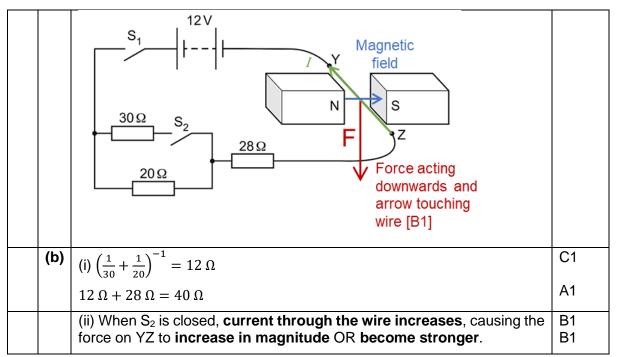
MARIS STELLA HIGH SCHOOL SECONDARY 4 SCIENCE(PHYSICS) 2024 PRELIMINARY EXAMINATION

Deduction of 1 m per occurrence (cap of 1 m per type of error for the entire paper):

- Incorrect or unclear presentation (P) or Incorrect or missing formula (F)
- Incorrect or missing units (U)
- Incorrect no. of significant figures (SF)

1	2	3	4	5	6	7	8	9	10
D	А	D	А	А	С	А	D	А	D
11	12	13	14	15	16	17	18	19	20
С	С	В	В	В	В	А	С	В	С


Paper 1 [20 marks]

Answer all the questions in this section. Qn **Mark Scheme** Marks 1 (a) 16 speed m/s 12 8 4 0 time *t* 32 4 8 12 16 0 20 24 28 S Best fit curve from t = 0 s to t = 26 s [B1] Straight line through all 3 points from t = 26 s to t = 30 s [B1] (i) $E_k = \frac{1}{2}mv^2$ (b) $=\frac{1}{2}(46 kg)(15.2 m/s)^2$ C1 $= \overline{5}313.92$ / = 5300 J (to 2 s. f.)A1 (ii) a = gradient of v - t graph0 - 15.2 C1 30 - 26 $= -3.8 \ m/s^2$ A1 deceleration = 3.8 m/s^2 (iii) F = ma $= (46 + 9 kg)(3.8 m/s^2)$ C1 = 209 NA1 = 210 N (to 2 s. f.)

Paper 2 Section A [55 marks]

	(iii) Energy is transferred from the kinetic store and gravitational potential store of the child and sledge	B1			
	to internal energy of surroundings through a mechanical pathway.	B1			
(a)	(i) $\rho = \frac{m}{V}$	(F)			
		C1			
	m = 0.030 kg 2.5 × 10 ⁻⁴ × 0.12 m ³	A1			
	(ii) $P = \frac{F}{A}$	(F)			
	$=\frac{(0.030 kg \times 10 N/kg)}{(0.030 kg \times 10 N/kg)}$	C1			
	$ = \frac{2.5 \times 10^{-4} m^2}{1200 N/m^2} $				
	$(m)^{T} = {}_{A}$ ($\rho \times 2.5 \times 10^{-4} \times 0.15 \text{ m}^{3} \times 10 \text{ N/kg}$)				
	$\frac{1200 \ N/m^2 = \frac{4}{2.5 \times 10^{-4} \ m^2}}{2.5 \times 10^{-4} \ m^2}$	C1			
		A1			
(c)	Turn the clamp so that the U-tube is directly above the base of the retort stand OR	B1			
	Lower the clamp so that the centre of gravity of the set up is lowered.				
(a)	(i) newton-meter OR spring balance	B1			
	(ii) measuring tape	B1			
(b)	(i) The principle of moments states that when a body is in equilibrium , the sum of clockwise moments about a pivot is equal to the sum of anticlockwise moments about the same pivot	B1 B1			
	(ii) In equilibrium, taking moments about the pivot,				
	Sum of clockwise moments = sum of anti-clockwise moments	(P)			
	$F \times 5.000 \ m = 52.0 \ N \times 0.250 \ m$ $F = 2.6 \ N$	C1 A1			
(a)	Heat is transferred via conduction	B1			
	Copper is a good conductor of heat as it has free electrons .	B1			
(b)	The water around the copper pipe is cooled , contracts and becomes denser , allowing it to sink to the bottom. Warmer water rises to take its place forming convection currents .	B1			
	Since water is a poor conductor of heat, this cools the water below efficiently allowing less dense room temperature water to remain above.	B1			
(c)	As temperature of the liquid decreases, the molecules lose average kinetic energy,	B1			
	they slide over one another at lower speeds.	B1			
(a)	(i) 340 m/s	A1			
	(ii) $v = f\lambda$	(F)			
	$340 m/s = 485 Hz \times \lambda$ $\lambda = 0.70 m$	E1 A1			
	(iii) Sound waves of different frequencies travel at the same speed in the same medium .	B1			
	(c) (a) (b) (c)	potential store of the child and sledge to internal energy of surroundings through a mechanical pathway. (a) (i) $\rho = \frac{m}{v}$ $1000 \ kg/m^3 = \frac{m}{2.5 \times 10^{-4} \times 0.12 \text{ m}^3}$ $m = 0.030 \ kg$ (ii) $P = \frac{F}{A}$ $= \frac{(0.030 \ kg \times 10 \ N/kg)}{2.5 \times 10^{-4} \ m^2}$ $= 1200 \ N/m^2 = \frac{(\rho \times 2.5 \times 10^{-4} \times 0.15 \ m^3 \times 10 \ N/kg)}{2.5 \times 10^{-4} \ m^2}$ (iii) $P = \frac{F}{A}$ $1200 \ N/m^2 = \frac{(\rho \times 2.5 \times 10^{-4} \times 0.15 \ m^3 \times 10 \ N/kg)}{2.5 \times 10^{-4} \ m^2}$ (c) Turn the clamp so that the U-tube is directly above the base of the retort stand OR Lower the clamp so that the centre of gravity of the set up is lowered. (a) (i) newton-meter OR spring balance (ii) measuring tape (b) (i) The principle of moments states that when a body is in equilibrium, the sum of clockwise moments about the pivot, Sum of clockwise moments about the pivot, (b) The water around the copper pipe is cooled, contracts and becomes denser, allowing it to sink to the bottom. Warmer water rises to take its place forming convection currents. Since water is a poor conductor of heat, this cools the water below efficiently allowing less dense room temperature water to remain above. (c) As temperature of the liquid decreases			

	(b)					
		a shorter time to travel the same distance and hence timer will have a smaller reading.				
	(-)					
6	(a)	The fur lost negative charges to become positively charged.				
		The plastic gained negative charges to become negatively charged.				
	(b)	(i) $W = mg$ = 0.015 kg × 10 N/kg = 0.15 N	(F) C1 A1			
		(ii) electrostatic force arrows act from force centre,				
		in opposite directions but same magnitude and correctly labelled [B1]				
7	(a)	veight Q, +1.6 × 10 ⁻¹⁹ C or +1 charge	B1			
	(b)	Q and S				
	(c)	(i) R and S	B1			
	.,	(ii) 99 years = $3 \times t_{1/2}$				
		$fraction = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$				
		$=\frac{1}{8} OR \ 0.125$				
		(iii) β -particles can pass through the paper depending on its thickness, while α -particles would be blocked and γ -particles can pass through the paper freely.				
8	(a)	(i) Current is the rate of flow of electric charge.				
		(ii) $I = \frac{V}{R}$ $I = \frac{12 V}{20 + 28 \Omega}$	(F) C1			
		$20 + 28 \Omega$ = 0.25 A				
		(iii) The magnetic field due to the current interacts with the magnetic field of the permanent magnets.	B1			
		This causes a stronger field to be set up above the wire and weaker field set up below the wire . Hence YZ experiences a downward force from stronger to weaker field .				

Section B

Answer one question from this section.

9	(a)	$v = f\lambda$ 3.0 × 10 ⁸ m/s = f × 589 × 10 ⁻⁹ m f = 5.093 × 10 ¹⁴ Hz = 5.1 × 10 ¹⁴ Hz (to 2 s. f.)			
	(b)	(i) $n = \frac{\sin i}{\sin r}$ $1.5 = \frac{\sin 60^{\circ}}{\sin r}$ $r = 35^{\circ} (to 2 s. f.)$	(F) C1 A1		
		(ii) Drawn using ruler and protractor where r matches answer in (b) [B1]			
		(iii) $n = \frac{c}{v}$ $v = \frac{3.0 \times 10^8 \ m/s}{10^8 \ m/s}$	(F) C1		
		$1.5 = 2.0 \times 10^8 \ m/s$	A1		

	(c)	F R display				
		f = 18 cm V scale: 1 cm rep 10 cm				
		Correct ray diagram (any 2 correct rays with direction) [B1] Accept f = 16 – 19 cm [B1]				
		(ii) The focal length of the lens decreases.	B1			
10	(a)	(i) $P = VI$ $3000 W = 240 V \times I$ I = 12.5 A	(F) C1 A1			
		(ii) 13 A	E1			
		(iii) $cost = Pt \times rate$	(F)			
		$= 3 kW \times \frac{10}{60} h \times 30 \times \0.2989	C1			
		= \$4.48 (to nearest cent)	A1			
	(b)	(i) wire X: neutral	B1			
		wire Y: live	B1			
		wire Z: earth	B1 B1			
		(ii) The earth wire is connected to the live terminal .				
		This causes the metal casing to be live and anybody who touches it can get an electric shock .				