Calculator Model:

ORCHID PARK SECONDARY SCHOOL

Preliminary Examination 2024

CANDIDATE NAME				
CLASS		INDEX NUMBER		
ADDITIONAL MATH	IEMATICS		4049/02	
Paper 2		23 A	23 August 2024	
Secondary 4 Express / 5 Normal (Academic)		2 hours	2 hours 15 minutes	
Setter: Mr Mohd Salim Bin Ramli			90 Marks	
Additional Materials: NIL				

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

Use a pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer. Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks of this paper is 90.

For Examiner's Use

Total

This document consists of **19** printed pages.

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$

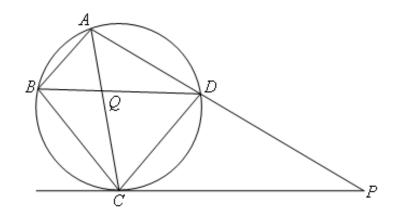
2. TRIGONOMETRY

Identities

$$\sin^{2} A + \cos^{2} A = 1$$
$$\sec^{2} A = 1 + \tan^{2} A$$
$$\csc^{2} A = 1 + \cot^{2} A$$
$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$
$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$
$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$
$$\sin 2A = 2\sin A \cos A$$
$$\cos 2A = \cos^{2} A - \sin^{2} A = 2\cos^{2} A - 1 = 1 - 2\sin^{2} A$$
$$\tan 2A = \frac{2\tan A}{1 - \tan^{2} A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc \cos A$$
Area of $\triangle = \frac{1}{2}bc \sin A$


1 (a) Expand $\left(x + \frac{1}{x}\right)^4$ in descending powers of x.

(**b**) Hence, given that $\left(x + \frac{1}{x}\right)^4 - \left(x - \frac{1}{x}\right)^4 = ax^2 + \frac{b}{x^2}$, find the value of *a* and of *b*. [3]

[2]

[3]

In a diagram, A, B, C and D are points on the circle. The tangent at C meets AD produced at P. The chords AC and BD intersect at Q. The line BQD bisects angle ABC.

Prove that

(a) $\angle DCP = \angle ACD$,

(b) $\triangle PCD$ is similar to $\triangle PAC$,

[2]

[3]

(c) $PC^2 = PA \times PD$.

[1]

- **3** In recent years, the release of greenhouse gases has accelerated the melting of glaciers and thus, resulting in a rise of global temperatures. With minimal actions taken to prevent global warming, the average temperature, $T^{\circ}C$, projected to rise after x years from 2024, is given by $T = 31(1.5)^{kx}$, where k is a constant.
 - (a) Given that the projected average temperature in Yishun in 2027 is $35 \,^{\circ}C$, find the value of k correct to 1 decimal place.
- (b) Find the average temperature in Yishun in 2024. [1]
- (c) In which year will the average temperature in Yishun first be at least 15% higher than its temperature in 2024?
 [4]

(d) Sketch the graph of *T* against *x*.

[2]

- 4 (a) The function f is given by f(x) = asin3x + b, where a and b are positive integers and $0 \le x \le \pi$. The maximum and minimum value of f are 6 and -2 respectively.
 - (i) State the period of f. [1]

(ii) Find the value of a and of b.

[2]

(iii) Sketch the graph of y = -f(x). [3]

4(b) Prove the identity
$$\frac{\sin\theta - \sin 2\theta + \sin 3\theta}{\cos\theta - \cos 2\theta + \cos 3\theta} = \tan 2\theta.$$
 [4]

5 A particle moving in a straight line is such that its displacement, s metres, from a fixed point O, is given by s = 4 - 2e^{-t} - t where t is the time in seconds after passing through a point B on the line. Find

(a) the distance OB,

(**b**) the initial velocity of the particle,

(c) the value of t when the particle is instantaneously at rest, [2]

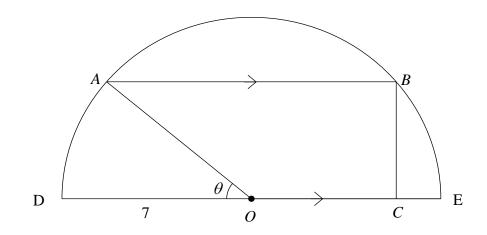
[2]

6 The equation of a polynomial is given by $P(x) = 2x^3 + mx^2 + x + n$, where m and n are constants.

(a) Given that $2x^2 + x - 1$ is a factor of P(x), find the value of *m* and of *n*. [4]

(**b**) Hence solve the equation P(x) = 0.

(c) Using the results in parts (a) and (b), solve the equation
$$\frac{1}{4}y^3 + \frac{m}{4}y^2 + \frac{1}{2}y + n = 0.$$
 [3]


7 Two simultaneous equations are given:

$$64^{x} \times 4^{y} = 1,$$

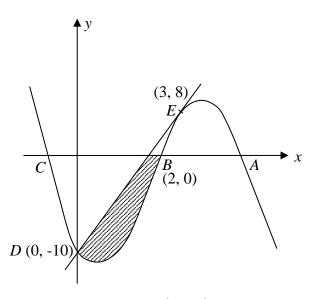
$$log_{\frac{1}{2}}(x - 3y - 6) + 2 = log_{2} x.$$

(a) Show that $log_{\frac{1}{2}}(x - 3y - 6) + 2 = log_2 x$ can be written as

$$\log_2(x - 3y - 6) = \log_2 \frac{4}{x}$$
[3]

(b) Solve, for *x* and *y*.

8


At the Singapore Book of Records event, the students taking Additional Maths need to paste their cranes in the shape of a trapezium *OABC* inscribed in a semicircle with centre *O*, and radius 7 cm. *OA* makes an angle θ with the diameter *DE*. *BC* is perpendicular to both *AB* and *CO*.

(a) State the property that shows that *AB* is twice the length of *OC*. [1]

(b) Show that *P* cm, the perimeter of the trapezium, can be expressed in the form $m + 21 \cos \theta + 7 \sin \theta$, where *m* is a constant to be found. [2]

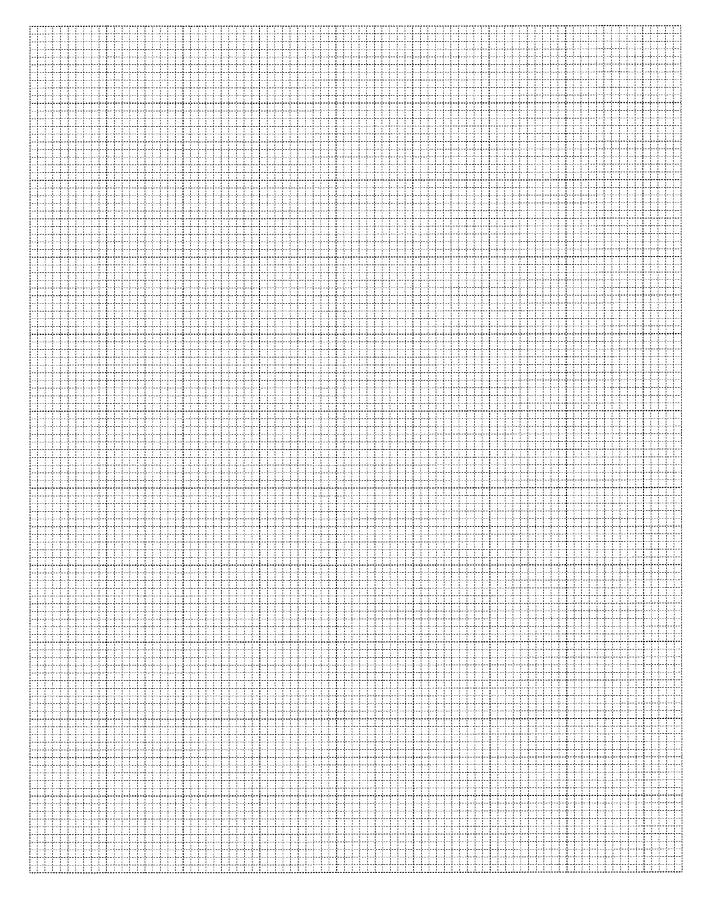
(c) Express *P* in the form $m + R \cos(\theta - \alpha)$, where R > 0 and θ is an acute angle in degree mode. [3]

(d) Hence, find the maximum value of P and the corresponding value of θ at which this occurs. [3]

The diagram shows part of the curve $y = -x^3 + 6x^2 - 3x - 10$. The curve cuts the *x*-axis at *A*, *B* (2, 0) and *C*, and cuts the *y*-axis at *D* (0, -10).

(a) Show that the tangent to the curve at E(3, 8) passes through D. [5]

(b) Calculate the area of the shaded region.


10 The table shows experimental values of two variables *x* and *y* when Arne Mo Salim was doing his O Level Physics Practical Exam.

x	0.2	0.6	1.0	1.4
у	0.5	1.4	2.5	4.0

It is known that x and y are related by the equation $y = ax\sqrt{x} + b\sqrt{x}$, where a and b are constants.

(a) Explain how a straight line graph can be obtained using the above data. [2]

(b) Draw this graph on the next page for the given data and use it to [6] estimate the value of *a* and of *b*.

End of Paper

AMP2 Prelims 2024

	1P2 Prelims 2024	
No	Answer	Marks
1(a)	$\left(x+\frac{1}{r}\right)^{4} = x^{4} + \binom{4}{1}\binom{1}{c_{1}}(x^{3})\left(\frac{1}{r}\right) + \binom{4}{2}\binom{2}{c_{2}}(x^{2})\left(\frac{1}{r}\right)^{2} + \binom{4}{3}\binom{1}{c_{3}}(x^{1})\left(\frac{1}{r}\right)^{3} + \binom{4}{4}\binom{1}{c_{4}}(x^{0})\left(\frac{1}{r}\right)^{4}$	
	$= x^{4} + 4x^{2} + 6 + 4x^{-2} + x^{-4}$	M1
1(1)		A1
1(b)	$\left(x+\frac{1}{x}\right)^{4}-\left(x-\frac{1}{x}\right)^{4}$	
	$= x^{4} + 4x^{2} + 6 + 4x^{-2} + x^{-4} - (x^{4} - 4x^{2} + 6 - 4x^{-2} + x^{-4})$	
	$=8x^2 + 8x^{-2}$	M1
	$\therefore a = 8, b = 8$	
		A2
1(c)	$\left(\frac{4}{3}x + \frac{k}{x} + \frac{x^3}{k}\right)\left(x + \frac{1}{x}\right)^4 = \left(\frac{4}{3}x + \frac{k}{x} + \frac{x^3}{k}\right)\left(x^4 + 4x^2 + 6 + 4x^{-2} + x^{-4}\right)$	
	$= \dots \frac{4}{3}x(6) + \frac{k}{x}(4x^2) + \frac{x^3}{k}(4x^{-2}) + \dots = \dots 8x + 4kx + \frac{4}{k}x + \dots \text{ (find coefficient of } x)$	M1
	Since there is no x term, $8x + 4kx + \frac{4}{k}x = 0$	
	$x\left(8+4k+\frac{4}{k}\right)=0$	M1
	$8 + 4k + \frac{4}{k} = 0$ or $x = 0$ (NA)	
	$4k^2 + 8k + 4 = 0$	
	$k^2 + 2k + 1 = 0$	
	$(k+1)^2 = 0$	
	$\therefore k = -1$	
		A1
2(a)	$\angle DCP = \angle CBD$ (tangent chord theorem)	M1
	4ABD = 4CBD (bisected angles of triangle ABC)	M1
	$\angle ABD = \angle ACD$ (angles in same segment)	M1
	So $\angle DCP = \angle ACD$ (shown)	
2(b)	$\angle CPD = \angle APC \text{ (common angle)}$	
	$\angle PCD = \angle PAC$ (tangent chord theorem) So by AA similarity test, $\triangle PCD$ similar to $\triangle PAC$	M1
2()		A1
2(c)	Since $\triangle PCD$ similar to $\triangle PAC$ from ii), PC PD	B1
	$\frac{PC}{PA} = \frac{PD}{PC}$	DI
	$PC^2 = PA \times PD$ (shown)	
3(a)	When $x = 3$, $T = 35$,	
	$35 = 31(1.5)^{k(3)}$	M1
	k = 0.1(1dp)	A1
3(b)	When $t = 0$,	
	$T = 31(1.5)^0 = 31^\circ C$	B1

3(c)	115	
5(0)	115% of initial temp = $\frac{115}{100} \times 31$	M1
	$= 35.65^{\circ}\text{C}$	1011
	When $T = 35.65^{\circ}C$,	
	$35.65 = 31(1.5)^{0.1x}$	M1
	$\frac{35.65}{31} = (1.5)^{0.1x}$	
	$\lg\left(\frac{35.65}{31}\right) = \lg(1.5)^{0.1x}$	
	lg(1.15) = 0.1x lg(1.5)	
	$0.1x = \frac{\lg 1.15}{\lg 1.5}$	
	lg1.5	
	$\frac{\lg 1.15}{1.15}$	
	$x = \frac{\lg 1.5}{0.1}$	M1
	0.1 = 3.45(3.s.f)	IVI I
	So the temperature will increase by at least 15% in 2028.	A1
3(d)	$\frac{150 \text{ the temperature with increase by at least 15% in 2020.}}{T}$	
5(4)	$31 \qquad T = 31(1.5)^{0.1x}$ $G1 \text{ Shape} \\ G1 \text{ y-intercept}$	
4(a)(i)	$\frac{1}{2\pi}$	B1
τ(α)(1)	$Period = \frac{2\pi}{3}$	
4(a)(ii)	a+b=6	
	-a + b = -2	
	Solve simultaneously, $a = 4, b = 2$	M1A1

4(a)(iii)		
	$\begin{pmatrix} \frac{3\pi}{2}, 2 \end{pmatrix} \qquad \begin{pmatrix} \frac{7\pi}{2}, 2 \end{pmatrix}$ $1 \text{ mark for correct number of cycles} \\ 1 \text{ mark for correct endpoints, max points} \\ 1 \text{ mark for correct shape} \\ 1 \text{ mark for correct shape}$	
4(b)	$\frac{\sin\theta - \sin 2\theta + \sin 3\theta}{\cos \theta - \cos 2\theta + \cos 2\theta} = \tan 2\theta$	
	$\frac{1}{\cos\theta - \cos 2\theta + \cos 3\theta} = \tan 2\theta$	
	LHS = $\frac{\sin(2\theta - \theta) - \sin 2\theta + \sin (2\theta + \theta)}{\cos(2\theta - \theta) - \cos 2\theta + \cos (2\theta + \theta)}$	M1
	$=\frac{sin2\theta cos\theta - cos2\theta sin\theta - sin2\theta + sin2\theta cos\theta + cos2\theta sin\theta}{cos2\theta cos\theta + sin2\theta sin\theta - cos2\theta + cos2\theta cos\theta - sin2\theta sin\theta}$	M1
	$=\frac{2sin2\theta cos\theta - sin2\theta}{2cos2\theta cos\theta - cos2\theta}$	M1
	$=\frac{\sin 2\theta(2\cos \theta - 1)}{\cos 2\theta(2\cos \theta - 1)} = \tan 2\theta = \text{RHS}$	M1
5(a)	When $t = 0$, $s = 4 - 2e^0 = 2$ m	B1
5(b)	$s = 4 - 2e^{-t} - t$ V = 2e^{-t} - 1	
	$V = 2e^{-1} - 1$ When $t = 0, V = 2e^{-0} - 1 = 1$ m/s	M1 A1
5(c)	When $V = 0, 0 = 2e^{-t} - 1$	M1
	$e^{-t} = 0.5$	
	$e^{t} = 2$ $t = \ln 2 = 0.693$ s (3 s.f.) (Accept $t = \ln 2$)	
5(1)		Al
5(d)	When $t = 0$, $S = 2$ m When $t = 0.693$ s, $S = 2.30685$ m	Correct <i>S</i> values
	When $t = 2s, S = 1.729329 \text{ m}$ M1	found
	Total distance travelled	Accept
	= (2.30685 - 2) + (2.30685 - 1.729329) M1	integrati
	= 0.884 m (3 s.f.) A1	on
		method
6(a)	$P(-1) = 0 \Rightarrow m + n = 3$ (1)	M1
	$P\left(\frac{1}{2}\right) = 0 \Rightarrow m + 4n = -3 \dots (2)$	M1
	m = 5 and $n = -2$	A2
6(b)	$P(x) = 2x^{3} + 5x^{2} + x - 2 = (2x^{2} + x - 1)(ax + b)$	M1
	By using the comparison method of the powers of x ,	
	a = 1 and $b = 2$ (or long division method)	M1

	P(x) = 0	
	$\Rightarrow x = -2$, $x = -1$, $x = \frac{1}{2}$	A1
		(all 3
		values)
6(c)	$\frac{1}{4}y^3 + \frac{m}{4}y^2 + \frac{1}{2}y + n = 0$	
	$4^{5} 4^{5} 2^{5}$ (1) ³ (1) ² 1	
	$2\left(\frac{1}{2}y\right)^{3} + m\left(\frac{1}{2}y\right)^{2} + \frac{1}{2}y + n = 0$	M1
	Replace x by $\frac{1}{2}y$	M1
	\therefore $y = -4$, $y = -2$, $y = 1$	A2
		(all 3
		values)
7 (a)	$64^x \times 4^y = 1$	
	$\log_{\frac{1}{2}}(x - 3y - 6) + 2 = \log_2 x$	
	$\frac{\log_2^2(x-3y-6)}{\log_2 \frac{1}{2}} = \log_2 x - \log_2 4$	M1
	$\log_2 \frac{1}{2}$	M1
	$-\log_2(x - 3y - 6) = \log_2 x - \log_2 4$	M1
	$log_2(x-3y-6) = log_2 4 - log_2 x$	
	$\log_2(x-3y-6) = \log_2\frac{4}{x}$	A1
	~	
7(b)	$64^x \times 4^y = 1$	
/(0)	$2^{6x} \times 2^{2y} = 2^0$	
	6x + 2y = 0	
	3x + y = 0	M1
	y = -3x (1) $x - 6 - 3y = \frac{4}{x} (2)$	
	X	M1
	Sub (1) into (2)	
	$x - 6 + 9x = \frac{4}{x}$ $10x - 6 = \frac{4}{x}$	M1
	$10r - 6 - \frac{4}{7}$	1411
	$10x 0 = \frac{1}{x}$ $10x^2 - 6x = 4$	M1
	$5x^2 - 3x - 2 = 0$	
	(5x+2)(x-1) = 0	M1
	$x = -\frac{2}{5}$ or 1	. 1
		A1
	$y = \frac{6}{5}$ or -3	A1
	5	
8(a)	\perp from centre bisects chord	B1
8(b)	$\angle BAO = x \text{ (alt } \angle \text{)}$	
	$\sin\theta = \frac{OX}{7} \implies OX = 7\sin\theta$	N.# 1
	7	M1
		M1
L		

	$\cos\theta = \frac{AX}{7} \implies AX = 7\cos\theta$	A1
	$P = 7 + 14\cos\theta + 7\sin\theta + 7\cos\theta$	
	$P = 7 + 21\cos\theta + 7\sin\theta$	
8(c)	$R = \sqrt{21^2 + 7^2}$	M1
	$R = 7\sqrt{10}$	
	$\theta = \tan^{-1}\left(\frac{7}{21}\right) = 18.435^{\circ}$	M1
	$\therefore P = 7 + 7\sqrt{10}\cos\left(\theta - 18.4^\circ\right)cm$	A1
8(d)	Max $P = 7 + 7\sqrt{10}$ or 29.1	M1
	$\theta - 18.435^{\circ} = \cos^{-1}(1)$	M1
	$\theta = 18.4^{\circ}$	A1
9(a)		M1
- ()	$\frac{dy}{dx} = -3x^2 + 12x - 3$	
	$x=3, m_{\rm tan}=6$	M1
	y = 6x + c	
	c = -10	M1
	y = 6x - 10 equation of tangent	
	$sub \ x = 0 \ in \ y = 6(0) - 10 = -10$	M1
	Since $D(0, -10)$ satisfy the equation of tangent at E, therefore tangent passes through D.	A1
9(b)	Area $BCD = -\int_0^2 -x^3 + 6x^2 - 3x \ 10 \ dx$	
	$= \left[\frac{-1}{4}x^4 + 2x^3 - \frac{3}{2}x^2 - 10x\right]_0^2$	M1
		A1
	$=14 \text{ units}^2$ Equation of line $y = 6x-10$	M1
	When $y = 0$, $x = \frac{5}{3}$	A1
	5	
	Area of triangle $BCD = \frac{1}{2} \times 10 \times \frac{5}{3} = \frac{25}{3}$	M1A1
	Shaded area = $14 - \frac{25}{3} = 5\frac{2}{3}$ units ²	A1
Or	area A =	
9(b)	$\int_{0}^{3} (6x-10) - (-x^{3}+6x^{2}-3x-10) dx$	Equation of line
	$\int_{0}^{3} (9x + x^{3} - 6x^{2}) dx$	M1
	$\int_{0}^{3} (9x + x^{3} - 6x^{2}) dx$ $= \int_{0}^{3} \left[\frac{9x^{2}}{2} + \frac{x^{4}}{4} - \frac{6x^{3}}{3} \right]$	M1
	= 6.75	A1

	Area of $B = 1$	
	$\left \frac{1}{2} \times 8 \times \left(3 - \frac{5}{3} \right) - \int_{2}^{3} \left(-x^{3} + 6x^{2} - 3x - 10 \right) dx \right $ Area B	M1
	$5\frac{1}{3} - \frac{3}{2} \left[\frac{-x^4}{4} + 2x^3 - \frac{3}{2}x^2 - 10x \right]$	M1A1
	$=\frac{13}{12}$	A1
	Answer: $6\frac{3}{4} \cdot (\frac{13}{12}) = 5\frac{2}{3}units^2$	
10(a)	$y = ax\sqrt{x} + b\sqrt{x}$	
	$\frac{y}{\sqrt{x}} = ax + b$ Plot $\frac{y}{\sqrt{x}}$ against x	M1 A1
10(b)	Graph	P1C1S1
	$a = \text{gradient} \approx \frac{3.38 - 1.12}{1.4 - 0.2} \approx 1.57$	M1A1
	$b = \frac{y}{\sqrt{x}} - \text{intercept} \approx 0.75$	A1
	gradient=1.57 gradient=1.57 y intercept=0.75 -3 -2 -1	