is valid move (cell index)

Returns whether the specified cell is currently blank

is_full()

Returns whether the entire board has been filled up

get winner ()

Returns winning player for the current board or None if
there is no winner

Using this library, we create a server program that creates a TicTacToe object on line 9 to
store information about the Tic-Tac-Toe board.

Program 9: game server.py

1 import socket, tictactoe

2

3 listen socket = socket.socket ()

4 listen socket.bind(('127.0.0.1', 3456))
5 listen socket.listen()

6

7 game_socket, addr = listen socket.accept ()
8 game = tictactoe.TicTacToe ()

9

10 while True:

11 # Display current Tic-Tac-Toe board
12 print (game.render board())

13

14 # Check if client player won

15 if game.get winner () is not None:
16 print ('Opponent wins!")

17 print ()

18 break

19

15

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

Check if board is full
if game.is full():
print ('Stalemate!"')
print ()
break

Prompt for move from server player

"))

move = -1

while move != 0 and not game.is valid move (move) :
move = int (input ('Server moves (0 to quit):

print ()

if move == 0:

game_socket.sendall(b'END\n')
print ('You quit, opponent wins!')
print ()
break
game.make move (0, move)
game socket.sendall (b'MOVE' + str(move) .encode ()

Display current Tic-Tac-Toe board
print (game.render board())

Check if server player won

if game.get winner() is not None:
print ('You win!")
print ()
break

Check if board is full
if game.is full():
print ('Stalemate!"')
print ()
break

Receive move from client player
received = b''
while b'\n' not in received:

received += game socket.recv(1024)
if received.startswith (b'MOVE') :

move = int(received[4:])
print ('Client moves: ' + str (move))
print ()

game.make move (1, move)

elif received.startswith (b'END') :
print ('Opponent quits, you win!')
print ()
break

game socket.close()
listen socket.close()

+ b'\n'")

16

Analysing this server code, we see that communications with the client is divided into several
steps that repeat in an infinite loop:

pOwbN -~

©®No O

Display current Tic-Tac-Toe board.

Check if opponent has won, and if so, end game with opponent winning.

Check if the board is full, and if so, end game with a stalemate.

Prompt for input from player; if player makes a valid move, update game board
accordingly, then send b'MOVE"' followed by the chosen cell number and b'\n"' to
the opponent; if player chooses to quit, send b ' END\n ' to the opponent and end game
with the opponent winning.

Display current Tic-Tac-Toe board again.

Check if player has won, and if so, end game with player winning.

Check if the board is full, and if so, end game with a stalemate.

Receive opponent's action via the socket; if the action is b'MOVE' followed by a cell
number and b'\n"', update game board accordingly; if the action is b'END\n"', end
game with the player winning.

As written, the server player always starts first. This means that our client code should start
by receiving and processing the server's result. We also know that Tic-Tac-Toe is a
symmetrical game (other than the choice of starting player), so we deduce that the client code
should be similar to the server code except that "client" and "server" are exchanged and the
last step is moved to the front.

1.

abrownN

6.
7.
8

Receive opponent's action via the socket; if the action is b'MOVE' followed by a cell
number and b'\n"', update game board accordingly; if the action is b'END\n"', end
game with the player winning

Display current Tic-Tac-Toe board.

Check if opponent has won, and if so, end game with opponent winning.

Check if the board is full, and if so, end game with a stalemate.

Prompt for input from player; if player makes a valid move, update game board
accordingly, then send b'MOVE"' followed by the chosen cell number and b'\n"' to
the opponent; if player chooses to quit, send b ' END\n"' to the opponent and end game
with the opponent winning.

Display current Tic-Tac-Toe board again.

Check if player has won, and if so, end game with player winning.

Check if the board is full, and if so, end game with a stalemate.

A client program that does this is as follows.

Program 10: game client.py

0 J o U b W N

= = o
= o

i
N

import socket, tictactoe

game socket = socket.socket ()
game socket.connect (('127.0.0.1", 3456))
game = tictactoe.TicTacToe ()

while True:
Receive move from server player
received = b''
while b'\n' not in received:
received += game_ socket.recv(1024)
if received.startswith (b'MOVE') :

17

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

move = int (received[4:])
print ('Server moves: ' + str (move))
print ()

game.make move (0, move)

elif received.startswith (b'END') :
print ('Opponent quits, you win!')
print ()
break

Display current Tic-Tac-Toe board
print (game.render board())

Check if server player won

if game.get winner() is not None:
print ('Opponent wins!')
print ()
break

Check if board is full
if game.is full():
print ('Stalemate')
print ()
break

Prompt for move from client player

"))

move = -1

while move != 0 and not game.is valid move (move) :
move = int (input('Client moves (0 to quit):

print ()

if move == 0:

game socket.sendall (b'END\n')
print ('You quit, opponent wins!')
print ()
break
game.make move (1, move)
game socket.sendall (b'MOVE' + str(move) .encode ()

Display current Tic-Tac-Toe board
print (game.render board())

Check if client player won

if game.get winner() is not None:
print ('You win!")
print ()
break

Check if board is full
if game.is full():
print ('Stalemate')
print ()
break

game socket.close()

+ b'\n'")

18

Run the server and client using two different copies of Python on the same machine to verify

===sssssssss=== RESTART: C:/Users/user/Desktop/game_

server.py ====s===========

1123
41516
71819

(0 to quic): 8

1123
4 15| 6
7101 9

1123
X| 5] ¢€
7101 9

(0 to quic): 2

11013
X151¢
71019

Client moves: €

11013
X |5 |X
7101 9

(0 to quit): S

11013
Xi1o1x
B}
You win!
>>> v

Ln: 70 Col: 4

that the game works as expected. A sample run is also provided below.

=============== RESTART: C:/Users/user/Desktop/game_

client.py ===ssssssz=====

Server moves: &

11213
4 15| 6
7101 9

Client moves (0 to quit): 4

11213
X151 6
71019

11013
X151 ¢
7101 9

Client moves (0 to quit): 6

11013
X 151X
710169

1103
X101 X
7101 9

Opponent wins!

>>>

Ln: 59 Col: 11

v

19

2021 JC2 H2 Computing 9569

31. Web Applications

Introduction

Web applications are programs that run in web browsers. Examples include webmails (e.g.
Gmail and Hotmail), Google Docs, Youtube video player and PythonTutor.

Native applications, on the other hand, are programs that are targeted for specific platforms.
For example, Youtube for Android is only for Android devices and cannot run on their Apple
counterparts. Microsoft Office for Windows cannot run on Linux.

The table below shows advantages and disadvantages of web applications.

Advantages

Disadvantages

No installation required

Users need to be connected to the Internet
(at least for the first instance)

The application can run on any platform that
has a web browser

Since web applications are not customized
for any platform, user experience may not be
ideal

Easily shared among users via URL

Web applications may not have access to all
device features (e.g. GPS and camera)

Easier maintenance and update as it makes
use of a single codebase

Single codebase may not work well across
the different browsers (e.g. Google Chrome
and Safari) or even different versions of the
same browser

The table below shows advantages and disadvantages of native applications.

Advantages

Disadvantages

May not require connection to the Internet
(though some native applications do for
complete functionality)

Users need to download native applications
and install them

As native applications are customised for
specific platforms, they are typically faster
and/or more efficient

Users need to install updates (or allow auto-
updates)

Native applications have easier access to
device features

Higher development and distribution costs
as every platform requires different native
applications

The syllabus requires us to build simple web applications using Python with Flask as a

framework, SQL, HTML and CSS.

Flask

Flask is a web application framework that allows us to use Python to serve up web pages.
While HTML and CSS are used to format and beautify web pages respectively, a programming
language operates in the background to process user requests.

Program 1: flask minimal.py

1 import flask

2

3 app = flask.Flask(name)
4

5 if name == ' main_ ':
6 app.run ()

Without any customisations, Flask already provides a basic web server that correctly
implements Hypertext Transfer Protocol (HTTP), which is the underlying format that is used
to structure requests and responses for effective communication between a client and a
server.

To create and run this basic web server, we need to create a flask.Flask object with the
module’s name as an argument and call the object’s run () method.

When this program is run, we should see some start-up messages that indicate the server can
be accessed at http://127.0.0.1:5000/. However, as the default web server is not
configured to recognise any paths yet, we will receive a 404 (Not Found) error when we visit
that URL using a web browser.

Note that 5000 is the default port number used by Flask. To use another port number, we can
call the run () method with a different port argument, e.g. app . run (port=12345).

HTTP Requests and Routing

Simply put, HTTP requests are messages sent by clients to servers. One of such request is
GET, which is used to request data from a specified resource in a server.

Suppose we have a simple web application with only two paths: the root path / and another
called /hello. As an example, the routing process to get the data associated with the root
path is summarised in the flowchart below.

GET HTTP/1.1

root ()

hello()

404 (Not Found)

Program 2: simple routing.py

1 from flask import Flask, render template
2

3 app = Flask(_ name)

4

5 @Qapp.route ('/")

o def root () :

7 return render template('index.html')
8

9 @app.route('/hello"')

10 def hello():

11 return "Hello world!"

12

13 app.run ()

HTML files must be placed in the folder templates. Create the following directory and files.

=1 Web App
=8 templates
" indexhtml
simple_routing.py

To declare a route and associate a path to a Python function, we use a feature called

decorator, each starting with @ as shown on lines 5 and 9.

Try accessing http://127.0.0.1:5000/ and http://127.0.0.1:5000/hello.

Program 3: complex routing.py

1 from flask import Flask, render template
2

3 app = Flask(name)

4

5 @app.route('/")

6 def root () :

7 return render template('index.html')
8

9 @app.route('/one')

10 @app.route ('/one/two')

11 def test multiple():

12 return "Mic test: one, two..."

13

14 @app.route('/string/<s>")

15 def string variable(s):

16 return "You typed a string: {}".format (s)
17

18 @app.route ('/integer/<int:i>")

19 def integer variable(i):

20 return "You typed an integer: {}".format (i)
21

22 app.run ()

Lines 9-12 show that two paths can lead to the same function.

Lines 14-20 show that Flask routes can also have variable parts. Each variable has a name
surrounded by <>, whose associated data can be processed further.

There are times when we want to lead users from an outdated web page to a new one instead.
This can be done via redirection as shown in the two programs below.

Program 4: redirectionl.py

1 from flask import Flask, render template, redirect, url for
2

3 app = Flask(name)

4

5 Qapp.route('/")

o def old():

7 return redirect (url for('new'))

8

9 @app.route('/new')

10 def new() :

11 return render template('index.html')
12

13 app.run ()

Program 5: redirection2.py

from flask import Flask, render template, redirect
app = Flask(name)
Qapp.route('/")

def old():
return redirect ("http://www.google.com")

OW oo ~Jo oW

app.run ()

HTTP Responses and Status Codes

How do the short strings returned in some of the functions shown earlier get displayed without
any issues in the web browser? The answer is that Flask actually prepends various headers

behind the scenes to produce valid HTTP
to clients.

responses, which are messages sent by servers

[127.0.0.1:5000 x
& C ® 127.0.0.1:5000

Hello, World! & ol
® O m

Filte

Name

[] 127001

1 requests | 1...

lements Console

XHR JS CSS Img Media Font Doc WS Manifest Other

+

Network » i X
Y Q View = =
Hide data URLs

Group by frame Pres

X Headers Preview Timing

Remote Address: 127.9.0.1:50080

Referrer Policy: no-referrer-when-downgrade

¥ Response Headers

HTTP/1.8 20@ OK

Content-Type: text/html; charset=utf-8
Content-Length: 13

Server: Werkzeug/@8.14.1 Python/3.6.4

Date: Thu, @7 Feb 2019 ©@3:18:45 GMT

v Request Headers ew source

Accept: text/html,application/xhtml+xml,appl _

Notice that Flask assumes that our output has a Content-Type of text/html. This means
that it actually expects our function to return a full HTML document and not just a plain string.
However, most browsers are very forgiving and will treat our string as a snippet of HTML

intended for <body>.

Besides that, notice that Flask also assumes that our responses have a HTTP status code of
200 (OK) by default. This is usually what we want, but if needed, we can override this by
returning a tuple instead of just a string. as demonstrated on line 7 of the Python code

below.

Program 6: status 500.py

1 import flask

2

3 app = flask.Flask(name)
4

5 @app.route('/")

o def index () :

7 return ('', 500)

8

9 app.run ()

A HTTP status code of 500 represents an Internal Server Error.

Processing Forms

Create the following HTML file.

HTML 1: name form get.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>Name Form</title>

6 </head>

5

8 <body>

9 <form action="{{url for('show')}}" method='GET'>

10 <p>Surname: <input type="text" name="surname"></p>

11 <p>Given name: <input type="text"
name="given name"></p>

12 <input type="submit" wvalue="Submit!">

13 </form>

14 </body>

15 </html>

There are two attributes in the <form> tag shown above.

Attribute Purpose
action Determines where the input data are submitted to
method Specifies the HTTP method to be used, i.e. GET (default) or POST

Notice that there is a rather unfamiliar syntax of {{url for ('show')}} in the HTML code
above. Such is written in Jinja2, a web template language that works in conjunction with Flask.

In Jinja2, { {<statement>}} represents print.

This particular code instructs Python to retrieve the web address associated with the show ()
function in formla.py shown on the next page when the form is submitted.

Program 7: formla.py

1 from flask import Flask, render template, request

2

3 app = Flask(_ name)

4

5 @Qapp.route ('/")

o def root () :

7 return render template('name form get.html')

8

9 @app.route ('/show')

10 def show () :

11 surname = request.args|['surname']

12 given name = request.args['given name']

13 return render template('showl.html', namel=surname,
namezZ=given name)

14

15 app.run ()

On lines 11-12, request.args are dictionary-like objects that contain the data submitted
through the form. We can access each piece of data on the query portion of the URL using
the name of the input field in name form get.html.

We also need a second HTML file to display the input name as follows.

HTML 2: showl.html

<!DOCTYPE html>

<html>
<head>
<title>Show Page</title>
</head>

<body>
<p>Hello, {{namel}} {{name2}}!</p>
</body>
</html>

R P WOWOo Jo Ul b whN -

= O

On line 8, { {namel}} and {{name2}} correspond to the variable name declared in the
show () functionin forml.py on line 13.

Notice on the address bar that you can see the form data submitted. As such, HTTP GET has
several disadvantages:

The submitted form data are recorded in the resulting URLs, which allows anyone to
view our browser history to obtain the data sent.

Some browsers and server software limit the length of URLs, so there is a risk that
overly long form data submitted using GET requests may get truncated.

GET requests are not supposed to make changes to the server's data. If we use data
submitted with GET requests to add, delete or update data from a database, we are
not following the HTTP standard.

To overcome these disadvantages, we can use another HTTP request, which is POST. Such
requests do not remain in the web browser history, cannot be bookmarked and are never
cached, providing us a secure way of sending sensitive data.

Create a copy of HTML1 and change the method on line 9 to 'POST'. Save the file as
name form post.html.

We also need to modify our Python code in order for the POST request to work. The changes
required are shown in bold.

Program 8: formlb.py

O ~Jo W

from flask import Flask, render template, request
app = Flask(name)

Qapp.route('/")

def root():

return render template ('name_ form post.html')

@app.route('/show', methods=['POST'])

def show () :
surname = request.form['surname']
given name = request.form['given name']

return render template('showl.html', namel=surname,
nameZ2=given name)

app.run ()

On line 9, it is necessary to specify the POST request in the decorator.

Onlines 11-12, the submitted form data using the POST request are placed in request. form
dictionary-like object instead of request.args.

Jinja2: FOR Loops

Must we know all the keys to the data stored in the form to retrieve them? It is actually possible
to loop through the keys using JinjaZ2.

We will still use name form post.html to collect the data, but we shall come up with a new
Python program and a HTML file to show the data for this purpose.

Program 9: form2.py

1 from flask import Flask, render template, request
2

3 app = Flask(name)

4

5 Qapp.route('/")

o def root():

7 return render template('name form post.html')
8

9 @app.route ('/show', methods=['POST'])

10 def show():

11 return render template('show2.html', data=request.form)
12

13 app.run ()

HTML 2: show2.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>Show Page</title>

6 </head>

-

8 <body>

9 <p>We can arrange the data if we know the keys.

10 {{data['surname']}} {{data['given name']}}

11 OR

12 {{data['given name']}} {{data['surname']}}</p>
13

14 <p>Alternatively, we can do a FOR loop.

15 {%$for item in data%}

16 {{data[item] } }

17 {$endfor%}</p>

18 </body>

19 </html>

As shown above, the Jinja2 syntax for FOR loop is as follows.
{%$for <variablel> in <variable2>%}

{%endfor$%}

Jinja2: Conditionals

Conditional statements involving if, else-if and else are supported in Jinja2.

The Python program below is similar to Program 8 using HTTP POST, except on line 13

where show3.html is to be rendered instead.

Program 10: form3.py

1 from flask import Flask, render template, request

2

3 app = Flask(_ name)

4

5 Qapp.route('/")

o def root():

7 return render template('name form post.html')

8

9 @app.route ('/show', methods=['POST'])

10 def show():

11 surname = request.form['surname']

12 given name = request.form['given name']

13 return render template('show3.html', namel=surname,
namezZ=given name)

14

15 app.run ()

HTML 3: show3.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>Show Page</title>

6 </head>

-

8 <body>

S <p>

10 {{namel} }

11 {{name2} }

12 {%1f namel|length > 3%}
13 The surname is longer than three letters.
14 {%elif namel|length > 1%}
15 Surname is entered.

16 {%else%}

17 No surname is entered.
18 {$endif$%}

19 </p>

20 </body>

21 </html>

Onlines 12 and 14, name1 | 1length is the syntax for obtaining the length of the string name1,

which is the surname entered.

10

As shown in the example, the Jinja2 syntax for conditionals is as follows.
{%1f <statementl>%}

{%elif <statement2>%}

{%endif%}

Even though it is possible to perform input validation using Jinja2 conditionals, it is typically
better to do that within the Python program.

Jinja2: Displaying HTML Code

It is possible to include snippets of HTML code in a Python program as a string and get it
rendered using JinjaZ2.

Program 11: html ex.py

return render template('show html ex.html', code=html)

1 from flask import Flask, render template, request
2

3 app = Flask(name)

4

5 @app.route('/")

o def root():

7 html = "This sentence is bolded."

8

9

1

0 app.run ()

HTML 4: show html ex.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>Show Page</title>

6 </head>

7

8 <body>

9 <p>Without using safe: {{code}}</p>
10 <p>Using safe: {{code|safe}}</p>
11 </body>

12 </html>

Recall that { { } } represents print in Jinja2. As shown on line 9, to render the HTML code, the
| safe filter should be used. Otherwise, it will be treated as a normal string.

11

Flask and CSS

Unlike HTML files that are placed in the folder templates, CSS files must be placed in the
folder static. Create the following directory and files.

=1 Web App
12 templates

= css_ex.html
1 static

CSS_ex.css
~ o CSS_ex.py

HTML 5: css_ex.html

1 <!DOCTYPE html>
2
3 <html>
4 <head>
5 <title>Flask with CSS</title>
6 <link rel='stylesheet'
href={{url for('static', filename='css ex.css')}}>
7 </head>
8
9 <body>
10 <p id="pl">This is a text.</p>
11 <p 1d="p2">This text must have a different style.</p>
12 </body>
13 </html>

Quick Check
Write css_ex.py and css_ex.css., ensuring that the two texts in the <body> appear
differently when rendered.

12

File Handling

Forms may ask users to upload certain files. Uploaded files can be stored in the folder static

or another folder of choice. For this purpose, we shall create the folder uploads.

The following HTML form requests for two files — a text file and an image file — to be submitted.

HTML 6: file input.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>File Input Form</title>

6 </head>

-

8 <body>

9 <form action="{{url for('show')}}" method='POST'
enctype="'multipart/form-data'>

10 File input: <input type="file" name="filel">

11 Image input: <input type="file" name="file2">

12 <input type="submit" wvalue="Submit!">

13 </form>

14 </body>

15 </html>

On lines 10-11, it is shown that an <input> tag can have type="file". For file uploading
to work properly, the enclosing <form> on line 9 must also be configured to use HTTP POST
and include the additional attribute enctype="multipart/form-data". This means that

one or more sets of data are combined and encoded as a single body.

The following HTML code shows the first line of the text file, as well as the image file uploaded

by the user.

HTML 7: file output.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>Show Output</title>

6 </head>

7

8 <body>

9 <p>First line of the text file:

{{linel}}</p>

10 <p>Photo uploaded:

11

12 </p>

13 </body>

14 </html>

13

The following is the Python code required for this web application to work.

Program 12: file io.py

1 import os
from flask import Flask, render template, request,
send from directory

N

3 from werkzeug.utils import secure filename

4

5 app = Flask(name)

6

7 @app.route('/")

8 def root():

9 return render template('file input.html')
10

11 @app.route ('/show', methods=['POST'])
12 def show():

13 # Obtain the text file

14 fl = request.files['filel']

15

16 # Decode the byte string into a normal string
17 linel = fl.readline () .decode ('ASCII"')

18

19 # Obtain the image file

20 photo = request.files['file2']

21 filename = secure filename (photo.filename)

22

23 # Save the image in the specified directory
24 photo path = os.path.join('uploads', filename)
25 photo.save (photo path)

26

27 return render template('file output.html', linel=linel,

photo=filename)
28
29 @app.route ('/uploads/<filename>"')

30 def get file(filename):

31 return send from directory('uploads', filename)
32
33 app.run ()

On lines 14 and 20, we can see that submitted files are accessed from request.files
dictionary instead of request. form.

In general, we should be careful whenever we let users specify filenames for reading or writing
files on the server's file system as file paths can use special folder names such as, . ., to
access parent folders that may contain source code or our server's configuration files. To
prevent this from happening, on line 21, we pass the filename through the
secure filename () function provided in the werkzeug.utils module first. This function
returns a modified filename with any special characters replaced so that it can be safely treated
like a normal filename. We then use this filename on line 24 to form a file path that is
guaranteed to be in our folder uploads. Lines 29-31 provide the way to view the file from the
route that we have established.

14

Flask and SQL

SQL database is very often an integral part of a web application to manage all the data
supplied by users.

In this section, we shall build a web page that allows each user to key in his/her name, class
and gender. The data are to be stored in an SQL database.

The HTML code is shown below.

HTML 8: sgql forml.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>SQL Example</title>

6 </head>

-

8 <body>

9 <form action="{{url for('store')}}" method='POST'>
10 Name:<input type="text" name="name">

11 Class:<input type="text" name="class">

12 Gender:

13 <input type="radio" name="gender" value="M"> Male
14 <input type="radio" name="gender" value="F"> Female
15

16 <input type="submit" wvalue="Submit!">

17 </form>

18 </body>

19 </html>

For this simple exercise, we shall assume that all names to be keyed into the database are
different.

Before looking at the Python code on the next page, can you try to write it on your own to
serve up the above HTML form?

15

Program 13: sql_exl.py

1 import sglite3

2 from flask import Flask, render template, request
3

4 app = Flask(name)

5

6 @app.route('/")

7 def root () :

8 return render template('sgl exl.html')

9

10 @app.route ('/store', methods=['POST'])

11 def store():

12 name = request.form['name']

13 form class = request.form['form class']

14 gender = request.form['gender']

15

16 connection = sglite3.connect ("school.db")

17 connection.execute ("""

18 CREATE TABLE IF NOT EXISTS school
19 name TEXT PRIMARY KEY,

20 class TEXT,

21 gender CHAR(1)

22)l!l)

23

24 connection.execute ("INSERT INTO school VALUES, (2, 2,
25 (name, form class, gender))
26

27 connection.commit ()

28 connection.close ()

29

30 return "The data have been saved."

31

32 app.run()

(

We shall now create another two web pages. One of them is to ask users to key in a name,

and the other is to display the class and the gender if the name exists in the database.

HTML 9: sgql form2.html

1 <!DOCTYPE html>

2

3 <html>

4 <head>

5 <title>SQL Example</title>

6 </head>

7

8 <body>

9 <form action="{{url for('show')}}" method='POST'>
10 Name:<input type="text" name="name">

11 <input type="submit" wvalue="Submit!">

12 </form>

13 </body>

14 </html>

16

HTML 10: sql show2.html

O ~Joy Ui WN R

el e
w N - o

<!DOCTYPE html>

<html>
<head>
<title>SQL Example</title>
</head>
<body>
Name: {{data['name']}}

Class: {{datal['form class']}}

Gender: {{data['gender']}}
</body>
</html>

The Python code is as follows.

Program 14: sql _ex2.py

16
17
18
19
20
21
22
23
24

import sglite3
from flask import Flask, render template, request

app = Flask(name)
@app.route('/")
def root () :

return render template('sgl form2.html'")

@app.route ('/show', methods=['POST'])

def show () :
name = request.form['name']
connection = sglite3.connect ("school.db")
connection.row factory = sglite3.Row
cursor = connection.execute ("SELECT * FROM school WHERE
name = ?", (name,))
result = cursor.fetchone()
connection.close ()
if result == None:
return "The student data do not exist."
else:

return render template('sgl show2.html', data=result)

app.run ()

Quick Check

Combine the two separate web applications in this section into one. In a single Python
program, use the route ' /form' '/check' and '/show' to serve up HTML 8, HTML 9
and HTML 10 respectively.

17

Usability Principles

We shall try to adhere to certain general principles when building applications to ensure that
they are user-friendly.

1.

Keep users informed of the system’s status, e.g.
e Download status bar in web browsers
o Wi-Fiicon on your phone
o Battery level indicator

Match between system and the real world, e.g.
o Use phrases, icons and concepts understandable by users
e E-book reader allows users to turn the page by swiping the screen from right
to left (corresponding to how one flips a physical book) and also add bookmarks
¢ Volume control buttons with the top button to increase volume and the bottom
button to decrease the volume

User control and freedom, e.g.
o Allow users to undo or redo (e.g. on web browsers or word processors)
o Allow users to return to the previous menu or exit an application easily

Consistency and standards, e.g.

e Follow conventions and use the same term to mean the same thing
consistently; users should not be put in a position to guess if two terms are
referring to the same thing

¢ In Windows, the close window button is always at the top right-hand corner
(labelled as X)

e Most shopping websites have a shopping cart page (with a corresponding
shopping cart icon) for users to review the items added before paying for them

Error prevention, e.g.

¢ Include helpful constraints, e.g.
o Use a calendar to accept birthday input as opposed to using a text box
o Use a radio button to restrict users to only valid choices

o Display confirmation dialogues, e.g.
o “Are you sure you want to delete this record?”
o “Do you want to exit without saving?”

¢ Provide an undo button for people to prevent making an error permanent

Recognition rather than recall, e.g.
e Use common icons
¢ Make objects and options clearly visible
e Shopping websites provide a section on previously bought items for users to
revisit what they last bought (and probably want to buy again)
¢ In Microsoft Word, there are lists of recently opened documents, common
templates, etc.

Flexibility and efficiency of use, e.g.
¢ Allow multiple ways of achieving the same result, e.g. copy and paste can be
done by using Ctrl+C shortcut or using the edit menu, allowing different users
to choose the method that is most convenient for them
e In Mac OS, users have the freedom to create their custom keyboard and
shortcut commands

18

8. Aesthetic and minimalist design, e.g.

e Some visuals, such as vibrant colours of food and scenic landscapes with water
bodies, signal promises of fulfilling human needs, such as food, water, shelter,
safety, warmth, companionship an community

e Provide only what is necessary as redundant information clutters the screen
and competes with useful information, e.g. Google search engine has a very
simple and clean design

9. Help users recognise, diagnose, and recover from errors, e.g.
e Provide error messages in simple language, e.g. “Enter a valid e-mail address.”
o Give specific and constructive advice, e.g. “Your password must contain at
least one uppercase letter” is much better than “Your password does not meet
the requirements”.

10. Help and documentation, e.g.
o |deally, any applications should be usable without any documentation
o However, it is still a good idea to provide some documentation, as concise as
possible to assist users

References
GET vs POST: https://www.w3schools.com/tags/ref httpmethods.asp

HTML forms: https://www.w3schools.com/html/html| forms.asp
Usability principles: https://www.nngroup.com/articles/ten-usability-heuristics/

Summary

request Object

Attribute

request.args

request.form

request.files

Content

Dictionary of field
names and their
associated values

Dictionary of field
names and their
associated values

Dictionary of file
upload names and
their associated

also works with
POST if URL has
query portion)

from query portion of FileStorage
URL objects
HTTP Method Usually GET (but POST only POST only

Use Reads form data Reads form data Reads files submitted
submitted using GET | submitted using using POST
POST
<form> Attribute | If not specified, it is Must specify Must specify
method="'GET"' by method= method="'POST'
default 'POST' enctype=
'multipart/form
-data'

19

https://www.w3schools.com/tags/ref_httpmethods.asp
https://www.w3schools.com/html/html_forms.asp
https://www.nngroup.com/articles/ten-usability-heuristics/

flask Module

Flask(_ name)

Creates a Flask application object

render template
(filename, var=value)

Renders Jinja2 template with the given filename using
the given variable values

redirect (path)

Redirects user to the given path when used as a return
value of a decorated function

url for
(name, var=value)

Returns the path that is mapped to the given function name
and given variable values

request

Accesses current request object

send from directory
(directory, filename)

Sends file from the given directory with the given
filename when used as a return value of a decorated
function

werkzeug Module

secure_ filename

Replaces all characters that have special meanings (e.g.

(filename) path separators) in the given filename
os Module
path.join Creates a file path where the filename is to be inside the

(foldername, filename)

foldername

Flask Class

route
(path, methods=][..])

Maps the given path to the decorated function with the
HTTP methods: 'GET' or 'POST' or both inside the
list.

run ()

Runs the Flask application (with optional arguments
port=<integer> as the port number and/or
debug=True to enable the debug mode)

FileStorage Class

filename

Gives the name of the uploaded file

save (path)

Saves the uploaded file to the given path

20

32 Social, Ethical, Legal and Economic Issues

Ethics

There is no standard definition of what ‘ethics’ really is, but the following three sentences give an
idea:

e Ethics is the field of moral science.
o Ethics are the moral principles by which any person is guided.
o Ethics are the rules of conduct recognised in a particular profession or area of human life.

For our purposes, the third definition is the most useful. Of course, these rules reflect the moral
principles that come from the second definition. The following observations come to mind when
considering moral principles.

Moral principles concern right or wrong. The concept of virtue is often linked to what is considered
to be right. Some viewpoints for deciding whether something is right or wrong are the following:

¢ Philosophical thinkers such as Aristotle, Confucius, and others are often quoted in this
context, as they have analysed in great detail why certain thoughts and actions should be
considered right or wrong, and tried to distil fundamental principles for deciding morality.

¢ Religious points of view can incorporate philosophical ones, or introduce their own new
ones. We will not discuss specific religious beliefs, except to point out that they do have
to be considered in the working and social environment.

e Legal frameworks, such as the laws of a particular country, should reflect what is right
and wrong, and certainly have an impact on working practices, but are rarely the primary
focus in rules of conduct.

o Pragmatic consideration can be roughly defined as applying common sense. These,
together with the philosophical view of right and wrong, usually form the foundation for
creating rules of conduct.

Codes of Ethics

Organizations normally have codes of ethics to guide their members in deciding what is right and
wrong. For professional organizations, they expect their members to uphold a certain moral
standard, so that the reputation and integrity of the organization and the profession, are not
compromised.

Two American organizations that have a strong global perspective and influence are the
Association for Computing Machinery (ACM) and the Institute of Electrical and Electronics
Engineers (IEEE). Their code of ethics’ is therefore one that is often referenced with regards to
moral considerations for software engineers.

This code of ethics is not a look-up table that prescribes a certain action in a given situation.
Rather, it is a set of fundamental principles, and they advocate that a professional software
engineer should make an ethical judgement based on thoughtful considerations of these
principles.

! https://ethics.acm.org/code-of-ethics/software-engineering-code/

https://ethics.acm.org/code-of-ethics/software-engineering-code/

The eight principles defined in the code of ethics are the following:

1.

~

Public — Software engineers shall act consistently with the public interest.

Client and Employer — Software engineers shall act in a manner that is in the best
interests of their client and employer consistent with the public interest.

Product — Software engineers shall ensure that their products and related modifications
meet the highest professional standards possible.

Judgment — Software engineers shall maintain integrity and independence in their
professional judgment.

Management — Software engineering managers and leaders shall subscribe to and
promote an ethical approach to the management of software development and
maintenance.

Profession — Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

Colleagues — Software engineers shall be fair to and supportive of their colleagues.

Self — Software engineers shall participate in lifelong learning regarding the practice of
their profession and shall promote an ethical approach to the practice of the profession.

Altogether there are 80 clauses. Many of them do not relate specifically to software engineering,
but actually relate to proper behaviour for any group of professional workers. For example:

2.03

5.04.

5.05.

6.06.

. Use the property of a client or employer only in ways properly authorized, and with the
client’s or employer’s knowledge and consent.

Assign work only after taking into account appropriate contributions of education and
experience tempered with a desire to further that education and experience.

Ensure realistic quantitative estimates of cost, scheduling, personnel, quality and
outcomes on any project on which they work or propose to work, and provide an
uncertainty assessment of these estimates.

Obey all laws governing their work, unless, in exceptional circumstances, such
compliance is inconsistent with the public interest.

Take note, for instance, of the qualifiers in 5.04 and 6.06 (“tempered with”, “unless”). These exist
in many of the clauses, showing the difficulty of applying a one-size-fits-all guiding principle to all
possible scenarios. 5.05 is also notable for insisting on an uncertainty assessment.

The Si
society
also gu
into fou

PO~

ngapore Computer Society is the primary infocomm and digital media professional
in Singapore, with about 33 000 members and 16 specialist groups. Its code of conduct?
ides its members in their professional behaviour. The guidelines are broadly categorised
r main categories:

integrity,

full responsibility,
competence,
professionalism.

2 https://www.scs.org.sg/membership/membership code of conduct.php

https://www.scs.org.sg/membership/membership_code_of_conduct.php

Likewise, the British Computer Society’s code of conduct® also gives guidance under four
headings:

1. public interest,

2. professional competence and integrity,
3. duty to relevant authority,

4. duty to the profession.

Regardless of the different details in each professional organization’s code of ethics or code of
conduct, there is a general consistency with regard to the following:

1. The public interest or public good is a key concern.

2. The codes present fundamental principles.

3. The professional is expected to exercise their own judgment.
4. The professional should seek advice if unsure.

The public good

So far, we have been considering professional working practices, which revolves around the third
definition of ethics. When the question of public good arises, we also need to start considering
the second definition as well.

The ACM/IEEE code of ethics refers to the following:

e The health, safety and welfare of the public,
e The public interest,

e The public good,

e Public concern.

Likewise, the SCS code of conduct refers to “the advancement of human welfare” while the BCS
code of conduct states that the professional should “have due regard for public health, safety,
privacy, security and wellbeing of others and the environment”.

There is no further indication of how these should be interpreted. However, we can look at some
case studies to illustrate what might be considered.

1. The Therac-25 was a computer-controlled radiation therapy machine produced by Atomic
Energy of Canada Limited (AECL) in 1982. The machine offered two modes of radiation
therapy:

a. Direct electron-beam therapy, which involved a narrow low-current beam of
electrons directly hitting the patient, and

b. Megavolt X-ray therapy, which involved a current 100 times higher, which then
struck a target to produce X-rays. The X-ray beam was supposed to pass through
a flattening filter and a collimator before hitting the patient at a safe level.

c. A third mode, Field Light mode, allowed the patient to be correctly positioned by
using visible light to illuminate the target area of the body.

In previous models of the Therac, hardware design meant that if the machine was in X-
ray therapy mode, the high-current electron beam would be physically blocked from

3 https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/

https://www.bcs.org/membership/become-a-member/bcs-code-of-conduct/

reaching the patient. However, in the Therac-25, this safety feature was replaced by a
software check. There were two bugs in the software:

a. When the operator incorrectly selected X-ray mode before quickly changing to
electron mode, this allowed the electron beam to be set for X-ray mode without the
X-ray target being in place.

b. The electron beam could activate during field-light mode, during which no beam
scanner was active or target was in place.

As a result of these bugs, patients were sometimes hit with an electron beam 100 times
larger than intended, delivering a potentially lethal dose of beta radiation. Between 1985
and 1987, there were at least six documented cases which resulted in three deaths.

Correct application of the code of ethics with respect to specification, development and testing of
software could have saved human life. Fortunately, examples where software bugs cause loss of
life are very rare indeed. In the next three case studies, if the software had been documented and
tested properly, large amounts of public funds could have been saved.

2. The Ariane 5 rocket exploded 40 seconds after blast-off in 1996. About US$500 million

had gone into its development, scientific equipment and launch costs. The problem was
caused by a line of code that converted a 64-bit floating point number into a 16-bit signed
integer. This caused an overflow which crashed the program and ultimately, the rocket.
In 1999, the Mars Climate Orbiter, which was launched by NASA to orbit Mars and study
the climate, went on the wrong trajectory that brought it too near to Mars. It lost contact
with mission control and was either destroyed in Mars’ atmosphere or re-entered space at
some unknown location. This was caused by the software engineers assuming all
variables were in Sl units. However, one group of engineers had used Imperial units
instead. This caused a problem only when the calculations concerned with achieving orbit
around Mars were carried out. The cost of this project was US$125 million.

In 2011, the UK government scrapped the National Programme for IT in the NHS (National
Health System), which had been commissioned in 2002, because the project failed to
produce a workable system. An estimated £12 billion had been spent on the project,
whereas the initial estimate for the cost was £3 billion. This was not the fault of the software
engineers, but the codes of ethics or codes of guidance also refer to project management
as well, and this type of failure should not have occurred.

In the above examples, there was no public concern with the ethics of the project itself, only how
it was carried out. However, there are areas associated with computer-based systems where
there is public concern about the nature of the project or where it led, intentionally or not. Here
are some examples to consider:

Powerful commercial companies being able to exert pressure on less powerful companies
to ensure that the powerful company’s products are used even if alternatives are more
suitable or less costly.

Companies providing systems that do not guarantee security against unauthorised access.
Organisations that try to conceal information about a security breach that has occurred in
their systems.

Private data transmitted by individuals to other individuals being stored and made
available to security services.

e Social media sites allowing abusive or illegal content to be transmitted.
e Search engines providing search results with no concern about the quality of the content.

(No examples have been provided for these. You should be able to find examples on your own
using a web search.)

Public attitude to such concerns varies with country and time. This makes it difficult for an
individual software engineer to make a judgment with respect to public good. Even if the judgment
is that a company is not acting in the public good, it will be difficult for one person to exert an
influence in the company. There are examples where the life of such individuals, who have taken
action, have been severely affected.

Legal frameworks

Most countries have laws covering the illegal usage of technology. In Singapore, some of these
laws include the following:

e The Computer Misuse Act* covers, among other things, hacking, sabotaging computers,
accessing and distributing confidential data, copyright infringement including installing and
distributing pirated software, cyber-stalking, harassment or online grooming, and credit
card fraud.

e The Cybersecurity Act® establishes a legal framework for oversight and maintenance of
national cybersecurity, including establishing a cybersecurity regulator, imposing
cybersecurity obligations on organisations providing critical and essential services,
licensing and regulating cybersecurity service providers, and providing a framework for
sharing cybersecurity information.

e The Personal Data Protection Act (PDPA)® covers the collection, use, disclosure and care
of personal data.

Ownership and copyright

Copyright is a formal recognition of ownership. If a person creates and publishes some work that
has some element of originality, that person becomes the owner and can claim copyright. (An
exception is if the person works for an organisation. An organisation can claim copyright for
published work created by one or more people working for the orgsanisation.)

Copyright can apply to any of:

e Literary (written) work
e Musical composition

e Film

e Music recording

o Radio or TV broadcase
e Works of art

e Computer programs

4 https://sso.agc.gov.sg/Act/CMA1993

5 https://sso.agc.gov.sg/Acts-Supp/9-2018/ and https://www.csa.gov.sg/legislation/cybersecurity-act
5 https://sso.agc.gov.sg/Act/PDPA2012 and https://www.pdpc.gov.sg/Overview-of-PDPA/The-
Legislation/Personal-Data-Protection-Act

https://sso.agc.gov.sg/Act/CMA1993
https://sso.agc.gov.sg/Acts-Supp/9-2018/
https://www.csa.gov.sg/legislation/cybersecurity-act
https://sso.agc.gov.sg/Act/PDPA2012
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act
https://www.pdpc.gov.sg/Overview-of-PDPA/The-Legislation/Personal-Data-Protection-Act

Copyright cannot apply to an idea, and it cannot be claimed on any part of a published work that
was previously published by a different person or organisation.

There are two reasons copyright law exists:

1. Creative work takes time and effort and requires original thinking, so the creator deserves
the opportunity to earn money from it.

2. ltis unfair for another person or organisation to reproduce the work and make money from
it without paying the original creator.

Singapore’s Copyright Act can be found online’. While copyright laws vary from country to country
in details, there is an international agreement that copyright laws cannot be avoided, for example,
by republishing someone else’s work in a different country without the original copyright holder’s
permission. Typical copyright laws include:

o Arequirement for registration recording the date of creation of the work

o A defined period when the copyright will apply (usually a fixed amount of time after the
creation of the work, or the creator’s death).

o A policy to be applied if the person holding copyright dies.

¢ An agreed method for indicating the copyright, for example, using the © symbol.

While the copyright is in place, there will be implications for how the work can be used. The
copyright holder can include a statement concerning how the work might be used. For instance,
Section 10.02 of the ACM/IEEE code of ethics describes how it should be reproduced.

Other conditions describe what is permissible when the work has not been sold. For example, if
someone has bought a copy of a copyrighted product (such as a book), there is no restriction on
making copies as long as they are only for that person’s use. Other regulations relate to, for
example, books in a library, where people can photocopy a limited amount of a book.

The consequences and development of the Internet and World Wide Web
Before the internet, copyright breaches tended to happen mainly in two ways.

1. People with a tape cassette recorder could record a radio broadcast or make copies of
other people’s cassette tapes and vinyl records.
2. People photocopied printed material such as books and articles.

In the early days of the Internet, illegal copying, or piracy, of movies, TV shows, and music was
commonplace, when these media were originally intended to be sold to distributors (cinemas, TV
and radio stations) or bought (as CDs or DVDs). The scale and ease of illegal distribution was
much larger than it had previously been and began to affect the profitability of the creators.

The initial response was to create Digital Rights Management (DRM) to counter such activity.
For instance, DRM made CDs playable on CD players but not on computers, to prevent ripping.
This was done by encryption or deliberately including some damaged sectors. Unfortunately, they
did not guarantee the prevention of piracy.

7 https://sso.agc.gov.sg/Act/CA1987

https://sso.agc.gov.sg/Act/CA1987

The major mechanism for piracy of media content is the widespread use of peer-to-peer (P2P)
sharing. As a result, ISPs have been asked to monitor P2P technology usage and report it to
interested parties. This, however, has been argued as being a breach of privacy.

The current commercial model for many content producers is to make some content available
online for free, on streaming sites such as Youtube, and allow buyers to pay for remaining content
at an affordable rate.

There are many resources on the internet describing copyright law for laymen and how it applies
to content produced on the internet. Here are two examples:

o hitps://www.youtube.com/playlist?list=PL8dPuualL jXtMwV2btpcij8S3YohW9gUGN
(Playlist on Intellectual Property Rights by CrashCourse)

o hitps://www.youtube.com/watch?v=1Jwo5qc78QU (Youtube’s Copyright System Isn’t
Broken. The World’s Is by Tom Scott)

Software licensing

Commercial software is no different from any other commercial product, in the sense that it is
created and sold by a company to make a profit. However, there is one key difference. When you
buy, for example, a phone, you own the phone. However, if you buy software, you do not own the
software. Instead, what you are buying is a license that allows you to use the software. There are
some different models of this, including:

o Paying a fee for each individual copy of the software

e An organisation might buy a site license which allows a fixed number of copies of the
software to run on the organisation’s computers at any one time

e Special rates might be offered for educational use

In some instances, the license may be provided free-of-charge. There are two possibilities.

o Shareware is commercial software which is made available on trial basis for a limited time.
During this trial period, either the full version or a limited version might be available, or a
beta test of a new version.

¢ Freeware does not have a time limit on the free usage. It could be the full software or an
earlier version.

Whether the license is paid or free, there will be limitations on the use of the software and the
user will not be provided with the source code.

Open or free licensing is carried out by two global Non-Profit Organisations with slightly different
philosophies, but both of them are open source, meaning that users have access to the source
code, and are free to use it, modify it, copy it, or distribute it in accordance with the terms.

The Open Source Initiative is a movement to make open source software available. The
philosophy here is that using open source software will allow collaborative development of
software to take place. The software is normally available free-of-charge.

The Free Software Foundation is named because the philosophy is that users should be free to
use the software in any way they wish. The software may not be free — there is usually a small
fee to cover distribution costs. One special feature of the license is something called copyleft,

https://www.youtube.com/playlist?list=PL8dPuuaLjXtMwV2btpcij8S3YohW9gUGN
https://www.youtube.com/watch?v=1Jwo5qc78QU

which is the condition that if users modify the source code, the modified version must be made
available for other users under the same conditions.

When should you use commercial software?

When should you use open source software?

e The software is available for immediate
use and provides the functionality
required.

e The software has been created to be used
in conjunction with already installed
software.

e There will be continuous maintenance and
support provided.

e Shareware might allow suggestions to be
made as to how the software can be
improved.

e Freeware can often offer
functionality to serve your needs

sufficient

e The full functionality can be provide for at
most a nominal cost.

e The software could provide the required
functionality with just a few modifications
to the source code.

e A consortium of developers are
collaborating in producing a new software
suite.

e The future development of the software or
the continuous provision of the existing
software is controlled by the user.

Examples of software (fill in your own):

Commercial paid
e Microsoft Office

Shareware/Freeware
e Google Chrome

Open source or free software
e Mozilla Firefox

Open Office

Python

MongoDB

Impact of computing and technology

The impact of computing on society can be roughly divided into four overlapping areas: social,

ethical, legal, and economic.

Area

Examples of impact (fill in your own)

Social
easily and immediately

media

Artificial intelligence

Internet and modern communication technology:
Allowing people who are physically distant to communicate with one another

Allows access to information to people far more easily and quickly than traditional

Allows collaboration between teams which are geographically separated

Helps with data analysis, such as predicting where crimes are likely to take place,
calculating shapes of proteins for medical purposes, optical character recognition
to help visually handicapped people read text, etc.

Ethical Programming self-driving vehicles to make decisions when an accident is
imminent leads to an ethical dilemma, e.g. should the car prioritise the driver’s life
or the pedestrian’s?

Artificial intelligence tends to exaggerate human biases. Does this lead to biases
in predictions?

Legal Creation of laws pertaining to cybersecurity, data collection and protection
Modification of copyright laws (see above section on copyright)
Current laws unequipped to handle artificial intelligence?

Economic | Cost savings due to automation of repetitive tasks, but job losses for the same
reason
Creation of new technology-related jobs in existing companies

Suggested videos:

https://www.youtube.com/watch?v=ItCVp1ic-L8 (The rise of human-computer cooperation -
Shyam Sankar)

https://www.youtube.com/watch?v=MnT 1xgZgkpk (What happens when our computers get
smarter than we are? | Nick Bostrom)

https://www.youtube.com/watch?v=t4kyRyKyOpo (The wonderful and terrifying implications of
computers that can learn | Jeremy Howard)

https://www.youtube.com/watch?v=hQigUHOVZSE (A funny look at the unintended
consequences of technology | Chuck Nice)

https://www.youtube.com/watch?v=5xflVUa4M_8 (Robert Reich: "Preparing Our Economy for
the Impact of Automation & Al" | Talks at Google)

https://www.youtube.com/watch?v=0YmKOgeoOz4 (Max Tegmark: "Life 3.0: Being Human in
the Age of Al" | Talks at Google)

https://www.youtube.com/watch?v=JcC50V_0A1s (Amir Husain: "The Sentient Machine: The
Coming Age of Atrtificial Intelligence" | Talks at Google)

https://www.youtube.com/watch?v=1eX541Dr2rU (There is No Algorithm for Truth - with Tom
Scott)

https://www.youtube.com/watch?v=Rzhpf1Ai7Z4 (Should Computers Run the World? - with
Hannah Fry)

https://www.youtube.com/watch?v=TtisQ9yZ2z0 (Christmas Lectures 2019: How to Bend the
Rules - Hannah Fry)

https://www.youtube.com/watch?v=ltCVp1ic-L8
https://www.youtube.com/watch?v=MnT1xgZgkpk
https://www.youtube.com/watch?v=t4kyRyKyOpo
https://www.youtube.com/watch?v=hQigUH0vZSE
https://www.youtube.com/watch?v=5xflVUa4M_8
https://www.youtube.com/watch?v=oYmKOgeoOz4
https://www.youtube.com/watch?v=JcC5OV_oA1s
https://www.youtube.com/watch?v=leX541Dr2rU
https://www.youtube.com/watch?v=Rzhpf1Ai7Z4
https://www.youtube.com/watch?v=TtisQ9yZ2zo

2021 JC2 H2 Computing 9569
33. Network Security

Malware

Malware is a short form for malicious software. Examples include viruses, spyware,
ransomware, worms and trojans.

Malware aims to damage computer systems and/or to gain unauthorised access to them. For
instance, a computer user may unwittingly download a file containing a virus from the Internet
and run it. Without anti-virus software to stop it, the virus will infect the computer and may
cause the computer to crash or have its data deleted. If the computer happens to be an
important server, there can be great damage to the company concerned.

A spyware is a hidden program that secretly collects information about its user and transmits
information to attackers without the user’s knowledge. Signs that your computer may be
running spyware:

e It runs slower than usual

e The web browser automatically accesses an unfamiliar website regularly

e Anti-spyware software crashes or cannot work properly

e The camera turns on without any user input

Different kinds of malware (technical details are not in syllabus):

¢ Ransomware is a type of malicious software that threatens to publish the victim's data
or perpetually block access to it unless a ransom is paid. While some simple
ransomware may lock the system in a way that is not difficult for a knowledgeable
person to reverse, more advanced malware uses a technique called cryptoviral
extortion, which encrypts the victim's files, making them inaccessible, and demands a
ransom payment to decrypt them.

e A virus attaches itself to a program or file so it can spread from one computer to
another. Some only have mildly annoying effects, but others can cause severe damage
to hardware, software, or files. Usually they are attached to executable files, so even
though they exist on a computer, they will not infect the computer until the executable
file is run or opened. They are spread by sharing infected files, through downloads,
email attachments, file-sharing, etc.

e A worm may be considered to be a special class of virus. The main difference is that
they are standalone software and can spread from one computer to another without
action by a host program or a person. A worm uses file or data transport features on
the system. It has the capability to replicate itself and thus send many copies of itself
to many different computers (e.g. an entire address book). It then replicates itself in
the recipients’ computers and sends itself out in their address books, etc. As a result,
the worm ends up consuming large amounts of system memory or network bandwidth,
causing servers to be overwhelmed and stop responding. More recently, worms can
also act as spyware, allowing malicious users to control a computer remotely."

e A trojan (short for Trojan horse) is a destructive program that looks like a genuine
application. It opens a backdoor entry to the computer which gives access to malicious
users or programs, allowing them to extract confidential or personal information.

! The Blaster Worm spread in August 2003 among computers running Windows XP and
Windows 2000 operating systems. It was programmed to create a DDOS attack against
the Windows Update site. Microsoft temporarily shut down the site to minimize potential
effects of the worm.

Denial of Service (DOS) attacks

A denial of service attack on a server happens when a hacker sends many requests to the
server, causing it to overload, and thus preventing legitimate users from accessing it. This also
causes the server to use up unnecessary resources and disrupts normal operations on the
server.

A hacker may also make use of malware to control multiple computers to attack a server at
the same time. This is called a distributed denial of service (DDOS) attack.?

Protection mechanisms: Firewalls

A firewall is a system that is designed to prevent unauthorized access to a private network by
filtering the information that comes in from the internet.

A firewall blocks unwanted traffic and permits wanted traffic. Its purpose is to create a safety
barrier between a private network and the public internet. There may be hackers and malicious
traffic that may try to penetrate into a private network to cause harm. A firewall is the main
component on a network to prevent this.

It is especially important to a large organization that has many computers and servers in them,
because the company would not want all those devices accessible to everyone on the internet
where a hacker can come in and disrupt that organization.

A firewall that's used in computer networks is very similar to how a firewall works in a building.
A firewall in a building provides a barrier so that in the event of an actual fire, on either side of
a building, the firewall is there to keep the fire contained and to keep it from spreading over to
the other side, preventing the fire from destroying the entire building. A network firewall works
in a similar way as a building firewall. It stops harmful activity before it can spread into the
other side of the firewall and cause harm to a private network.

A firewall works by filtering the incoming network data and determines by its rules if it is allowed
to enter a network. These rules are also known as an access control list. They are
customizable and are determined by the network administrator. The administrator decides not
only what can enter a network but also what can leave a network.

For example, an access control list may show a list of IP addresses that have been allowed
or denied by this firewall, so that traffic from some IP addresses are allowed to enter this
network but traffic from other IP addresses may been denied. Rules may also be based on
domain names, protocols, programs, ports, and keywords.

There are different types of firewalls
o Host-based firewall. This is a software firewall. This is installed on a computer and it

protects that computer only and nothing else. For example, later versions of Microsoft
operating systems come pre-packaged with a host-baseball firewall. There are also

20n October 22 and 24, 2016, a DDOS attack brought down Starhub’s broadband network.
This was the first time a major attack took place on a Singaporean telco’s infrastructure.
Some Starhub’s subscribers’ machines were infected with malware that repeatedly sent
requests to Starhub’s DNS. Since they came from subscribers’ machines, Starhub’s server
believed they were legitimate and did not block them. The server was eventually
overwhelmed and went down.

third party host based firewalls can be purchased and installed on a computer. Many
antivirus programs will have a built in host-based firewall.

¢ Network-based firewall. This is a combination of hardware and software, and it
operates at the network layer. It is placed between a private network and the public
internet Unlike a host-based firewall, where it only protects that computer, a network-
based firewall protects the entire network, and it does this through management rules
that are applied to the entire network so that any harmful activity can be stopped before
it reaches the computers. Network-based firewalls can be a stand-alone product, an
arrangement which is mainly used by large organizations. They can also be built-in as
a component of a router, which is mainly used by smaller organizations. They could
also be deployed in a service provider's cloud infrastructure.

Most organizations will use both network- based and host-based of firewalls. They will use a
network-based firewall to protect the entire network, and they will also use host-based firewalls
for their individual protection for their computers and servers. In the event that harmful data
happens to get passed the network firewall, the host based firewalls on each computer can
still stop it.

Protection Mechanisms: Intrusion Detection Systems (IDS) and Intrusion Prevention
Systems (IPS)

The IDS is a passive system that scans incoming traffic. Once the IDS identifies dangerous or
suspicious traffic it can send an alert but leaves the action to the IPS.

The IPS is able to actively block or prevent intrusions. Actions taken by IPS:
¢ Inspection and investigation. Inspection can include signature-based inspection and
a statistical anomaly-based inspection. Investigation includes analyzing suspicious

package and activities.

e Action. Once unwelcome packets are identified, the IPS would either put them in
quarantine or simply drop them.

¢ Logs and Reports. Like many security devices IPS can log attacks and send reports.
IDS and IPS are not necessarily two separate physical devices. They can be combined into
one device They can be also be combined with other devices such as firewalls or routers into

a single device.

Encryption, Digital Signatures, and Authentication

Network Applications handle data. How do we ensure data is safely transmitted? We can use
encryption, digital signature and authentication.

Encryption protects data by encoding? it such that a secret key is required to decode* the data.
The decoding process is also known as decryption. Before decryption, encrypted data appears
as random, meaningless data. This provides security for the computer system, as only the
authorised users who have the secret key can access the data. However, encryption does not
prevent the hacker from deleting the data from the computer system.

3 Encoding is the process of converting the data or a given sequence of characters, symbols,
letters etc, into a specified format.
4 Decoding is the reverse of encoding.

By itself, encryption does not verify the sender of a message. One way to verify the sender is
to use a private and public key system. In such a system, users publicly reveal their public
key, which is unique to each user and is used to encrypt messages intended for them. Once
a message is encrypted, it can be decrypted using only the user’s private key, which is known
only by the user. Encryption using a public key is a one-way process. No one, not even the
sender, can decrypt the message without knowledge of the private key or the original
message.

A digital signature works in a similar way. A data file is hashed and encrypted using the
sender’s private key to form a signature. The original (unhashed) data file and signature are
sent to the recipient. The recipient hashes the received data file, and also decrypts the
signature using the sender’s public key. If the hashed data file and the decrypted signature
correspond, the data and signature are valid.

This verifies that a message comes from the intended sender and has not been changed by
a third-party.

Finally, a network application requires authentication to check the identity of the user
requesting to enter a system, ensuring only those with valid credentials can access the
system. Common ways of authentication include:

e passwords
o biometrics, for example: fingerprints, facial recognition, iris scans
o token values, such as from a physical device, a mobile phone or a software application

Some applications use two-factor authentication (2FA), which uses two different ways of
authentication for better security.

