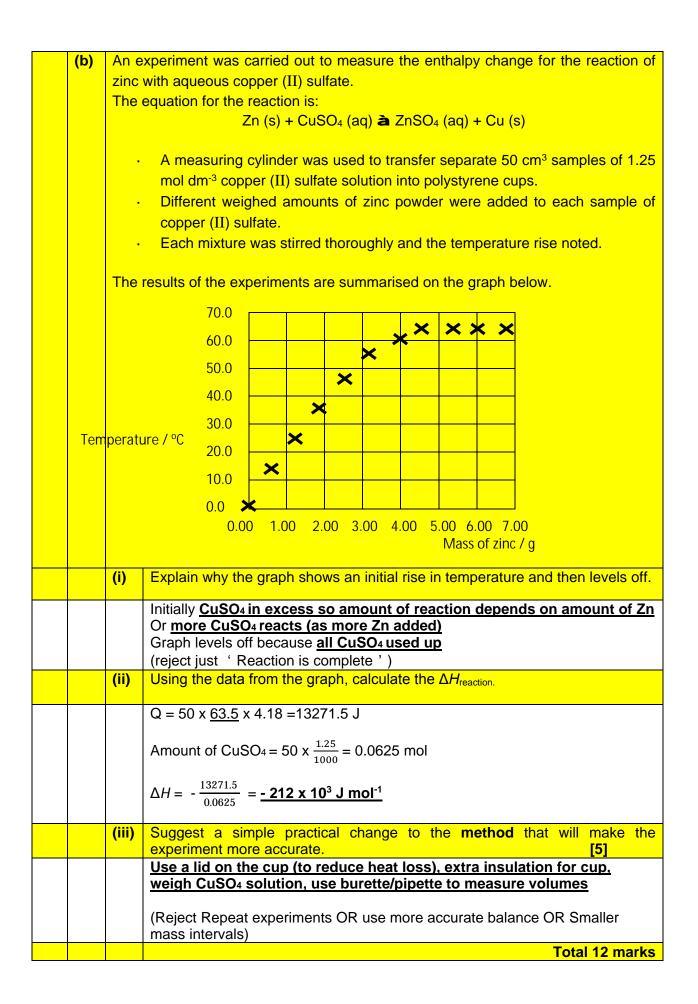
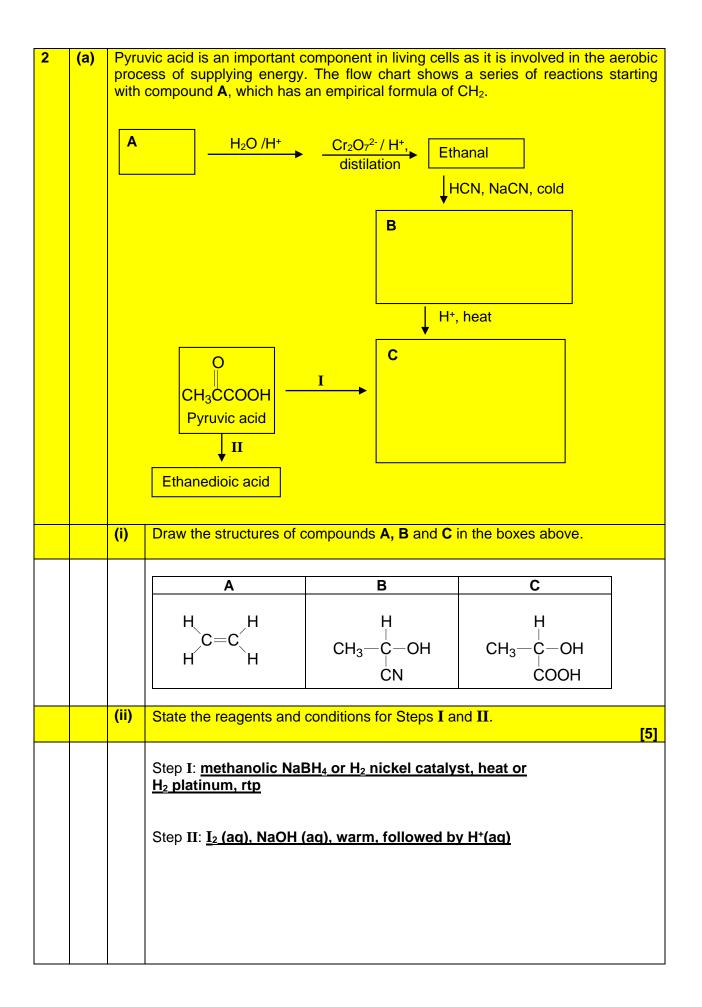


1

SERANGOON JUNIOR COLLEGE General Certificate of Education Advanced Level Higher 2


9647/02

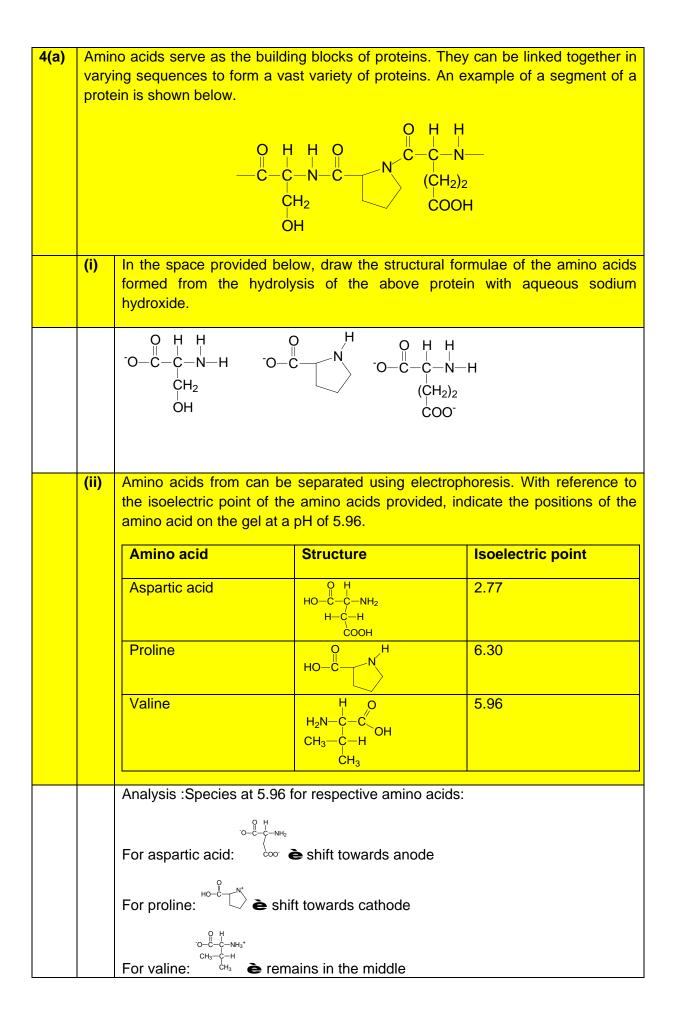

## CHEMISTRY Preliminary Examination Paper 2 Structured Questions (SPA) Suggested Solutions

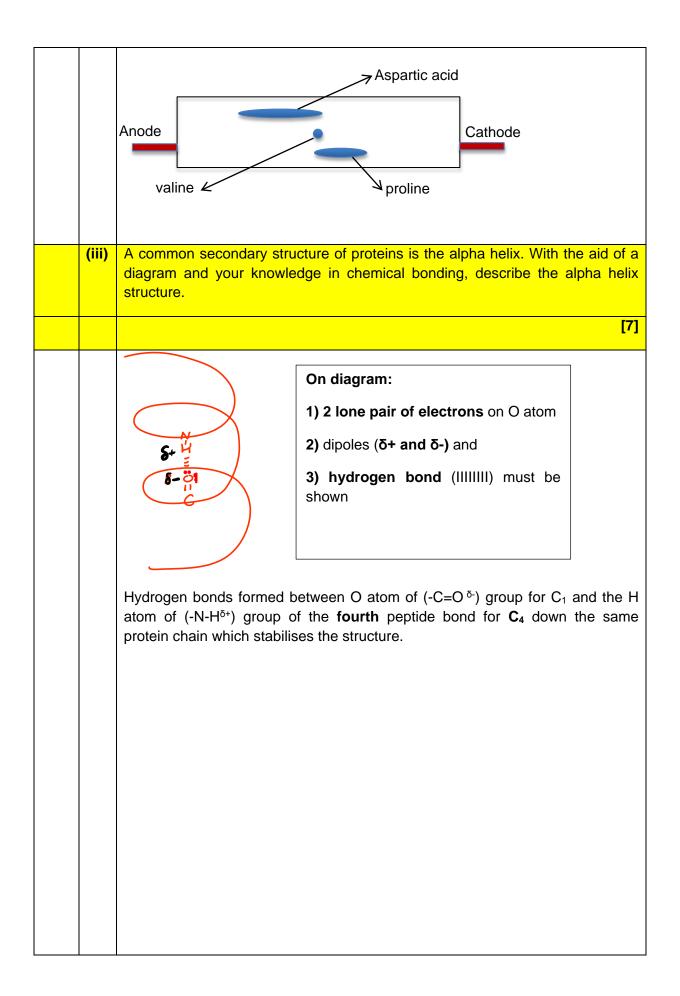
(a) Planning In the presence of hydrogen ions, H+, bromate(V) ions, BrO<sub>3-</sub>, oxidise bromide ions, Br-, to bromine, Br2.  $BrO_{3-}(aq) + 5Br_{-}(aq) + 6H_{+}(aq) \rightarrow 3Br_{2}(aq) + 3H_{2}O(l)$ The reaction is relatively slow and can be followed by adding aqueous phenol and the indicator methyl orange to the reaction mixture. As bromine is formed, it reacts rapidly with the phenol present until the latter is used up. The free bromine now in solution bleaches the methyl orange indicator. The initial rate of the reaction can be investigated by measuring the time taken to bleach the methyl orange indicator. You are to plan a series of experiments, to determine the order of reaction with respect to the bromide ion. In addition to the standard apparatus present in a laboratory, you are provided with the following: FA 1 0.01 mol dm-3 aqueous KBr. 1.0 mol dm-3 potassium bromate(V), KBrO3. FA 2 1.0 mol dm<sub>-3</sub> sulfuric acid, H<sub>2</sub>SO<sub>4</sub>. FA 3 Aqueous phenol containing methyl orange indicator **Distilled water** Complete the table below and outline, by means of a series of numbered steps, (i) the apparatus to be used the experimental procedure • • the measurements to be taken, to collect the required data.

|  | Expt   | Volume of                                                   | Volume of                    | Volume of                    | Volume of                    | Volume of                  |    |
|--|--------|-------------------------------------------------------------|------------------------------|------------------------------|------------------------------|----------------------------|----|
|  |        | phenol/methyl                                               | <b>FA1</b> / cm <sup>3</sup> | <b>FA2</b> / cm <sup>3</sup> | <b>FA3</b> / cm <sup>3</sup> | distilled                  |    |
|  |        | orange<br>indicator                                         |                              |                              |                              | water / cm <sup>3</sup>    |    |
|  |        | solution / cm <sup>3</sup>                                  |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  | 1      | 20.0                                                        | 50.0                         | 50.0                         | 20.0                         | 0.0                        |    |
|  | 2      | 20.0                                                        | 40.0                         | 50.0                         | 20.0                         | 10.0                       |    |
|  | 3      | 20.0                                                        | 30.0                         | 50.0                         | 20.0                         | 20.0                       |    |
|  | 4      | 20.0                                                        | 20.0                         | 50.0                         | 20.0                         | 30.0                       |    |
|  | 5      | 20.0                                                        | 10.0                         | 50.0                         | 20.0                         | 40.0                       |    |
|  |        |                                                             |                              |                              |                              |                            | 1  |
|  |        | ing a measuring o<br>ean, dry conical fla                   | -                            | 20.0 cm <sup>3</sup> of the  | e phenol/indica              | tor solution inte          | оа |
|  |        | ing different meas<br>nto the conical fla                   |                              | ers, place 50.0              | cm <sup>3</sup> of FA 1 ar   | nd 20.0 cm <sup>3</sup> of | FA |
|  | 3. Pla | ace the conical fla                                         | isk on a white               | tile.                        |                              |                            |    |
|  | 4. Fr  | om another meas                                             | uring cylinder               | , measure 50.0               | ) cm <sup>3</sup> of FA 2.   |                            |    |
|  | 5. Ad  | ld FA 2 into the co                                         | onical flask, si             | imultaneously                | starting the sto             | pwatch.                    |    |
|  | Sv     | virl the conical flag                                       | sk carefully.                |                              |                              |                            |    |
|  | со     | op the stopwatch<br>lourless solution.<br>epeat procedure 1 | Record the ti                | me taken.                    |                              | pears to leave             | a  |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |
|  |        |                                                             |                              |                              |                              |                            |    |

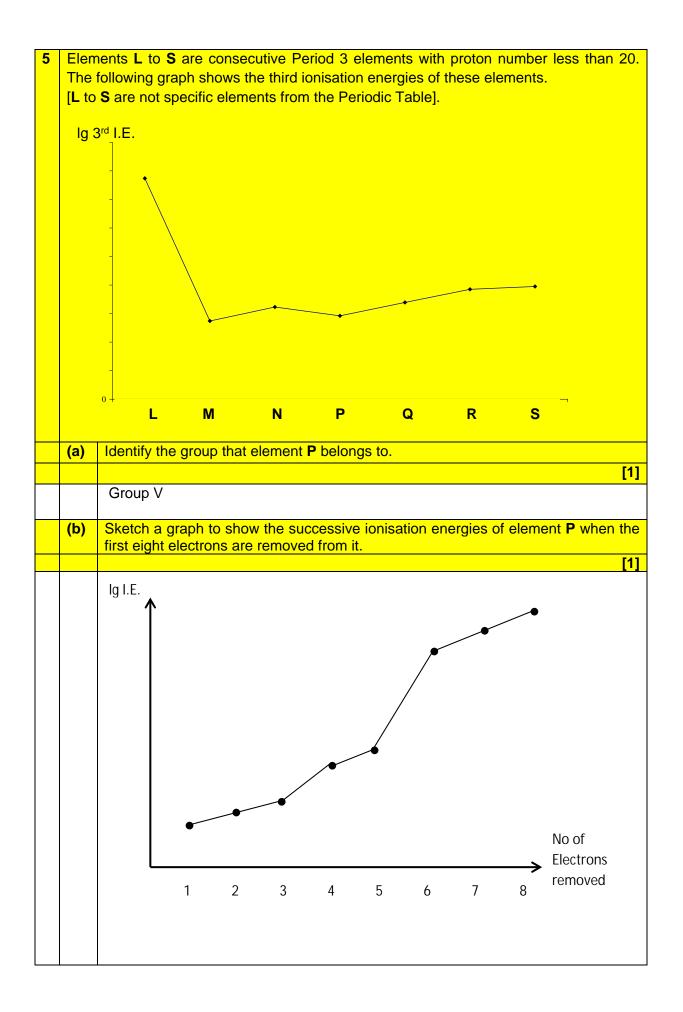
|  | (ii)  | In order to find the order of reaction with respect to bromide, a graph of $\log_{10}(\frac{1}{t})$ against $\log_{10}(\text{volume of KBr(aq)})$ can be plotted.<br>Use the rate equation to derive a relationship between $\log_{10}(\frac{1}{t})$ and $\log_{10}(\text{volume of KBr(aq)})$ .<br>Hence, explain how the order of reaction with respect to bromide can be found from the plotted graph.<br>In these experiments, the total volume has been kept constant and only the concentration of <b>FA 1</b> in the reaction mixture has been changed. The rate equation, where <i>n</i> is the rate order with respect to <b>FA 1</b> , can be simplified to |
|--|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  |       | rate = $k'[Br]^n$ (where $k' = k[BrO_3^{-}]^m[H^+]^n$ )<br>• taking logarithms of the factors in this equation gives<br>$lg(rate) = n \times lg([Br]) + lg(k)$<br>Hence, by finding the <u>gradient</u> of the plotted graph, order of reaction wrt Br-<br>can be found.                                                                                                                                                                                                                                                                                                                                                                                              |
|  | (iii) | The concentration of the phenol used in the experiment is very low. Suggest why this is so. [7]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|  |       | If too much phenol was present, it is possible that the <u>reaction could have</u><br><u>taken longer</u> OR if a large amount of phenol was added the <u>mixture may</u><br><u>not have decolourised at all as all the bromine formed would have</u><br><u>reacted with the phenol present</u> .                                                                                                                                                                                                                                                                                                                                                                     |





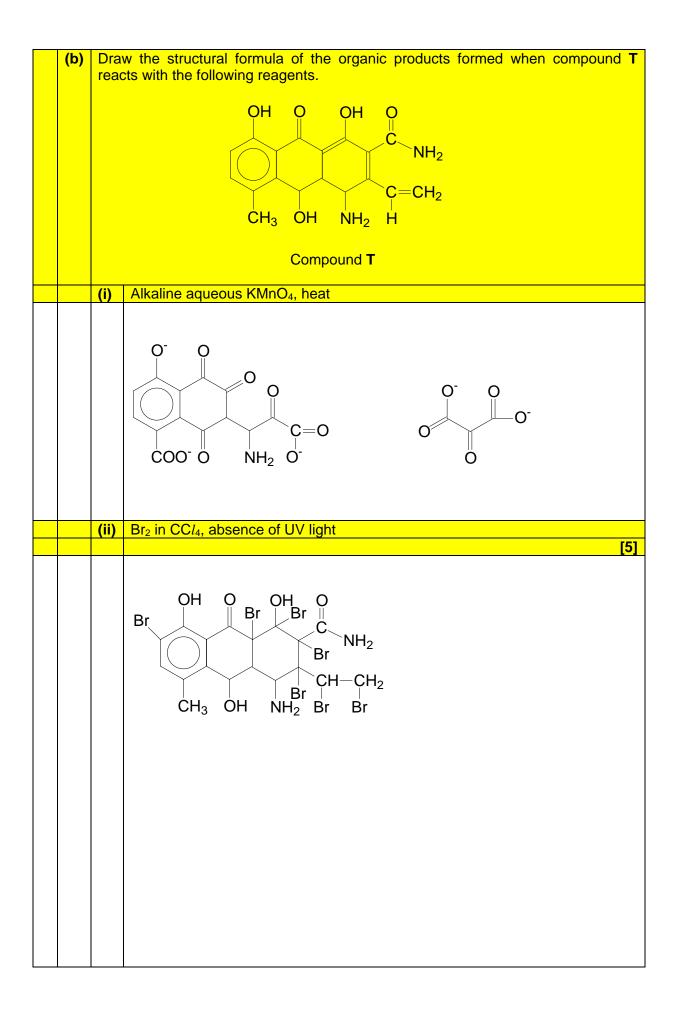


| (b) | com<br>func<br>of el<br>10 d<br>exce<br>20 d<br>com | nent <b>D</b> can form two different chlorides. The two chlorides of element <b>D</b> is<br>monly used in Organic Chemistry qualitative analysis to test for a specific<br>tional group. When dissolved in a solution containing methyl orange, chlorides<br>ement <b>D</b> turn the solution red.<br>$cm^3$ of liquid organic compound <b>E</b> , $C_nH_{2n+2}O$ , is vaporised and burnt in<br>ess oxygen. After the reaction is cooled to 25 °C, a contraction of<br>$cm^3$ in the gas volume was observed. When the resultant gases from the<br>bustion was passed through aqueous sodium hydroxide, the gas volume<br>reased a further 20 cm <sup>3</sup> . The vapour of <b>E</b> is also observed to react with the<br>e reagents and conditions of step <b>II</b> mentioned in <b>(a)</b> . |
|-----|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (i)                                                 | State the identities of element <b>D</b> and organic compound <b>E</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |                                                     | <b>D</b> is phosphorus.<br><b>E</b> is ethanol.<br>(Since 10 cm <sup>3</sup> of vapour <b>E</b> combusted to give 20 cm <sup>3</sup> of CO <sub>2</sub> , by Avogadro's and volume ratio, n =2 $\textcircled{e}$ C <sub>2</sub> H <sub>6</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | (ii)                                                | Hence, write an equation, if any, between one of the chlorides of element <b>D</b> and organic compound <b>E</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     |                                                     | $CH_{3}CH_{2}OH + PCl_{5} \stackrel{\bullet}{\Rightarrow} CH_{3}CH_{2}Cl + POCl_{3} + HCl$<br>or<br>$3CH_{3}CH_{2}OH + PCl_{3} \stackrel{\bullet}{\Rightarrow} 3CH_{3}CH_{2}Cl + H_{3}PO_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |                                                     | Total 8 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

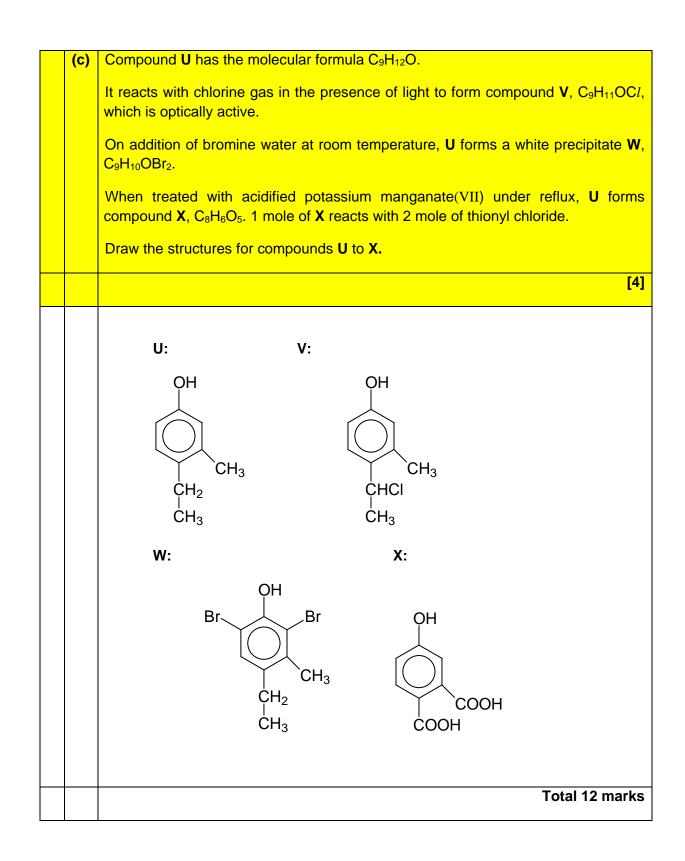
| 3 | (a) | (i)   | Both strontium and manganese are silvery metals. Write the electronic configurations of manganese and strontium.                                                                                                                                                                                                             |
|---|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |       | Mn: [ <u>Ar]</u> 3d <sup>5</sup> 4s <sup>2</sup>                                                                                                                                                                                                                                                                             |
|   |     |       | Sr: [ <u>Kr]</u> 5s <sup>2</sup>                                                                                                                                                                                                                                                                                             |
|   |     | (ii)  | Manganese and strontium both contribute two electrons into the sea of delocalised electrons.                                                                                                                                                                                                                                 |
|   |     |       | Suggest if strontium or manganese has a higher melting point.                                                                                                                                                                                                                                                                |
|   |     |       | Cationic radius of manganese is smaller as compared to strontium ions.                                                                                                                                                                                                                                                       |
|   |     |       | Electrostatic forces of attraction b/w the cations and sea of delocalised electrons(metallic bonding) is stronger in Mn than in Sr. Thus more energy is required to overcome these forces of attraction. Mn has a higher melting point than Sr.<br>(For your information m.p. of strontium is 777°C and manganese is 1246°C) |
|   |     | (iii) | Manganese is particularly important in the manufacturing of stainless steel.                                                                                                                                                                                                                                                 |
|   |     | (111) | Below shows a reaction schematic of manganese containing compounds.<br>F undergoes a reaction to form <b>G</b> and <b>H</b> .                                                                                                                                                                                                |
|   |     |       | Mn in stainless steel Solution <b>F</b> containing Mn <sup>n+</sup>                                                                                                                                                                                                                                                          |
|   |     |       | Pale Pink Solution <b>G</b> Black/brown solid <b>H</b>                                                                                                                                                                                                                                                                       |
|   |     |       | FeCl <sub>2</sub><br>KOH + O <sub>2</sub>                                                                                                                                                                                                                                                                                    |
|   |     |       | Purple Solution J Green Crystal K                                                                                                                                                                                                                                                                                            |
|   |     |       | Using the information provided, state the oxidation number of manganese in <b>F</b> and <b>K</b> . (All Mn and its compounds have different oxidation state).                                                                                                                                                                |
|   |     |       | <b>F</b> : +3 <b>K</b> : +6                                                                                                                                                                                                                                                                                                  |
|   |     | (iv)  | Suggest the formula of purple solution J.                                                                                                                                                                                                                                                                                    |
|   |     |       | NaMnO₄                                                                                                                                                                                                                                                                                                                       |
|   |     |       |                                                                                                                                                                                                                                                                                                                              |


|     | (v) | Suggest the type of reaction who<br>Write a balanced chemical ec<br>reaction.                    |                                                                                                                                                                   | nbols, for this |
|-----|-----|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|     |     |                                                                                                  |                                                                                                                                                                   | [10]            |
|     |     | Disproportionation reaction                                                                      |                                                                                                                                                                   |                 |
|     |     | Reduction: Mn <sup>3+</sup> + e à Mn <sup>2+</sup>                                               |                                                                                                                                                                   |                 |
|     |     | Oxidation: $2H_2O + Mn^{3+} aMnO_2$                                                              | 2 + 4H <sup>+</sup> + e                                                                                                                                           |                 |
|     |     | Overall: <u>Mn³⁺ (aq) + 2H₂O (/)</u> à                                                           | <u>1 Mn²+ (aq) + MnO₂ (s) + 4H+</u>                                                                                                                               | <u>(aq)</u>     |
| (b) |     | ntium compounds such as SrF <sub>2</sub><br>r solubility products at 298 K are g                 |                                                                                                                                                                   | uble in water.  |
|     |     | Strontium compound                                                                               | Numerical value of K <sub>sp</sub>                                                                                                                                |                 |
|     |     | SrF <sub>2</sub>                                                                                 | 2.5 x 10 <sup>-9</sup>                                                                                                                                            |                 |
|     |     | SrSO <sub>4</sub>                                                                                | 3.2 x 10 <sup>-7</sup>                                                                                                                                            |                 |
|     | (i) | Suggest, using quantitative cal less soluble in water at 298 K.                                  | culations, which of the two                                                                                                                                       | compounds is    |
|     |     | $K_{sp}(SrF_2) = [Sr^{2+}]$<br>2.5 x 10 <sup>-9</sup> = (s)(2s<br>s = 8.55 x 10 <sup>-4</sup> me | s) <sup>2</sup><br>ol dm <sup>-3</sup><br>Sr <sup>2+</sup> (aq) + SO <sub>4</sub> <sup>2-</sup> (aq)<br>+][SO <sub>4</sub> <sup>2-</sup> ]<br>ol dm <sup>-3</sup> | nan SrF₂.       |

| SrF2 (s) Sr <sup>2+</sup> (aq) + 2F <sup>-</sup> (aq)   NaF (s) Na <sup>+</sup> (aq) + F <sup>-</sup> (aq)   There will be common ion effect due to the increase in [F <sup>-</sup> ].   By Le Chatelier's Principle, position of equilibrium will shift to the left   decrease [F <sup>-</sup> ]. The solubility of SrF2 is reduced.   The solubility product of SrF2 is not affected as it is only dependent temperature.   (c) Propose chemical test(s) to differentiate the following organic compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| There will be common ion effect due to the increase in [F <sup>-</sup> ].   By Le Chatelier's Principle, position of equilibrium will shift to the left   decrease [F <sup>-</sup> ]. The solubility of SrF <sub>2</sub> is reduced.   The solubility product of SrF <sub>2</sub> is not affected as it is only dependent temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| By Le Chatelier's Principle, <b>position of equilibrium</b> will shift to the <b>left</b><br>decrease [F <sup>-</sup> ]. The solubility of SrF <sub>2</sub> is <u>reduced.</u><br>The solubility product of SrF <sub>2</sub> is <u>not affected</u> as it is only dependent<br>temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| decrease [F <sup>-</sup> ]. The solubility of SrF <sub>2</sub> is reduced.   The solubility product of SrF <sub>2</sub> is not affected as it is only dependent temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| temperature.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (c) Propose chemical test(s) to differentiate the following organic compound                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| You are to state clearly in your answer the reagents and conditions us<br>and observations made. Write chemical equation(s) for any reactions the<br>have occurred.<br>$\begin{array}{c} O\\ H_2N \end{array} \qquad \begin{array}{c} O\\ H_2N \end{array} \qquad \begin{array}{c} O\\ H \end{array} \qquad O \end{array} \qquad \begin{array}{c} O\\ H \end{array} \qquad O \end{array} \qquad \begin{array}{c} O\\ H \end{array} \qquad O O O O$ |
| Test: Add NaOH (aq), heat<br>Observation:<br>$\eta_{2N} + \eta_{1}^{0}$<br>: effervescence<br>$0 + \eta_{2N}^{0}$<br>: No effervescence<br>Equation:<br>$\eta_{2N} + \eta_{1}^{0}$<br>: No effervescence<br>Equation:<br>$\eta_{2N} + \eta_{1}^{0}$<br>$\eta_{2N} + \eta_{2}^{0}$<br>$\eta_{2N} + \eta_{2N} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Total 18 mar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |







| (b) | (i)  | Methamphetamine, $C_{10}H_{15}N$ , is a psychostimulant. It has high potential for<br>abuse and addiction. In high doses, it can induce euphoria and anxiety. Under<br>the Misuse of Drugs Act in Singapore, a person who carries 500 grams of<br>methamphetamine will be sentenced to the Mandatory Death Penalty. Its<br>structure is as shown: |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |      | A 25.0 cm <sup>3</sup> sample of 0.500 mol dm <sup>-3</sup> methamphetamine was titrated with aqueous hydrochloric acid of the same concentration.                                                                                                                                                                                                |
|     |      | Would you expect the equivalence point to be above 7 or below 7? Explain your answer.                                                                                                                                                                                                                                                             |
|     |      | Due to <b>salt hydrolysis</b> pH of equivalence point should be <b>below 7</b> .                                                                                                                                                                                                                                                                  |
|     | (ii) | State the formula of the organic product formed when methamphetamine was reacted with sulfuric acid instead of hydrochloric acid.                                                                                                                                                                                                                 |
|     |      | [3]                                                                                                                                                                                                                                                                                                                                               |
|     |      | $\left(\begin{array}{c} H \\ N^{+} \\ H \\ R^{-} \\ H \\ 2 \end{array}\right)_{2}^{2^{-}}$                                                                                                                                                                                                                                                        |
|     |      | Total 10 marks                                                                                                                                                                                                                                                                                                                                    |



| (c) | Explain the drop in the third ionisation energy from element N to P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | N <sup>2+</sup> : 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup><br>P <sup>2+</sup> : 1s <sup>2</sup> 2s <sup>2</sup> 2p <sup>6</sup> 3s <sup>2</sup> 3p <sup>1</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | The <u><b>3p electron</b></u> to be removed from $P^{2+}$ is <u><b>further away</b></u> from the nucleus than the <u><b>3s electron</b></u> to be removed from N <sup>2+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | The <u><b>3p electron</b></u> experiences <u>weaker electrostatic forces of attraction</u> than the 3s electron and requires less energy to remove. Thus there is a drop in third ionisation energy from element <b>N</b> to <b>P</b> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (d) | Write down the equations for the reaction of the oxide of <b>M</b> with aqueous hydrochloric acid and aqueous sodium hydroxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | [2]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | M <sub>2</sub> O <sub>3</sub> (s) + 6 <b>HC<i>l</i> (aq) à</b> 2 MC <i>l</i> <sub>3</sub> (aq) + 3 H <sub>2</sub> O ( <i>l</i> )<br>M <sub>2</sub> O <sub>3</sub> (s) + 2 <b>NaOH(aq)</b> + 3 H <sub>2</sub> O( <i>l</i> ) <b>à</b> 2 Na[M(OH) <sub>4</sub> ] (aq)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (e) | Describe the reactions, if any, of the chlorides of element <b>M</b> and <b>P</b> with water,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (0) | suggesting the pH of the resulting solutions and writing equations, where appropriate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | [6]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an <b>acidic</b> solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an <b>acidic</b> solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br><b>acidic</b> solution.<br><b>M</b> C $l_3$ (s) + 6 H <sub>2</sub> O ( $l$ ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 C $l^-$ (aq)                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br>acidic solution.<br><b>M</b> $Cl_3$ (s) + 6 H <sub>2</sub> O ( <i>l</i> ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 $Cl^-$ (aq)<br>$[M(H_2O)_6]^{3+}$ (aq) <b>à</b> $[M(H_2O)_5(OH)]^{2+}$ (aq) + H <sup>+</sup> (aq)<br>pH of solution = 3<br><b>P</b> $Cl_3$ ( <i>l</i> ) + 3 H <sub>2</sub> O ( <i>l</i> ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>3</sub> (aq) + 3 HC <i>l</i> (aq)                                                                                                                                                    |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br><b>acidic</b> solution.<br><b>M</b> C $l_3$ (s) + 6 H <sub>2</sub> O ( $l$ ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 C $l^-$ (aq)<br>$[M(H_2O)_6]^{3+}$ (aq) <b>à</b> $[M(H_2O)_5(OH)]^{2+}$ (aq) + H <sup>+</sup> (aq)<br>pH of solution = 3                                                                                                                                                                                                                                                                                            |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br><b>acidic</b> solution.<br><b>M</b> $Cl_3$ (s) + 6 H <sub>2</sub> O ( $l$ ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 $Cl^-$ (aq)<br>$[M(H_2O)_6]^{3+}$ (aq) <b>à</b> $[M(H_2O)_5(OH)]^{2+}$ (aq) + H <sup>+</sup> (aq)<br>pH of solution = 3<br><b>P</b> $Cl_3$ ( $l$ ) + 3 H <sub>2</sub> O ( $l$ ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>3</sub> (aq) + 3 HC <i>l</i> (aq)<br>Or                                                                                                                                                      |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br><b>acidic</b> solution.<br><b>M</b> C $l_3$ (s) + 6 H <sub>2</sub> O ( <i>l</i> ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 C $l^-$ (aq)<br>$[M(H_2O)_6]^{3+}$ (aq) <b>à</b> $[M(H_2O)_5(OH)]^{2+}$ (aq) + H <sup>+</sup> (aq)<br>pH of solution = 3<br><b>P</b> C $l_3$ ( <i>l</i> ) + 3 H <sub>2</sub> O ( <i>l</i> ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>3</sub> (aq) + 3 HC $l$ (aq)<br>Or<br><b>P</b> C $l_5$ ( <i>l</i> ) + 4 H <sub>2</sub> O ( <i>l</i> ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>4</sub> (aq) + 5 HC $l$ (aq) |
|     | <b>M</b> undergoes <b>hydrolysis</b> as it has <u>high charge density</u> , able to <u>polarise</u> and<br>weaken O-H bond in H <sub>2</sub> O of $[B(H_2O)_6]^{3+}$ (aq) to release acidic H <sup>+</sup> and give an<br><b>acidic</b> solution.<br><b>M</b> C $l_3$ (s) + 6 H <sub>2</sub> O ( $l$ ) <b>à</b> $[M(H_2O)_6]^{3+}$ (aq) + 3 C $l^-$ (aq)<br>$[M(H_2O)_6]^{3+}$ (aq) <b>à</b> $[M(H_2O)_5(OH)]^{2+}$ (aq) + H <sup>+</sup> (aq)<br>pH of solution = 3<br><b>P</b> C $l_3$ ( $l$ ) + 3 H <sub>2</sub> O ( $l$ ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>3</sub> (aq) + 3 HC $l$ (aq)<br>Or<br><b>P</b> C $l_5$ ( $l$ ) + 4 H <sub>2</sub> O ( $l$ ) <b>à</b> H <sub>3</sub> <b>P</b> O <sub>4</sub> (aq) + 5 HC $l$ (aq)<br>pH of solution = 2    |

| 6 | (a) | rain<br>dep | bgen monoxide in the air can be converted to nitric acid, which results in acid<br>. Both nitrogen monoxide and nitrogen dioxide participate in ozone layer<br>letion. One way of forming nitrogen monoxide is through the dissociation of<br>ogen dioxide. |
|---|-----|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |     |             | $2NO_2(g) \longrightarrow 2NO(g) + O_2(g)$                                                                                                                                                                                                                  |
|   |     | At 4        | 94 °C, the value of $K_p$ for the above reaction is 36.9 kPa.                                                                                                                                                                                               |
|   |     | 494         | en a certain partial pressure of nitrogen dioxide is put into an empty vessel at °C, equilibrium is reached when 45% of the original nitrogen dioxide has omposed.                                                                                          |
|   |     | (i)         | Write an expression for the equilibrium constant, $K_p$ , for the reaction.                                                                                                                                                                                 |
|   |     |             | $K_{p} = \frac{P_{NO}^{2} P_{O_{2}}}{P_{NO_{2}}^{2}}$                                                                                                                                                                                                       |
|   |     | (ii)        | What is the original partial pressure of nitrogen dioxide before any dissociation occurred?                                                                                                                                                                 |
|   |     |             | [3]                                                                                                                                                                                                                                                         |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             | Let the initial pressure of NO <sub>2</sub> be $\boldsymbol{x}$ mol.                                                                                                                                                                                        |
|   |     |             | $2 \operatorname{NO}_2(g) \rightleftharpoons 2 \operatorname{NO}(g) + \operatorname{O}_2(g)$                                                                                                                                                                |
|   |     |             | Initial pressure (kPa) <b>x</b> 0 0                                                                                                                                                                                                                         |
|   |     |             | Change in Presure -0.45 <i>x</i> +0.45 <i>x</i> +0.225 <i>x</i>                                                                                                                                                                                             |
|   |     |             | Equilibrium pressure (kPa) $0.55 x$ $0.45 x$ $0.225 x$                                                                                                                                                                                                      |
|   |     |             | $K_{\rho} = \frac{(0.225x)(0.45x)^2}{(0.55x)^2} = 36.9$                                                                                                                                                                                                     |
|   |     |             | <b>x</b> = 244 kPa                                                                                                                                                                                                                                          |
|   |     |             | Hence, initial pressure of $NO_2 = 244$ kPa                                                                                                                                                                                                                 |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |
|   |     |             |                                                                                                                                                                                                                                                             |



