

Chapter 7A: Complex Numbers I - Complex Numbers in Cartesian Form

SYLLABUS INCLUDES

H2 Mathematics:

- extension of the number system from real numbers to complex numbers
- complex roots of quadratic equations
- four operations of complex numbers expressed in the form (x + iy)
- equating real parts and imaginary parts
- conjugate roots of a polynomial equation with real coefficients

PRE-REQUISITES

- Trigonometry
- Coordinate Geometry
- Vectors

CONTENT

- Introduction to the Imaginary Number i 1
- 2 **Complex Numbers**
- 2.1 Definition of a Complex Number
- 2.2 Operations on Complex Numbers
- Complex Conjugates 2.3
- 2.4 Some Properties of Complex Conjugates
- 3 **Complex Roots of Polynomial Equations**

Proof of Result that Non-Real Roots of a Polynomial Equation with Real Appendix: Coefficients occur in Conjugate Pairs

1 Introduction to the Imaginary Number i

We know that the solution to the equation $x^2 + 1 = 0$ cannot be a real number, as the square of a real number cannot be negative. We say $x^2 = -1$ has no real roots.

In order to solve the above equation, we need to find a "number" whose square is -1.

Let's suppose such a "number" exists.

Since we imagined it, let's call this number the imaginary number i.

We define i as

$$i = \sqrt{-1}$$

Hence the solutions to $x^2 + 1 = 0$ are $x = \pm \sqrt{-1} = \pm i$.

Example 1

(a) If
$$i = \sqrt{-1}$$
, simplify i^2 , i^3 , i^4 , i^{2009} , i^{2010} , i^{2011} , i^{2012}

Let's generalize: If k is a positive integer, then $\begin{vmatrix} 4k \\ 1 \end{vmatrix}$, $\begin{vmatrix} 4k+1 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 4k+1 \\ 1 \end{vmatrix}$, $\begin{vmatrix} 4k+1 \\ 1 \end{vmatrix}$

Perform the four basic operations on i: **(b)**

(i)
$$i+i=2i$$

(ii)
$$5i-i=4i$$

(iii)
$$5i \times 3i = 15i^2 = -15$$

(iv)
$$6i \div 3i = 2$$

Solve for x if $x^2-2x+2=0$.

Solution
$$x^{2}-2x+2=0 \qquad (x-1)^{2}-1+2=0$$

$$x = \frac{2\pm\sqrt{4-8}}{2} \qquad (x-1)^{2}=-1$$

$$= \frac{2\pm\sqrt{-4}}{2} \qquad x=i+1 \text{ or } x=x-i+1$$

$$= 1\pm\sqrt{-1} \text{ or } |-1|\sqrt{-1}$$

$$= 1\pm\sqrt{-1} \text{ or } |-1|\sqrt{-1}$$

2 COMPLEX NUMBERS

Notice that the solution to Example 1(c) is a combination of real numbers and imaginary numbers. Such numbers are called complex numbers.

2.1 Definition of a Complex Number

A complex number is of the form x+iy where x and y are real numbers and $i=\sqrt{-1}$.

The set of complex numbers is denoted by $\mathbb{C} = \{z : z = x + iy, x, y \in \mathbb{R}\}$.

x is known as the <u>real</u> part of z, denoted by Re(z), and

y is known as the imaginary part of z, denoted by Im(z). °°C

Note that Im(z) does not include i.

x+iy is known as the cartesian form of the complex number z.

Example 2

Write down the real and imaginary parts of the following complex numbers:

Z	Re(z)	Im(z)
-2 + 3i		3
1-i	1	
	35 34 1+ 21 4 . wf = 3	(11 0 0)
5i	0	5

Remarks:

- $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- If y = 0, then z = x is a real number.
- If x = 0, then z = iy is a purely imaginary number.
- Complex numbers cannot be ordered, i.e. given any two complex numbers z_1 and z_2 , we cannot compare whether $z_1 < z_2$ unless they are real numbers.

Question: Is i < 0 or i > 0?

We can us

2.2 Operations on Complex Numbers

In this section, let $a, b, c, d \in \mathbb{R}$ and $z_1, z_2, z_3 \in \mathbb{C}$.

(a) Equality of Two Complex Numbers

2 complex numbers are equal if and only if their corresponding real and imaginary parts are equal, i.e. $a+ib=c+id \Leftrightarrow a=c$ and b=d.

For example, if x + iy = 5 - 3i, we have x = 5 and y = -3

(b) Addition of Complex Numbers

$$(a+ib)+(c+id)=(a+c)+i(b+d)$$

Addition of complex numbers is commutative: $z_1 + z_2 = z_2 + z_1$ Addition of complex numbers is associative: $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

For example, (3+4i)+(1-i)= 4 + 3 i

(c) Subtraction of Complex Numbers

$$(a+ib)-(c+id)=(a-c)+i(b-d)$$

For example, (3+4i)-(1-i) = 2+5i

(d) Multiplication of Complex Numbers

$$(a+ib)(c+id) = ac+iad+ibc+i^2bd = ac+iad+ibc+(-1)bd$$
$$= (ac-bd)+i(ad+bc)$$

Multiplication of complex numbers is commutative: $z_1 z_2 = z_2 z_1$

Multiplication of complex numbers is associative: $(z_1z_2)z_3 = z_1(z_2z_3)$

Multiplication of complex numbers is distributive over addition: $z_1(z_2+z_3) = z_1z_2+z_1z_3$

For example,
$$(3+4i)(1-i) = 3-3i+4i-4i-7+i$$
 (note that $i^2=-1$)

$$(3+4i)^2 = (3+4i)(3+4i) =$$
 $9 + 12i + 12i + 16i^2 = -7 + 24i$ (note that $i^2 = -1$)

Remarks: The above manipulation of complex numbers is the same as algebraic manipulation of expressions such as (a+b)(c+d), $(a+b)\pm(c+d)$ and so on. The only additional consideration is $i^2 = -1$.

We can use the GC to perform operations on complex numbers

Operation	Example	GC Screen
Multiplication of complex numbers	(3+4i)(1-i)	NORMAL FLORE AUTO REAL RADIAN MP (3+4i)(1-i) 7+i
(Press 2nd to get i)	the state of the s	,
	Lea as Tell *.	NORMAL FLOAT AUTO REAL RADIAN MF
Square of a complex number	$(3+4i)^2$	(3+41) ² -7+241
	The state of the s	ed integration as the state of
District of complete work on	3+4i	NORMAL FLOAT AUTO REAL RADIAN MP
Division of complex numbers	1-i	1-1 (3+4i)/(1-i) -0.5+3.5i
	Treat.	

How did the GC obtain $\frac{3+4i}{1-i} = -0.5+3.5i$?

Division of Complex Numbers (e)

Recall when we tried to simplify $\frac{2-\sqrt{3}}{1+\sqrt{2}}$, we multiply it by $\frac{1-\sqrt{2}}{1-\sqrt{2}}$ so that we could rationalize the denominator.

For $\frac{3+4i}{1-i}$, we will multiply it by $\frac{1+i}{1+i}$, so that

$$\frac{3+4i}{1-i} = \frac{3+4i}{1-i} \times \frac{1+i}{1+i} = \frac{3+3i+4i+4i^3}{1+i} = \frac{-1+7i}{2} = \frac{-1}{2} + \frac{7}{2}i$$

In general,
$$\frac{a+ib}{c+id} = \frac{a+ib}{c+id} \times \frac{c-id}{c-id} = \frac{(a+ib)(c-id)}{c^2-i^2d^2} = \frac{(a+ib)(c-id)}{c^2+d^2}$$

Note that c-id is chosen based on the denominator of $\frac{a+ib}{c+id}$ Remark:

We call c-id, the conjugate of c+id.

Example 3 [RJC Prelim 9233/2005/01/Q1(i)]

The complex numbers z and w are such that z = -1 + 2i and w = 1 + bi, where $b \in \mathbb{R}$.

Given that the imaginary part of $\frac{w}{z}$ is $-\frac{3}{5}$, find the value of b.

Solution

$$\frac{w}{z} = \frac{1+bi}{-1+2i} \times \frac{-1-2i}{-1-2i} = \frac{-1-2i-bi-2bi^2}{(-1)^2+2^2} = \frac{-1+2b}{5} + i\frac{(-2-b)}{5}$$

Given
$$\operatorname{Im}\left(\frac{w}{z}\right) = -\frac{3}{5} \Rightarrow \frac{-2-b}{5} = -\frac{3}{5} \Rightarrow b = 1$$

Example 4

Without using a calculator, find the square roots of 24 - 10i. By completing the square, or otherwise, solve $z^2 - 6z = 15 - 10i$.

Solution:

Let the square roots of 24 - 10i be x + yi, where $x, y \in \mathbb{R}$.

$$24-10i = (x + yi)^{2}$$

$$= x^{2} + 2xyi + y^{2}i^{2}$$

$$= x^{2} - y^{2} + 2xyi$$

Comparing real and imaginary parts:

$$24 = x^{3} - y^{3} - (1)$$

$$-10 = 2 \times y - (2)$$
From (2): $y = -\frac{5}{x} - (3)$

Sub (3) in (1):
$$24 = x^2 - \frac{25}{x^2}$$

$$(x_{5}-52)(x_{5}+1)=0$$

The square roots are 5-i or 5 1

Note that evaluating $\sqrt{24-10}i$ using GC only gives us 5-i.

$$z^{2}-6z = 15-10i \qquad \Rightarrow (z-3)^{2}-3^{2} = 15-10i$$

$$\Rightarrow (z-3)^{2} = 24-10i$$

$$\Rightarrow z-3 = \pm (5-i) \qquad \text{(from the above result)}$$

$$\Rightarrow z = 8-i \quad \text{Or} \quad z = -2+i$$

Note:

We can use GC to check our answers.

Substitute z = 8 - i and z = -2 + i into $z^2 - 6z$, and check that both give 15-10i as answers.

$$24-|0i| = (0+ib)^{3} = 90^{3} + 2abi - b^{3} \Rightarrow a^{3} - b^{2} = 24, \ 2ab = -10 \\ b = \pm 4 \\ (2-3)^{2} - 9 - 15 + 10i = 0$$

$$(2-3)^{2} = 24 - 10i$$

$$2-3 = 5 - i \text{ or } i - 5$$

$$2 = 8 - i \text{ or } i - 2$$

$$a^{2} - (\frac{15}{6})^{3} = 24$$

$$(a^{2} - \frac{15}{6}) =$$

2.3 Complex Conjugates

The complex conjugate of z=x+iy, where $x, y \in \mathbb{R}$, is denoted by z^* and defined as $z^*=x-iy$

Observe that $Re(z^*) = x = Re(z)$ and $Im(z^*) = -y = -Im(z)$.

Note that z = x + iy and $z^* = x - iy$ are conjugates of each other, and we call them a <u>conjugate</u> pair.

2.4 Some Properties of Complex Conjugates

The following properties can be proven by letting z = x + iy and w = u + iv where $x, y, u, v \in \mathbb{R}$.

	perties	Proofs	
(a)	$(z^*)^* = z$	/[(* + i:)*)*	Example
	$\sqrt{((x+iy)^*)^*} = (x-iy)^* = x+iy$	$[(1-3i)^*]^*$	
			=(1+3i)*
(b)	$z + z^* = 2\operatorname{Re}(z)$	77	= (-3i
	21(0(2)	$\sqrt{(x+iy)+(x+iy)}$ *	(1-3i)+(1-3i)*
		=(x+iy)+(x-iy)	
		=2x	= (1=3i)+(1+3i)
			= 2
(c)	$z - z^* = 2i \operatorname{Im}(z)$	(rin) (in	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
= 2 -21m(2)	(2)	$\sqrt{(x+iy)} - (x+iy)^* = (x+iy) - (x-iy)$	(1-3i)-(1-3i)*
		=2iy	= (1-3i)-(1+3i)
		A 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
		•	= -61
(d)	$zz^* = x^2 + y^2$	(x+iy)(x+iy)*	b)
		-(11)(1) (d) (d) (d) (d) (d) (d) (d) (d) (d) (d	(1-3i)(1-3i)*
		=(x+iy)(x-iy)	(iE+1)(1E-1) =
		$=x^2-(iy)^2$ (difference of 2 squares)	(1-31)(1431)
		-2 ·2 ·2	$= (-(3i)^2)$
	and the same	$=x^2-i^2y^2$ $(i^2=-1)$	= 1+9 = 10
3	- 1	$=x^2+y^2$	
(e)	$z = z^* \iff z \in \mathbb{R}$	$\sqrt{z} = z^* \Leftrightarrow x + iy = x - iy$	
		\Leftrightarrow 2iy = 0	. 7 . 7
		\Leftrightarrow Im(z) = 0	
		$\Leftrightarrow z$ is real	1.00
(f)	$(z+w)^* = z^* + w^*$	$\sqrt{(x+iy+u+iv)^*} = (x+u+i(y+v))^*$	
		110.16	7 7
		(A+i) + C+i (A+i) = x + u - i (y+v)	and the state of t
		= Q+C-1(0+a)	
		1- 4	
		$=z^*+w^*$	

Properties	Proofs	Example
(g) $(zw)^* = z^*w^*$	$((x+iy)(u+iv))^* = (xu-yv+i(xv+yu))$	[(1+3i)(1-2i)]*
	= xu - yv - i(xv + yu)	=(7+i)*
	(x+iy)*(u+iv)* = (x-iy)(u-iv)	=()*_
	= xu - yv - i(xv + yu)	= 7-1
	[(a+ib)(ctid))* = [ac+ iad+ibc-bd]*	(1+3i)*(1-2i)*
	= (ac-bd - i(ad+bc)) <	=((-3;)(#2;)
1.76	(atib) (crid) (a-1b) (c-id)	= 1-i
	= ac-iad-ibc-bd	4/14 1/21/14

We can use (g) to show that $(z^2)^* = (z^*)^2$ by letting w = z.

We can also show that $(z^n)^* = (z^*)^n$, $n \in \mathbb{Z}^+$

Example 5

Let z=1+ia and w=1+ib, where $a, b \in \mathbb{R}$ and a>0. If $zw^*=3-4i$, find the exact values of a and b.

Solution

$$zw^* = 3-4i \implies (1+ia)(1-ib) = 3-4i$$
 $\Rightarrow (1+ia)(1-ib) = 3-4i$
 $\Rightarrow (1+ia)(1-ib) = 3-4i$
 $\Rightarrow (1+ab)+1(a-b)=3-4i$
 $\Rightarrow (1+ab)+1(a-b)+1(a-b)=3-4i$
 $\Rightarrow (1+ab)+1(a-b)+1(a-b)=3-4i$
 $\Rightarrow (1+ab)+1(a-b)+1($

Example 6

Solve the simultaneous equations $z^*+w=-1$, $2z+(iw)^*=-1$.

Solution

$$z^* + w = -1 \qquad \Rightarrow z + w^* = -1 \dots (1)$$

$$2z + (iw)^* = -1$$
 $\Rightarrow 2z - iw^* = -1....(2)$

(1) xi: 12+1m =-1-(3) 1(-9)

(3)+(2): (i+2)z=-i-1 - (vi(C-1d)) 22-fivi*=-1

$$2 = \frac{-i-1}{i+2} = -\frac{3}{5} - \frac{1}{5}i(nd - ic) = \frac{2+2+2*+w-w*}{2=0+ib}, w=c+id$$

from (i),

22A-1U* =-1

12*+1W = -1

2*+W=-1

a-ib+ c+id =-1

20+12b-etid-1

3 - ib + c+id= 4 + 12b - C+id+ib

20+i26 #d-ic=-1

2a-d=-1, 2b-c=0 => 2d-c=0

a+C=-1, d-b=0 =d=b

2a-b=-1-0+C

2d+a = 2a-d=-1

3d=a=-1

d=-1, a=-1, c=0

3 Complex Roots of Polynomial Equations

With complex numbers, we have the following theorem.

Fundamental Theorem of Algebra:

A polynomial equation of degree n has n roots (real or non-real).

Thus, taking non-real roots into account, a quadratic (degree 2) equation always has 2 roots, a cubic (degree 3) equation always has 3 roots, and so on.

Furthermore, if the coefficients of the polynomial equation are real, we have the following result:

Non-real roots of a polynomial equation with real coefficients occur in conjugate pairs.

In other words, if β is a non-real root of a polynomial equation with <u>real coefficients</u>, then β^* is also a non-real root of the equation.

Note that real coefficients include the constant term as well.

[Refer to Appendix for the proof of this result]

From Example 1(c) we obtained $x=1\pm i$ as conjugate pair solutions to $x^2-2x+2=0$.

Example 7 (Quadratic)

Find the roots of the equation $z^2 + (-1+4i)z + (-5+i) = 0$.

Solution
$$z = -\frac{(-1+4i)\pm(-1+4i)^2 - 4(-5+i)}{2}$$

$$z^2 + (-1+4i)z + (-5+i) = 0$$

$$z = \frac{-(1-4i)\pm\sqrt{(-1+4i)^2 - 4(-5+i)}}{2}$$

$$= \frac{1-4i\pm\sqrt{1-9i-16+20-4i}}{2}$$

$$= \frac{1}{2}(1-4i\pm\sqrt{5-12i})$$

$$= \frac{1}{2}(1-4i+3-2i) \text{ or } \pm (1-4i+2i-3)$$

$$= 2-3i \text{ or } -1-i$$

Note:

The expression under square root sign can be evaluated using GC.

 $\sqrt{5-12i}$ can be evaluated using GC

Question: Why are the roots not in conjugate pairs?

Answer: Because not all the coefficients of the quadratic equation are

Example 8 (Cubic) Do not use a calculator in answering this question.

Find the exact roots of the equation $z^3 - 2z^2 + 2z - 1 = 0$.

Solution

1-2+2-1=0

Since the cubic equation has real coefficients, it has either 3 real roots or 1 real root and 1 conjugate pair of non-real roots.

(1) Sub a random valve

z=1 is clearly a solution of $z^3-2z^2+2z-1=0$ since 1-2+2-1=0. So z-1 is a factor of z^3-2z^2+2z-1 .

Observe that (or via long division)
$$z^{3} - 2z^{2} + 2z - 1 = (z - 1)(z^{2} - z + 1)$$
.

Hence $z^{3} - 2z^{2} + 2z - 1 = 0 \Rightarrow (z - 1)(z^{2} - z + 1) = 0$

$$\Rightarrow z - 1 = 0 \text{ or } z^{2} - z + 1 = 0$$

$$\Rightarrow z = 1 \text{ or } z = \frac{1 \pm \sqrt{1 - 4}}{2}$$
i.e. $z = 1$ or $z = \frac{1 + i\sqrt{3}}{2}$ or $z = \frac{1 - i\sqrt{3}}{2}$

$$= \frac{1 \pm \sqrt{1 - 4}}{2}$$

Note that the Polynomial Root Finder of the PlySmlt2 app in the GC can be used to solve equations with real coefficients.

- 1. Press [APPS] and select PlySmlt2.
- 2. Select 1: Polynomial Root Finder.

MRIN MENU

1:POLYNOMIAL ROOT FINDER
2:SIMULTANEOUS EQN SOLVER
3:ABOUT
4:POLY ROOT FINDER HELP
5:SIMULT EQN SOLVER HELP
6:QUIT APP

3. Adjust the settings as depicted on the screen to solve a cubic equation.

Remember to select "a+bi" or "re^(θi)" for the GC to display all roots, not just the real roots.

4. Press [GRAPH] which is the button below NEXT.

- 5. Key in the values of the coefficients a_3, a_2, a_1 and a_0 .
- 6. Press [GRAPH] to solve the system of equations.

MAIN MODE CLEAR LOAD SOLVE

7. Read off the answers.

 x_1 , x_2 and x_3 give the 3 roots of z.

Note: The GC cannot display the roots in exact form.

Example 9 (Cubic) Do not use a calculator in answering this question.

Given that 1-i is a root of the equation $z^3 - 5z^2 + 8z + p = 0$, where $p \in \mathbb{R}$, find the other 2 roots and the value of p.

23-528+8Z-1p = (Z-1+i)(Z-1-i)(Z-a) Solution Method 1:

Since the cubic equation has real coefficients, $\frac{1+i}{2}$ is also a root. $=(\frac{7}{2}-\frac{7}{2}-\frac{7}{2}-\frac{7}{2}+\frac{7}{2$ $=(Z^2\partial Z+1+1)(Z-\alpha)$

The third root must be 9 real no k $= (Z^3 - 2Z^2 + Z + iZ - \alpha Z^2 + 2\alpha Z - \alpha - i\alpha)$ $z^{3}-5z^{2}+8z+p=\left[z-(1+i)\right]\left[z-(1-i)\right](z-k) = z^{3}+(-\lambda-\alpha)z^{2$

$$z^{3}-5z^{2}+8z+p=[z-(-1+1-)][z-(-1+1-)](z-k)$$

$$=[(z-1)-i][(z-1)+i](z-k)$$

$$=[(z-1)^{2}-i](z-k)$$

$$=[(z-1)^{2}-i](z-k)$$

$$=[(z-1)^{2}-i](z-k)$$

$$=[(z-1)^{2}-i](z-k)$$

$$p = -3 - 13i$$

$$= (z^2 - 2z + 2) (z - k)$$

Comparing coefficient of z, $8-2k+2 \Rightarrow 7k=3$ Comparing the constant, f=-2, k=-6

The other 2 roots are $\frac{1+i}{2}$ and $\frac{3}{2}$, and $p=\frac{6}{2}$.

Method 2:

Since 1-i is a root of the given equation, an alternative way of finding p is by substituting the root into the equation.

$$z^{3}-5z^{2}+8z+p=0$$

$$(1-i)^{3}-5(1-i)^{2}+8(1-i)+p=0$$

$$(-2-2i)-5(-2i)+8(1-i)+p=0$$

$$(-2-2i)-5(-2i)+8(1-i)+p=0$$

$$(-2-2i)-5(-2i)+8(1-i)+p=0$$

$$(-2-2i)-5(-2i)+8(1-i)+p=0$$

$$(-2-2i)-5(-2i)+8(1-i)+p=0$$

$$(1-i)^{3}=(1-i)^{2}(1-i)$$

$$(1-i)^{3}=(1-i)^{2}(1-i)$$

Since the cubic equation has real coefficients, 1+i is also a root. The third root must be a real number k.

$$z^{3} - 5z^{2} + 8z - 6 = [z - (1+i)][z - (1-i)](z-k)$$
$$= (z^{2} - 2z + 2)(z-k)$$

Comparing the constant, $-6 = -2k \Rightarrow k = 3$ The other 2 roots are 1+i and 3.

Remark:

The Fundamental Theorem of Algebra tells us that an equation like $z^{10} = 1024$ has 10 roots (real or non-real). How do we find them?

We will deal with it in Chapter 7C.

APPENDIX

PROOF OF RESULT THAT NON-REAL ROOTS OF A POLYNOMIAL EQUATION WITH REAL COEFFICIENTS OCCUR IN CONJUGATE PAIRS

Consider the equation

$$a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + ... + a_1 z + a_0 = 0$$
,

where $a_n, a_{n-1}, a_{n-2}, ..., a_1, a_0 \in \mathbb{R}, a_n \neq 0, n \in \mathbb{Z}^+$.

Suppose β is a non-real root of the equation,

i.e.
$$a_n \beta^n + a_{n-1} \beta^{n-1} + a_{n-2} \beta^{n-2} + ... + a_1 \beta + a_0 = 0$$
.

Taking conjugates on both sides of the equation,

$$(a_n \beta^n + a_{n-1} \beta^{n-1} + a_{n-2} \beta^{n-2} + \dots + a_1 \beta + a_0)^* = 0^*$$

$$(a_n \beta^n)^* + (a_{n-1} \beta^{n-1})^* + (a_{n-2} \beta^{n-2})^* + \dots + (a_1 \beta)^* + a_0^* = 0^*$$

Now $(\beta^k)^* = (\beta^*)^k$ and $(a_k)^* = a_k$ since $a_k \in \mathbb{R}$. Clearly $0^* = 0$ since $0 \in \mathbb{R}$.

Thus we have

$$a_{n}(\beta^{*})^{n}+a_{n-1}(\beta^{*})^{n-1}+a_{n-2}(\beta^{*})^{n-2}+...+a_{1}(\beta^{*})+a_{0}=0\;,$$

i.e. β^* is also a non-real root of the given equation.

SUMMARY