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National Junior College 

2016 – 2017 H2 Mathematics  

Complex Numbers (Lecture Notes) 

 

 

Topic 13: Complex Numbers 
 

 Key questions to answer: 

 

1. What is a complex number? How is it different from a real number? 
- How is the complex number i defined? 

                 - How do we write a complex number in its Cartesian form? 

                 - What is the relationship between the set of real numbers and the set of complex numbers? 

 

Complex Numbers in Cartesian Form 

2. When can we say that two complex numbers given in Cartesian form are equal? 
- How do we apply this property to solve simple equations involving a complex variable? 

 

3. How do we carry out arithmetic operations (addition, subtraction, multiplication, division 

and taking square root) on complex numbers in Cartesian form? 
- How do we relate the addition and subtraction of complex numbers to addition and subtraction 

  of vectors? 

 

4. What is the conjugate of a complex number? What are its properties and applications? 

 

5. What can we say about the roots of polynomial equations with real coefficients? 
- How do we solve polynomial equations with real coefficients? 

- Understand that complex roots of a polynomial equation with real coefficients occur in conjugate 

pairs. 

 

6. How do we find the modulus and argument of a complex number given in Cartesian form? 

 

7. How do we represent a complex number in Cartesian form by a point in the Argand 

diagram? 
- How do we interpret geometrically, the terms ‘real part’, ‘imaginary part’, ‘modulus’, 

‘argument’ and ‘conjugate’ of a complex number? 

 

Complex Numbers in Polar & Exponential Form 

8. How do we convert a complex number from one of the following forms to another: 

(a) Cartesian form, (b) polar form and (c) exponential form? 

 

9. How do we multiply and divide two complex numbers given in polar and exponential 

forms? 

 

10. How do we represent a complex number in polar form by a point in the Argand diagram? 
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§1 Introduction 

 

1.1 Roots of quadratic equations 

 

How many roots do you expect to obtain when solving a 

quadratic equation? 

 

Solve the following quadratic equations: 

(a) 2 2 3 0x x     Two real and distinct roots 

2 16
              3 or 1

2
x x x

 
       

(b) 2 2 1 0x x     Two real and repeated roots  

2 0
              1

2
x x

 
     

(c) 2 2 5 0x x     No real roots 

2 16
          

2
x

  
  

Can we expand our notion of numbers to those that are non-real? How then can we 

express the roots of equation (c)? 

 

 

1.2 Definition and Terminology 

 

Definition 1.2.1 (Imaginary Unit) 
 

The imaginary unit, i, is a number such that 2i 1  . Hence, i 1  . 

 

Thus, the square root of any negative real number can then be written in the form 

of ai, where a is a positive real number.  

For example,     3 3 1 3 1 3 i      . 

 

Definition 1.2.2 (Complex Number in Cartesian form) 
 

A complex number, z , is a number of the form ix y , where ,x y . 

 

The symbol  is used to denote the set of complex numbers. 

 

Hierarchy of the number system: 

 

     Complex Numbers,   

        
            Real Numbers,  Purely Imaginary Numbers 

        
           Rational Numbers,  Irrational Numbers  

        
          Integers,  Fractions   

        
        Negative Integers Zero Positive Integers   

 

Let’s be 

intellectually 

curious! 
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Definition 1.2.3 (Real and Imaginary Parts of a Complex Number) 

 

If iz x y  , ,x y , then 

 

x is the real part of z and is denoted by  Re z . (i.e.  Re z x ) 

y is the imaginary part of z is denoted by  Im z . (i.e.  Im z y ) 

 

Note: 

 

1. If 0x  , then iz y  is a purely imaginary number. 

2. If 0y  , then z x  is a real number. 

3.  Im z y  is a real number.  Im z  is NOT iy. 

 

Definition 1.2.4 (Equality of Complex Numbers) 

 

Two complex numbers are equal if and only if their real and imaginary parts are 

equal. 

 

That is, given that 1 1 1iz x y   and 2 2 2iz x y   where 1 2 1 2, , ,x x y y  , then 

 

1 2z z     1 2x x and 1 2y y . 

 

Note: 

 

1. 0 0 and 0z x y     

2. Inequalities do not apply to complex numbers that are not real numbers. For 

example, we cannot say 2 i  is larger or smaller than 2 i . 

 

Example 1.2.5 

 

Find x and y, where ,x y , if 2 i(3 ) 4 2ix y x y     . 

 

Solution: 

 

Comparing real part on both sides, we get  2 4 (1)x y    

 

Comparing imaginary part on both sides, we get  3 2 (2)x y    

 

Solving equations (1) and (2) simultaneously, we get 
8

7
x   and 

10

7
y  . 

 

Note: We must ensure that the terms on both sides of the simultaneous equations 

are real. 
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§2 Arithmetic Operations on Complex Numbers 
 

2.1 ‘i’ follows all arithmetic operations on real numbers 

 

(i) Addition: 3i + 4i = 7i  (ii) Subtraction: 10i – 3i = 7i 

 

(iii) Multiplication: 

 

 i ia a  ;  i i ia b a b   ; 
2i ,  wheri ei  ,a abb aab b    . 

 

In particular, 

 

2

3 2

2
4 2

5 4

i 1 (by definition)

i ii i

i i 1

i ii i

 

  

 

 

 

 

Hence, i to any power can be reduced to one of i, 1, i or 1  . 

(iv) Division: 1

2

1 1 i i
i i

i i i i

       . 

 

For Sections 2.2 to 2.3, consider two complex numbers 1 1 1iz x y   and 

2 2 2iz x y   where 1 2 1 2, , ,x x y y  . 

 

2.2 Addition, Subtraction & Multiplication of Complex Numbers 

 

(a)    1 2 1 1 2 2 1 2 1 2i i ( ) i ( )z z x y x y x x y y          

(b)      1 2 1 1 2 2 1 2 1 2i ( i ) iz z x y x y x x y y          

(c)  1 1 1 1 1i ikz k x y kx ky    , k  

(d) 
2

1 2 1 1 2 2 1 2 1 2 1 2 1 2( i )( i ) i i iz z x y x y x x y x x y y y         

          1 2 1 2 1 2 2 1( ) i( )x x y y x y x y     

 

2.3 Division of Complex Numbers 

 

This is done by realising the denominator, which is multiplying the complex 

conjugate (refer to page 6) of the denominator to the numerator and denominator. 

 

1 1 1 2 2 1 2 1 2 2 1 1 2 1 2 1 2 2 1 1 2

2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2

i i ( ) i( )
i

i i

z x y x y x x y y x y x y x x y y x y x y

z x y x y x y x y x y
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Example 2.3.1 

 

Express the following complex numbers in the form i ,  where ,x y x y  . 

(a)   (2 + 3i) − (−1 + 2i)  (b)   (2 + 4i)(1 – i)  (c)    
5 10i

4 3i




 

 

Solution: 

 

(a) (2 + 3i) − (−1 + 2i) = 2 + 3i + 1 – 2i = 3 + i 

 

(b) (2 + 4i)(1 – i) = 2 – 2i + 4i – 4i2 = 2 + 2i + 4 = 6 + 2i 

 

(c) 
5 10i 5 10i 4 3i 20 15i 40i 30 50 25i

. 2 i
4 3i 4 3i 4 3i 16 9 25

      
    

   
 

 

Example 2.3.2 

 

Solve the simultaneous equations (1 i) 2i 0 and 3i (1 i) iz w z w      . 

 

Solution: 

(1 i) 2i 0  ----- (1)z w    ; 3i (1 i) i   ----- (2)z w    

From (1), we have 
2i

1 i

w
z





.  Substituting into (2), we get 

 2

2i
3i (1 i) i 

1 i

6
(1 i) i

1 i

6 (1 i ) i 1 i

8 i 1

1 1
i

8 8

w
w

w
w

w w

w

w

 
   

 

  


   

 

 
 

 

Example 2.3.3 

 

Find the square roots of 3 4i . 

 

Solution: 

The question requires us to evaluate 3 4i . Let 3 4i ix y   .  

 

Then  
2 2 2i 3 4i 2i 3 4ix y x y xy        . 

 

Comparing the real and imaginary parts on both sides, we have: 

 
2 2 3   ----- (1)x y    ; 2 4   ----- (2)xy   

 

Solving simultaneously, we have 2x  , 1y   or 2x   , 1y   . 

 

The square roots of 3 + 4i are 2 i  and 2 i  . 

Therefore,  

 
1 1 12i i 1 i

18 8 4

1 i 1 i 4
z
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§3 Complex Conjugates 
 

Definition 3.1 (Complex Conjugate) 

 

The complex conjugate of a complex number iz x y   is defined to be the 

complex number ix y  and is denoted by *z . 

 

For example, if 3 5iz   , then * 3 5iz   . 

 

Properties 3.2 

 

    2 2 2 2 2* i i i i izz x y x y x y yx xy yx         , i.e. the product of 

any complex number and its conjugate is real. 

 

  * 2Rez z z     1 2 1 2* *   *z z z z    

  – * 2iImz z z    1 2 1 2* * *z z z z   

  
*

*z z      
*

*
nnz z , where n  

  * *kz kz , where k  

 

*

1 1

2 2

*

*

z z

z z

 
 

 
 

Example 3.3 
 

If 1 2 iz    and 2 4 iz   , find  1 22 *z z  and  1 2 *z z . 

 

Solution: 

 

     1 2 1 22 * 2 * * 2 2 i 4 i 4 2i 4 i 8 iz z z z              

     2

1 2 1 2* * * 2 i 4 i 8 2i 4i i 9 2iz z z z           

 

Example 3.4 
 

If 4 9iz   , find zz*. 

 

Solution: 

 

    
22 2 2* 4 9i 4 9i 4 9i 4 9 97zz          

 

Example 3.5 
 

Find 
 

 

5

3

*
2 i

2 i

 
 


 in the form ix y . 
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Solution: 

 

 

 

 

 

 

 
 

5

2

5 5

3 3 3

*
2 i 2 i * 2 i

2 i 3 4i
2 i 2 i 2 i

            
  

 

 

Example 3.6 

Solve the simultaneous equations  (1 i) 2i 0z w    --- (1) and 

 3i (1 i) * iz w    --- (2) 

Solution: 

From (1), 
2i

1 i

w
z





 -- (3) 

Substituting (3) into (2),  

2i
3i (1 i) * i

1 i

3i( 2i ) (1 i)(1 i) * (1 i)i

6 2 * 1 i

w
w

w w

w w

 
   

 

     

  

 

 

Let iw x y  , where x and y are real. Then 

6( i ) 2( i ) 1 i

8 i(4 ) 1 i

x y x y

x y

    

  
 

 

Comparing real and imaginary parts, 
1 1

,
8 4

x y   . 

Hence 
1 1

i
8 4

w    and 
2i 3 1

i
1 i 8 8

w
z


  


. 

 

Example 3.7 (GC Practice. Refer to Appendix I for more GC information) 

 

Given that 
7 17i

1 i
z

 



, find  (i) z  (ii) 2 1

*
z

z
  

 

Solution: 

(i) 

Step 1:  Store z as 
7 17i

1 i

 


 in the GC.  

Use  to store the complex number as z. GC will 

simply express the number in Cartesian form. [Note that you should have changed 

the mode to “a + bi “ form.]  

Step 2:  Find z . 

Using   to call out z, we obtain 3 

+ 2i as a square root of z. 

[To check your answer, you may want to square 3 + 2i to see if you get back z.]  



National Junior College Mathematics Department 2017  

2016 – 2017 / H2 Maths / Complex Numbers Page 8 of 21 

In the above solution for Example 3.7(i), is 3 + 2i the only 

square root of z? 

 

Check the answer using the algebraic method shown in 

Example 2.3.3. 

 

 

 

 

(ii)  Find 2 1

*
z

z
 . 

Using conj( from MATH CMPLX menu to represent z*, we see that 2 1

*
z

z
 = 

−118.97 + 120.07i.  

 

§4 Complex Roots of Equations 
 

Theorem 4.1 (Fundamental Theorem of Algebra) 

 

Every polynomial of degree n with coefficients in  has exactly n roots in , 

including repeated roots. 

Note: Complex roots include real roots as the imaginary part can be zero. 

 

Theorem 4.2 (Complex Conjugate Root Theorem) 
 

All non-real roots of a polynomial with real coefficients must occur in conjugate 

pairs.  

 

That is, if z  i , 0a b b   is a root of  

1 2 2

1 2 2 1 0.... 0n n n

n n na x a x a x a x a x a 

         where ia  , for 

0,  1,  2, ...,  1,  i n n  , 

then z   i , 0a b b    is also a root of the equation. 

 

Example 4.3 

 

Solve 
2 2 5 0x x   . 

 

Solution: 

 

By Fundamental Theorem of Algebra, we expect 2 roots. 

 

2

2 2 2 4(1)(5)
2 5 0

2

2 16
                              

2

                              1 2i or 1 2i

x x x
  

    

  


    

 

We see that the Complex Conjugate Root Theorem holds true as the coefficients 

are real. 

Let’s be 

intellectually 

careful. 
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Alternatively, using a GC, 

 

                 
 

1 2i or 1 2ix x       

 

Example 4.4 

 

Solve 
2 3i 2 0z z   . 

 

Solution: 

 

    
2

2
3i 3i 4 1 2

3i 2 0
2

3i+i 3i i
                               or 

2 2

                              2i or i

z z z
   

    






 

 

We see that i and 2i are not conjugate pairs since the Complex Conjugate Root 

Theorem would not hold when the equation has a non-real coefficient. 

 

Example 4.5 

 

By completing the square, solve the equation 
2 (4 2i) 8i 0z z    .  Explain why 

the solutions are not a conjugate pair. 

 

Solution: 

 

   

   

 

2

2 2

2 2

2

                (4 2i) 8i 0

2 i 8i 2 i 0

2 i 8i 2 i

2 i 8i 4 4i 1

3 4i

z z

z

z

z

   

     

    

     

 

 

 

From Example 2.3.3, we have found that  3 4i 2 i    . 

 

Hence,  2 i 3 4i 2 i 2i or 4z z z            . 

 

Observe that since not all the coefficients are real, the complex roots do not occur 

in conjugate pairs.  
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Try to solve the equation in Examples 4.4 and 4.5 using the 

graphing calculator. Can the graphing calculator solve 

polynomial equations with non-real coefficients? 

 

The graphing calculator is unable to solve polynomial 

equations with non-real coefficients. 

 

 

 

 

How do we prove the Complex Conjugate Root Theorem? 

(Given that z is a complex root of a polynomial of degree n, 

prove that z* is also a root of the polynomial) 

 

Hint: You may use the following complex conjugate  

          properties:  1 2 1 2* *   *z z z z    ;  

      * *kz kz , where k ;  

        
*

*
nnz z , where n  

 

 

Example 4.6 

 

If 1 i  is a root of 
3 2 2 0x x   , find the other roots without using a graphing 

calculator. 

 

Solution: 

 

Since the coefficients are real, by Complex Conjugate Root Theorem, 1 + i is also 

a root of the equation. Also, the third root must be a real number, a. 

  

By trial and error, we have  
3 2 3 2f ( 1) ( 1) ( 1) 2 1 1 2 0,  where f ( ) 2x x x              . 

Therefore, 1a    is the third root.   

 

Hence the other roots are 1 and 1 ix x    . 

 

 

Can we solve this equation without using trial and error? 

 

Method 1: Long Division 

      21 i 1 i 2 2x x x x         

 

Performing long division of 
3 2 2x x   by 2 2 2x x  , we 

obtain 1x  as the last factor. 

Hence, 1x    is a root. 

 

 

 

Let’s be 

intellectually 

curious! 

Let’s be 

intellectually 

curious! 

Let’s be 

intellectually 

curious! 
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Method 2: Comparing coefficients 

The last root must be a real number, .  Thus we have 

      

  

3 2

2 3 2

1 i 1 i 2

2 2 2

x x x x x

x x x x x





       

     
 

 

Comparing the constant terms on both sides of the equation, we get 

2 2

1





 

 
 

 

 

How many real roots can a quadratic/cubic equation with real 

coefficients have? How many real roots can it have if not all 

the coefficients are real? 

 

 

 

 

 

 

 

§5 Geometrical Representation of Complex Numbers 
 

5.1 The Argand Diagram 

 

A complex number iz x y   can be represented as 

a point P with Cartesian coordinates  ,x y  on the x-

y plane. 

 

The x-y plane is called the Argand diagram where 

the horizontal axis is known as the real axis, denoted 

by Re and the vertical axis the imaginary axis, 

denoted by Im. 

 

Example 5.1.1 

 

Represent the following complex numbers in an Argand diagram:  

2 3ia   , 2 3ib    , 2 3ic    , 2 3id   , 2e  , 3if  , 3g   , 2ih    

 

Solution: 

 

Let A, B, …, H be the points representing a, b, …, h in the Argand diagram. 

 

 

 

Imaginary Axis 

Im 

Real Axis 

Re 
O 

y 

x 

P  

Let’s clarify 

and seek 

understanding. 
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How are the following related in an Argand diagram? 
 

(a) z and z* (see A and D) 

They are reflections about the real axis. 

 

(b) z and z  (see A and C) 

They are reflections about the origin. 
 

What about A and B? We see that    * *z z    

 

 

Complex numbers can alternatively be represented by position vectors, i.e., a 

complex number iz x y   can be represented as a position vector 
x

OP
y

 
  
 

 in 

the x-y plane. 

 

Techniques and operations used in coordinate geometry and vectors can be applied 

to complex numbers.  Addition and subtraction of complex numbers correspond to 

the parallelogram law of vector addition and subtraction. 

 

 

 

Let z1 = a + ib be represented by P1  

 z2 = c + id be represented by P2. 

 z = z1 + z2 = (a + c) + i (b + d) be represented by P. 

 

In terms of vectors, 

1 2OP OP OP   

 

 

 

Let’s be 

intellectually 

curious! 

Re 
O 

 z2 

z1 

Im 

 

P1 

P2 

P 

(2,3)   ( 2,3)   

( 2, 3)    
(2, 3)   

(2,0)   

(0,3)   

( 3,0)   

(0, 2)   
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The subtraction 2 1z z  is the same as the addition of 2z  

and 1z . Thus, let 
2P P  represents 1z , then the OP  

represents 2 1z z . 

 

  z = z2 − z1 = (c – a) + i (d – b) be represented by P. 

 

In terms of vectors,  

1 2 2 1OP PP OP OP    

 

 

What are some possible limitations of considering complex numbers as vectors 

on the Argand Diagram? 

 

Every complex number can only be represented by position vectors and not  

displacement vectors. So for example when finding the difference between two 

complex numbers (e.g. 2 1z z ), the vector obtained must be translated to start 

from the origin first, before the real and imaginary parts of the complex number 

can be obtained. Finding differences of vectors on the other hand, has no such 

restriction. 

 

 

 

5.2 Modulus and Argument of a Complex Number 

 

 

 

 

 

 

 

 

 

 

Without loss of generality, P represents the complex number 

i ,  where ,z x y x y    .  We have: 

 

Definition 5.2.1 (Modulus) 

 

The modulus of a complex number iz x y   is defined as 2 2x y , and is 

denoted by z . 

 

Geometrically, it is the distance between the origin and the point P, i.e., the 

magnitude of OP . 

 

  

 z2 

 z1 

Re 

Im 

O 

 

P1 

P2 

P 

Re  

P  y 

x O 

Im 

Let’s be 

intellectually 

careful. 

1z  
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Note: 

1. z  is always a non-negative real number, e.g.,  
2 23 4i 3 4 5      . 

2. From vector subtraction (diagram from parallelogram law of vector 

subtraction), we see that 
11 22z z PP   is the distance between 1P  and 2P . 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 5.2.2 (Argument) 

 

The argument of z is defined as θ, the angle between OP  and the positive real axis, 

and is denoted by arg(z). 

 

Note: 

1. θ is positive when measured anti-clockwise from the positive real axis and is 

negative when measured clockwise from the positive real axis. 

2. It is important that you first check the quadrant in which z lies before computing 

its argument. 

 

Example 5.2.3 

 

Find the modulus and argument of each of the following complex numbers: 

3, –5, –2i, 3 i  and 3 i  . 

 

Solution: 

1

1

3 3,                              arg(3) 0

5 5,                            arg( 5) π

π
2i 2,                          arg( 2i)

2

1 π
3 i 3 1 2,         arg( 3 i) tan

63

1
3 i 3 1 2,      arg( 3 i) tan

3






 

   

    

      


         



5π

6


  



 

 

Note: There can be multiple answers for arg(z), e.g.,  arg 3 i  can be 
π

6
 or other 

values differing by 2 πk , where k . However, we will usually quote the 

principal argument as the answer. θ is the principal argument if it lies in the 

principal range, i.e., π π   . 

 

 z2 

 z1 

Re 

Im 

O 

 

P1 

P2 

P 
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Note: 
 

1. arg(0) is undefined. 

 

2. z is real  arg(z) = 0 or π. 

3. z is purely imaginary   
π

arg
2

z   . 

4. z, z* and –z have the same modulus, i.e., *z z z    

5.      
2 22

Re Imz z z   

 

6. arg(z*) = − arg(z) 

 

7. zz* = |z|2 (A very useful result.) 

 

 

Example 5.2.4 

 

Find the reciprocal of 2 3iz   , i.e., 
1

z
. 

 

Solution: 

 

 
2 22

1 1 * * 2 3i 2 3
i

* 13 132 3

z z

z z z z


  

 
  .   

(Here we are using the identity 
2

*zz z ) 

 

 

§6 Polar Form of a Complex Number  
 

6.1 Cartesian Form  Polar Form 

 

Suppose iz x y   (in Cartesian form). 

 From the Argand diagram, we have 
2 2

tan  for basic angle,

r z x y

y

x
 

  


 

 

 From the Argand diagram, we also have 

sin

cos

y

x r

r






 

 Therefore,  

 

i

cos i sin

cos isin

z x y

r r

r

 

 

 

 

 

 

 

Re  

z = x + iy y 

x O 

Im 

− 

z* = x – iy −y 

r 

r 

Re  

P  y 

x O 

Im 

r 
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We have now expressed z in polar form (also known as modulus–

argument form or trigonometric form):  cos isinz r    , where 

0r  .  

The argument   is usually expressed in the principal range (i.e. π π   ) 

unless otherwise specified. 

 

Note: The following expressions (where 0r  ) are not in polar form.  Can you 

explain why this is so? Next, try converting them to polar form. 

 

(a)      cos coisin isinsr r           

(b)  
π π

i cos isin c s n
2

os i
2

r r   
   

      
   

 
  

 
 

(c)      cos cosisin π isin πr r            

(d)  
π π

i cos isin c s
2 2

os inr r   
   

      
   

 
  

 
 

 

Example 6.1.1 

Express (i)  –3 and (ii)  5 5i  in polar form. 

 

Solution: 

(i) 

3 3,  arg( 3) π

3 3(cosπ isin π)

   

   
 

(ii) 

π 3π
5 5i 25 25 50 5 2,  arg( 5 5i) π =

4 4

3π 3π
5 5i 5 2 cos isin

4 4

         

    
        

    

 

 

§7 Exponential Form of a Complex Number  

 

7.1 Euler’s Formula 

 

From the Maclaurin’s expansion of cos , sin and ex   for all real values of x and , 

we have 

 
2 4 6

cos 1 ...
2! 4! 6!

  
      ,     

3 5

sin ...
3! 5!

 
     ,     

2 3 4

e 1 ...
2! 3! 4!

x x x x
x       

 

  

What do you 

notice about (a)? 
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If we let ix  , we get 

     
2 3 4

2 3 4

2 4 3

i i i i
e 1 i ...

2! 3! 4!

1 1 1
1 i i ...

2! 3! 4!

1 1 1
    1 ... i ... cos isin

2! 4! 3!

   


   

     

     

     

   
           
   

 

 

 

Euler’s Formula: 
ie cos isin     

 

 

 

If we put π   in Euler’s Formula, then we would obtain 

a remarkable identity which links together geometry, 

algebra, and five of the most essential symbols in math -- 

0, 1, i, π and e -- that are essential tools in scientific work. 

 
iπ iππ isine cos e 1 0π 1       

 

 

 

 

7.2 Exponential Form 
 

Since any complex number can be expressed in the polar form (cos isin )r   , it 

follows from Euler’s formula that we can write 

 

  icos isin ez r r     ,  

where r z  and  arg z  , usually expressed in principal range i.e. π π   . 

 
iez r   is known as the exponential form of z. 

 

 

 

Note: 

1. For 
iez r  , θ must be in radians and usually expressed in the principal range, 

π π   . 

2. i 2 2e cos isin cos sin 1         . 

3. 
i i( π2 )e e n  , for n . 

4. 
i ie e 2cos    , 

i ie e 2isin     

5. For ,x y ,  
i i ie e .e e e ex y x y x y x     

       i i iarg e arg e .e arg e arg e 0x y x y x y y y        

 

 

 

Let’s be broad  

and adventurous! 
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Example 7.2.1 

 

Express the following in exponential form: 

(i) 1 1 iz    (ii) 
2 3 iz          

 

Solution: 

(i)  

 1

π
i
4

1

π
1 i 2,  arg 1 i

4

2e

z

z

    

 

 

 

(ii)  

 

2

1

π
i

6

2

3 i 3 1 2,  

1 π
arg 3 i tan

63

2e

z

z



 
 
 

    

    

 

 

 

7.3 Multiplication/Quotient of Complex Numbers in Exponential Form 

 

Let 1i

1 1 1 1 1(cos isin ) ez r r
     and 2i

2 2 2 2 2(cos isin ) ez r r
    . Then, 

 

(1)     1 21 2 1 2
ii i i i

1 2 1 2 1 2 1 2e e e e ez z r r rr rr
     

       

 

Hence, 
1 2 1 2 1 2z z r r z z        and          1 2 1 2 1 2arg arg argz z z z       

 

We can extend the above result to get 

(a) 
1 2 3 1 2 3... ....n nz z z z z z z z  

(b)            1 2 3 1 2 3

1

arg .... arg arg arg ..... arg arg
n

n n k

k

z z z z z z z z z


       

 

In particular, when 1 2 3 ... nz z z z z     , we have 

(c) 
nnz z   

(d)  arg arg( )nz n z  

 

 (2)    
 

1

1 2

2

i
i1 1 1

i

2 2 2

e
e

e

z r r

z r r


 




  . 

 

Hence,  
11 1

2 2 2

zz r

z r z
       and     

1
1 2 1 2

2

arg arg( ) arg( )
z

z z
z

 
 

    
 

 

 

 

 

 

Re 

 
 

O 

Im 

  

2 

Re 

 

O 

Im 
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Example 7.3.1 

 

Given that 
1 3i1z    and 

2 3 iz    . Find  1 2arg z z . 

 

Solution: 

  1

1

π
arg tan 3

3
z    and  2

1 1 5π
arg tan

63
z    

 

     1 2 1 2

π 5π 7π 5π
arg arg arg

3 6 6 6
z z z z       . 

 

Note: The argument is usually expressed in the principal range (i.e. π π   ) 

unless otherwise specified. 

 

Alternative Method 

 

  

 

1 2

1

1 2

3i 3+i

3 i 3i 3

2 3 2i

2
arg π tan

2 3

π 5

1

π
π

6 6

z z

z z 



   

  

 
    

 

    

 



  

 

 

What are the advantages/disadvantages compared to the previous method? 

 

 

 

Example 7.3.2 (Simplifying using laws of indices) 

 

Express the following in exponential form: 

 (i) 
1 i

3 i




       (ii) 

3 4(1 i) ( 3 i)   

 

Solution: 

(i) 

π
i π π
4 i

4 6

π
i

6

5π
i

121 i 2e 1 1
= e = e

3 i 2 2
2e

  
   

   

 
 
 





 

(ii) 

43 π 3π 2π ππ i i ii
3 4 3 4 6 4 3 124

1 2(1 i) ( 3 i) 2e 2e 32 2e 32 2ez z

     
      
     

  
         

   

  

* You may use the GC if exact form is not required. 

 

Note that by expressing a complex number in exponential form first can aid in the 

subsequent manipulations/simplifications. 

Re 

O 

Im 

−2 
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Example 7.3.3 (Simplifying using properties of modulus and argument) 
 

Express the following in polar and exponential form. 

(i)     
3 2

1 i 3 1 i     (ii)  
 
 

6

3

1 i 3

1 i



 
 

Solution: 

(i)  

   

   

3 32 2

3 2

1 i 3 1 i 1 i 3 1 i

1 3 1 1 16

      

   

 

 

       

   

 

3 32 2

1

arg 1 i 3 1 i arg 1 i 3 arg 1 i

3arg 1 i 3 2arg 1 i

π π
 3 tan 3 2 π =

4 2



        
  

    

 
    

 

 

 

Thus,  

   
π

i3 2 21 i 3 1 i 16e

π π
16 cos isin

2 2

 
 
    

 
  

 

. 

 

(ii)  

 
 

 

   

6 66

6

3 3 3 3

1 i 3 1 31 i 3 2
16 2

1 i1 i 1 1 2

 
   

   

 

 

 
 

     

 
 

 

6

1

3

6

3

1 i 3 π 17
arg 6arg 1 i 3 3arg 1 i 6 tan 3 3 π π

4 41 i

1 i 3 17 π
principal arg π 2 2π

4 41 i



                    
  

 
      
  
  

 

Thus, 
 
 

6
π

i
4

3

1 i 3 π π
16 2e 16 2 cos isin

4 41 i

 
 
 

     
        

      
. 

 

* You may use the GC if exact form is not required. 
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Example 7.3.4 (“Half-Argument” approach) 

The complex number q is given by 
i

i

e

1 e
q







, where 0 2π  . In either order, 

(i)  find the real part of q  (ii)  show that the imaginary part of q is 
1

cot
2 2


.  

 

Solution: 

 

i

i

i

i i i
2 2 2

i
2

i i
2 2

e

1 e

e

e e e

e

e e

cos i sin
2 2

cos i sin cos i sin
2 2 2 2

cos i sin i cos sin
2 2 2 2

2isin 2sin
2 2

1 1
i cot

2 2 2

q






  



 

 

   

   

 




















    

     
   

 

 



    

 

Thus, 
1

Re( )
2

q   , and 
1

Im( ) cot
2 2

q


 . 
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Appendix I: Complex Numbers in GC 
 

This section aims to equip you with some basics of using GC in complex numbers. However, you are 

also strongly encouraged to read up any GC guidebook to acquire the basic skills required to utilise 

a GC and to explore its various functions. 

 

Note that you may use the GC to help you in your calculations involving complex numbers, unless 

it is stated that the problem given needs to be solved without the use a calculator, or if an exact 

solution is required. 

 

Getting Started 

1. Press  to display mode settings. Scroll down to select 

“a + b i ” so that you can obtain complex number solutions 

in Cartesian form. 

It is also recommended that you use radian mode for 

calculations involving complex numbers. 

 

2. To enter the complex number i, press . 

 

3. Other operations or functions for complex numbers can be 

found in the Math CPX menu, which contains standard 

operations involving complex numbers.  

 Press   to get to the CMPLX menu. 

  

A brief description of the 7 operations or functions in the menu:     

 

Operation: Form : Explanation: 

1: conj( conj(complex number z) Returns the complex conjugate z* of z.  

2: real( real(complex number z) Returns the real part, x, of  z = x + yi = rei. 

3: imag( imag(complex number z) Returns the complex part, y of  z = x + yi = rei. 

4. angle( angle(complex number z) Returns the principal argument, , of  z = x + yi = 

rei. 

5: abs( abs(complex number z) Returns the modulus, r, of  z = x + yi = rei. 

6: ►Rect Complex number z ►Rect  Displays z in Cartesian form, z = x + yi. 

7: ►Polar Complex number z ►Polar  Displays z in Exponential form, z = rei. 

 

 

 

 


