	Class	Index No.
Candidate Name:		I

FUHUA SECONDARY SCHOOL

Secondary Four Express

Preliminary Examination 2022

Fuhua Secondary Funda Secondary Fuhua Secondary Fu Fuhua Secondary 6091/01

PHYSICS

Paper 1

30 Aug 2022 0800 - 09001 hour

Additional Material: Optical Mark Recognition (OMR)

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class, index number on the OMR and this question booklet.

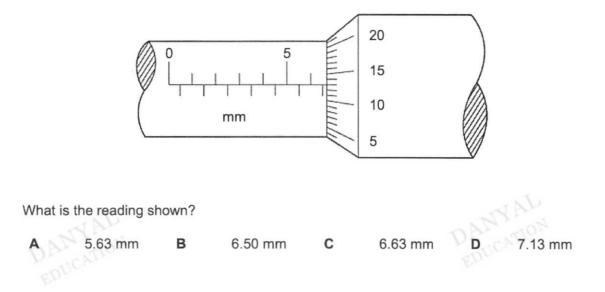
There are forty questions on this paper. Answer all questions. For each question, there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate OMR.

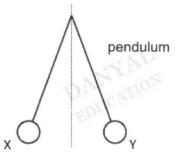
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done on this paper.

The use of an approved scientific calculator is expected, where appropriate.


PARENT'S SIGNATURE	FOR EXAMINER'S USE
	40

Setter: Mr Raymond Loh


Vetter: Mrs Wong Kexin

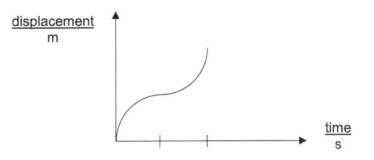
This question paper consists of 15 printed pages including this page.

1 The diagram shows a micrometer screw gauge.

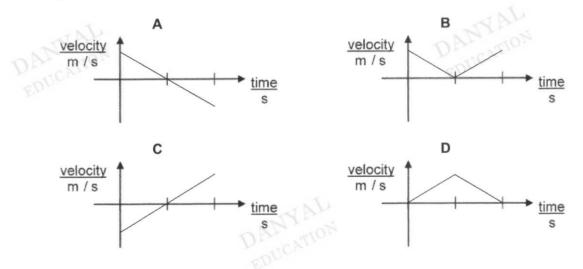
2 The diagram shows a frictionless pendulum swinging between points X and Y at a frequency of 2.0 Hz.

How long does it take for the bob to swing from X to Y?

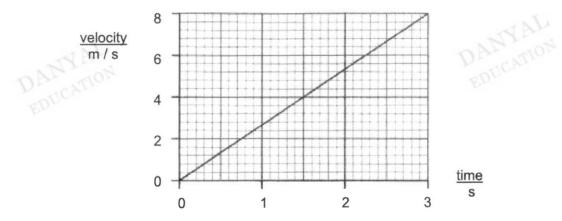
A 0.25 s B 0.50 s C 1.0 s



3 A parachutist falling at a steady speed opens his parachute.

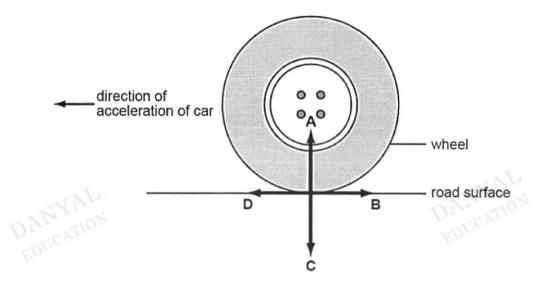

Which row gives the direction of the resultant force and the direction of the acceleration of the parachutist just after his parachute opens?

	direction of the resultant force	direction of the acceleration
A	downwards	upwards
В	downwards	downwards
С	upwards	upwards
D	upwards	downwards


4 The graph shows how the displacement of an object changes with time.

Which graph represents the velocity-time graph of the object?

5 The graph shows how the velocity of a model car travelling on a flat surface varies with time.

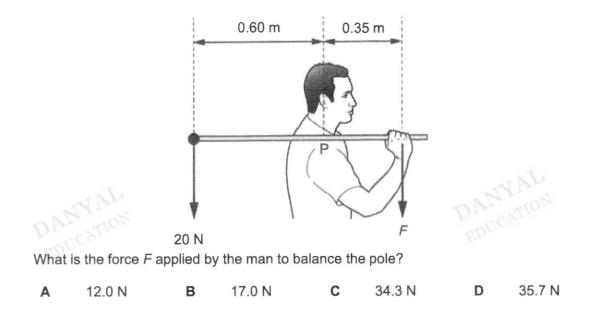


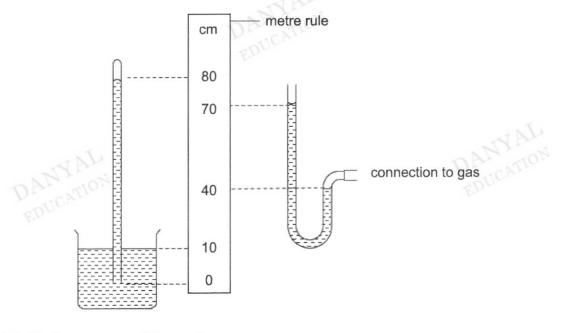
Which statement about the model car is not correct?

- A Its acceleration is 2.7 m / s².
- B Its distance travelled is 12 m.
- C It is moving at a uniform velocity.
- D It is moving in the same direction throughout the 3 s.

6 The diagram shows the wheel of a moving car. The wheel is connected to the engine. The car is accelerating along a road in the direction shown.

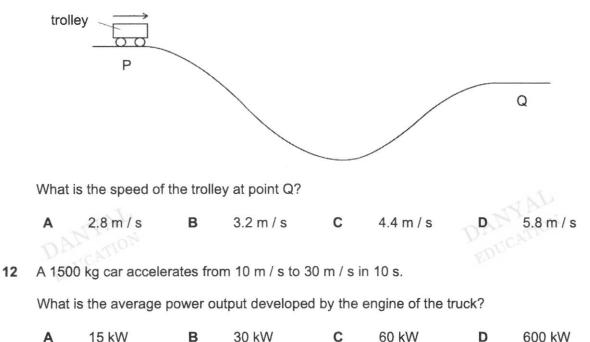
What is the direction of the frictional force exerted by the road surface on the wheel?

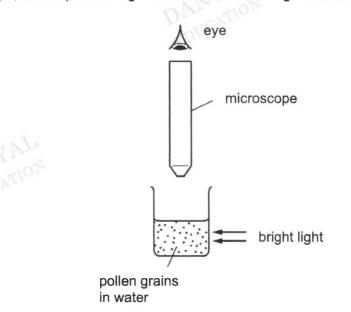

7 The propeller of a boat pushes water backwards with a force of 2000 N. The boat moves through the water against a total resistive force of 1800 N.


8 Which property of an object causes the object to resist a change in the state of rest or motion of the object?

Α	density	В	mass	С	velocity	D	volume
---	---------	---	------	---	----------	---	--------

9 A man is carrying a load on the end of a uniform pole of length 1.0 m and weight 5 N. He rests the pole on his shoulder at point P which acts as a pivot. He keeps the pole in balance with a downward force *F* with his hand, as shown.

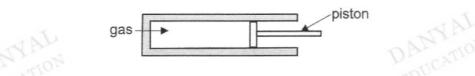

10 The diagram shows a mercury barometer and a mercury manometer placed beside each other. One end of the manometer is connected to a container filled with an unknown gas.


What is the pressure of the gas?

Α	30 cm Hg	В	60 cm Hg	С	70 cm Hg	D	100 cm Hg
---	----------	---	----------	---	----------	---	-----------

11 A trolley of mass 20 kg moves from position P to Q along a rough track. At point Q, its gravitational potential energy is 100 J less than that at point P. Its speed at point P is 2.0 m / s. The work done against friction from point P to Q is 60 J.

13 Very small pollen grains are suspended in water. A bright light shines from the side. Through a microscope, small specks of light are seen to be moving in a random, jerky manner.


What are the moving specks of light?

- A Pollen grains being hit by other pollen grains.
- B Pollen grains being hit by water molecules.
- C Water molecules being hit by other water molecules.
- D Water molecules being hit by pollen grains.

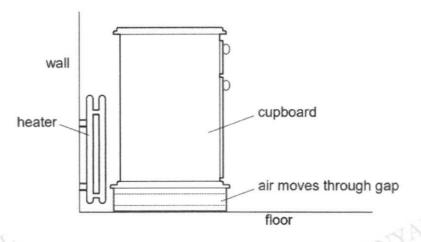
14 A sealed container contains nitrogen gas.

What will happen to the gas molecules when the container is heated?

- A They will become denser.
- B They will expand.
- C They will move further apart.
- D They will move more quickly.
- **15** The diagram shows a cylinder made of insulating material with a movable piston at one end. The piston can be pushed or pulled without the gas leaking out.

Which statement about the gas when the piston is moving is not correct?

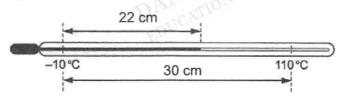
- A The density of the gas decreases as the piston is pulled outwards.
- B The mass of the gas in the piston remains unchanged.
- C The pressure of the gas decreases as the piston is pulled outwards.
- D The temperature increases as the piston is pushed gently inwards.
- 16 When a hand is placed on a metal surface and a wooden surface at room temperature, it feels colder on the metal surface than on the wooden surface.


Which statement is the correct explanation?

- A The metal surface is a better absorber of infra-red than wooden surface.
- B The metal surface is a better thermal conductor than wooden surface.
- C The metal surface is a better emitter of infra-red than wooden surface.
- **D** The metal surface is at a much lower temperature than the wooden surface.
- 17 Which statement is true about the particles that remain in a liquid during evaporation?
 - A D The average size of the particles is decreasing.
 - B The average size of the particles is increasing.
 - C The average speed of the particles is decreasing.
 - D The average speed of the particles is increasing.
- **18** Two different liquids, X and Y, with the same mass and initial temperature, are heated by the same heat source. Liquid X reaches a temperature of 60°C slower than liquid Y.

Which statement is the correct explanation?

- A Liquid X has a higher specific heat capacity than liquid Y.
- B Liquid X has a higher specific latent heat of fusion than liquid Y.
- C Liquid X has a lower specific heat capacity than liquid Y.
- D Liquid X has a lower specific latent heat of fusion than liquid Y.


19 A cupboard is placed in front of a heater. Air can move through a gap under the cupboard.

Which of the following describes the temperature and the direction of motion of the air in the gap?

EDU	temperature of air	direction of air
Α	cool	towards the heater
в	cool	away from the heater
С	warm	towards the heater
D	warm	away from the heater

20 The diagram shows a mercury-in-glass thermometer. The distance between the –10 °C and the 110 °C markings is 30 cm.

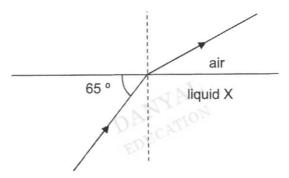
What is the temperature when the end of the mercury thread is at a distance of 22 cm from the -10 °C mark?

AOP	60.0 °C	в	65.0 °C	С	78.0 °C	DE	88.0 °C

21 Which row shows an example of a transverse wave and a longitudinal wave?

	transverse wave	longitudinal wave
Α	infra-red radiation	X-ray
в	visible light	radio wave
С	ultrasound wave	ultra-violet radiation
D	gamma ray	ultrasound wave

22 A longitudinal wave travels along a spring. The diagram represents the position of the coils of the spring at one particular instant.

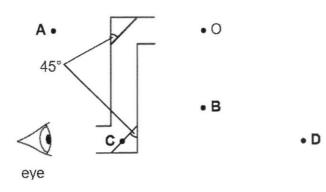


The coils vibrate from side to side. Each coil completes 4.0 oscillations in 2.0 s.

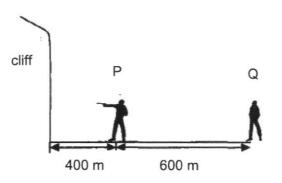
Which row shows the correct frequency and wavelength of the wave?

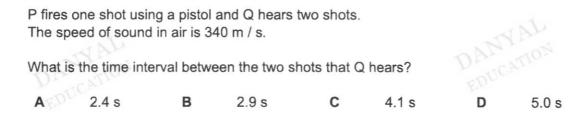
	frequency / Hz	wavelength / m	
A	0.5	XY	
B	2.0	XY	
с	0.5	YZ	
D	2.0	YZ	

23 A ray of light is incident from below the surface of liquid X as shown in the diagram. The refractive index of liquid X is 1.2.

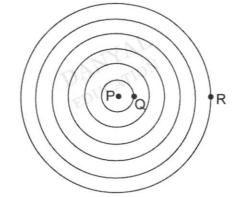


What is the angle of refraction in air?




24 The diagram shows a child using a periscope to look at an object O on the other side of the wall. The periscope has two plane mirrors.

At which position is the image of O seen?



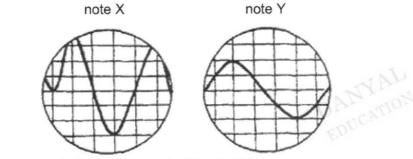
PartnerInLearning 161 25 Two people, P and Q, stand in front of a vertical cliff as shown.

26 The diagram shows the top view of some water waves produced from point P.

The waves have a speed of 0.40 m / s and take 2.0 s to travel from point Q to R.

What is the wavelength of the wave?

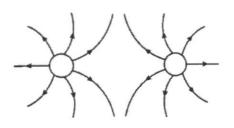
A	0.16 m	в	0.20 m	С	0.40 m	D	0.80 m
---	--------	---	--------	---	--------	---	--------


27 Below are four statements about the uses of electromagnetic radiation.

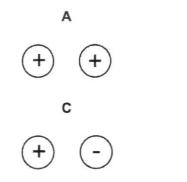
Gamma rays are used in cancer treatment. Infra-red waves are used in thermal imaging cameras. Microwaves are used in satellite TV. X-rays are used to check bone fractures.

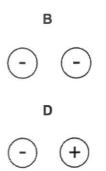
How many of these statements is/are correct?

Α	1	в	2	С	3	D	4
				10			

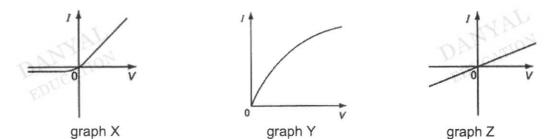

- 28 Which electromagnetic wave will not cause damage to living cells?
 - A gamma rays
 - B microwaves
 - C ultra-violet radiation
 - D X-rays
- **29** The waveforms of two notes X and Y are shown in the datalogger screens with the same scale.

Which row is true about note X as compared with note Y?


	loudness	pitch
Α	louder than Y	higher than Y
В	louder than Y	lower than Y
С	not as loud as Y	lower than Y
D	not as loud as Y	higher than Y


30 The diagram shows the electric field pattern between two isolated point charges.

Which two point charges produce this pattern?

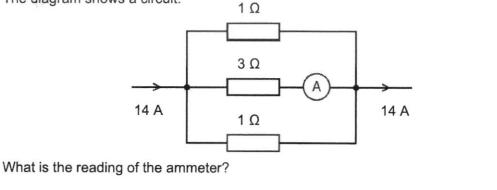


31 An electron is placed at a point where an electric field is acting vertically downwards. There is a force exerted on the electron due to the field.

In which direction does this force act on the electron?

- A horizontally to the left
- B horizontally to the right
- C vertically downwards
- D vertically upwards
- **32** Graphs X, Y and Z show how the current varies with potential difference for three electrical components.

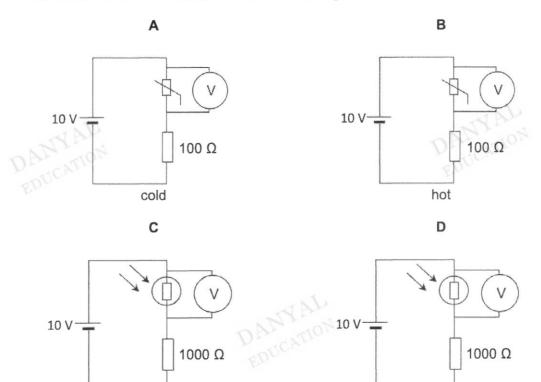
Which electrical component does each graph represent?


	graph X	graph Y	graph Z
Α	filament lamp	semiconductor diode	metallic conductor
В	semiconductor diode	filament lamp	metallic conductor
С	metallic conductor	semiconductor diode	filament lamp
D	semiconductor diode	metallic conductor	filament lamp

33 A current of 10 A flows through an electrical component.

What is the amount of charge flowing through the electrical component in an hour?

34 The diagram shows a circuit.


A 1A **B** 2A **C** 3A **D** 4A

12

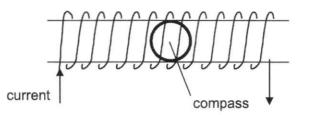
PartnerInLearning 164 **35** The table shows the resistance of a light dependent resistor (LDR) and a thermistor under different conditions.

LDR	thermistor
dark: 10 kΩ	cold: 1 kΩ
bright: 100 Ω	hot: 100 Ω

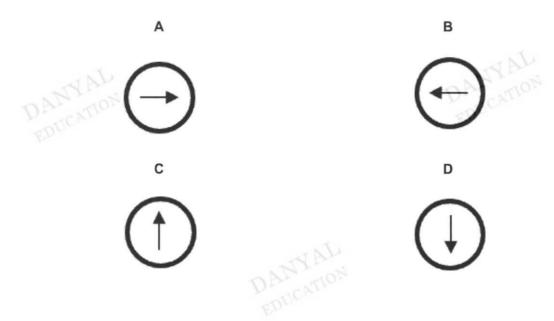
Which circuit will show the smallest voltmeter reading?

36 The diagram below shows the label on an electric iron. The iron is used for 12 hours every month. The cost of 1 kWh of electrical energy is 25 cents.
ELECTRIC IDENT

dark

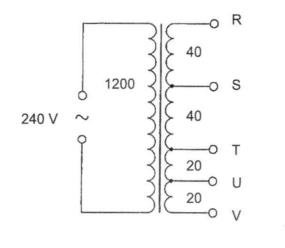

ELECTRIC IRON		
Operating Voltage	240 V	
Power	2800 W	
Fuse Rating	13 A	

Which statement is not true about the electric iron?


bright

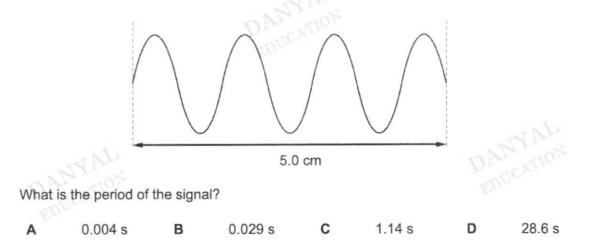
- A The energy dissipated in the iron every month is 121 MJ.
- **B** The fuse will blow when the current flowing through the iron is above 13 A.
- C The iron should use a fuse with a fuse rating of 10 A instead of 13 A.
- D The user pays \$8.40 every month to use the iron.

37 A compass is placed in the centre of a solenoid as shown in the diagram below.



In which direction will the compass needle point?

- 38 What is the main function of the split ring commutator in a d.c. motor?
 - Α It allows electrical contact between the coil of wire and the battery.
 - в It increases the turning effect of the coil of wire.
 - EDUCATION С It reverses the direction of the current in the coil every half a revolution.
 - D It reverses the direction of the force on the coil every full revolution. EDUCATION


39 A transformer consists of one coil with 1200 turns and a second coil with a total of 120 turns, which can be tapped at various places.

Which pair of terminals should be connected to a 12 V, 24 W lamp for it to light up normally?

A RS	В	RT	С	ST	D	SU
------	---	----	---	----	---	----

40 A student uses a cathode-ray oscilloscope (c.r.o.) to measure the period of a signal. She sets the time-base of the c.r.o. to 20 ms / cm and observes the trace illustrated below. The trace has a length of 5.0 cm.

End of Paper

	Class	Index No.
Candidate Name:		

FUHUA SECONDARY SCHOOL

Secondary Four Express

Preliminary Examination 2022

~

Fuhua Secondary Fuhua Secondar

PHYSICS

Paper 2 Theory

25 Aug 2022 1130 – 1315 1 hour 45 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces provided on top of this page. Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

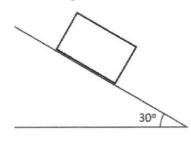
Section A (50 marks) Answer **all** questions in the spaces provided. Section B (30 marks) Answer all questions. Question 11 has a choice of parts to answer. Answer **all** questions in the spaces provided.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. The use of an approved scientific calculator is expected, where appropriate.

PARENT'S SIGNATURE			

FOR	EXAMINER'S USI	Ξ
Section A	Section B	Total
/50	/30	/80

Setter: Mr Raymond Loh


Vetter: Mrs Wong Kexin,

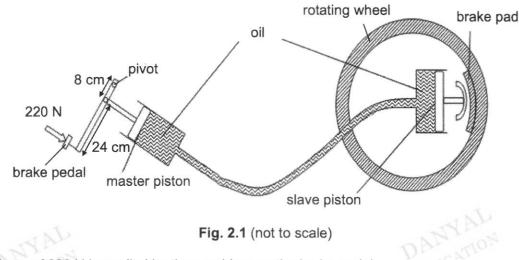
This question paper consists of <u>19</u> printed pages including this page.

Section A

Answer all questions in this section.

Fig. 1.1 shows a box of mass 900 g resting on a rough plane inclined at an angle of 30° to the horizontal. The box is about to slip down the plane. The gravitational field strength is 10 N / kg.

Fig. 1.1 (not to scale)


- (a) On Fig. 1.1, draw the forces exerted on the box. Label them clearly. [1]
- (b) Calculate the weight of the box.

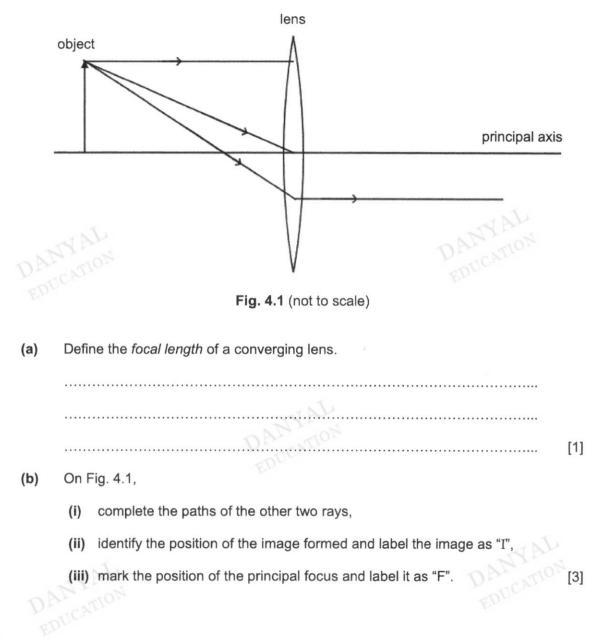
weight of the box = [1]

(c) Draw a suitable scaled diagram to determine the magnitude of the frictional force acting on the box.

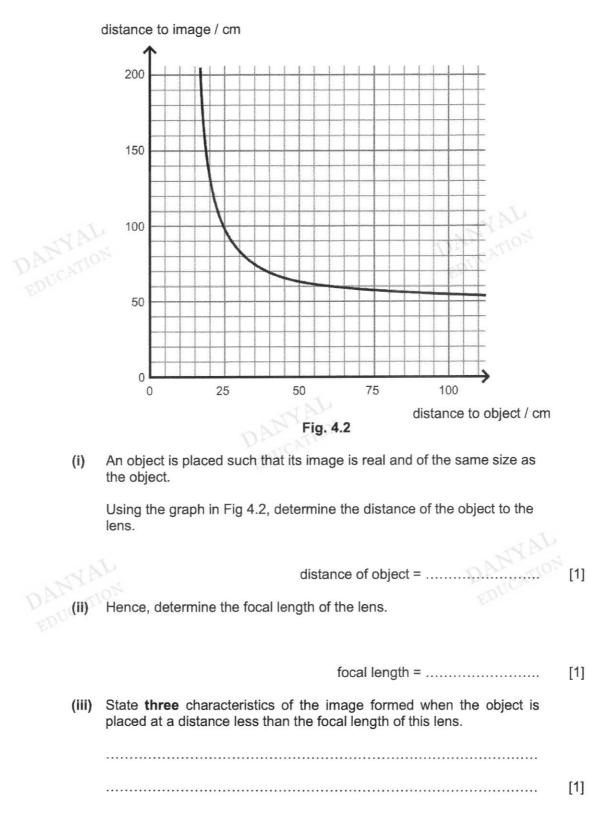
(d) Suggest, in terms of forces, why the object does not slide down the rough plane.

2 Fig. 2.1 shows the hydraulic braking system of a car.

A force of 220 N is applied by the car driver on the brake pedal. The cross-sectional area of the master piston is 1.5 cm^2 . The cross-sectional area of the slave piston is 5.0 cm^2 . The weight of both pistons is negligible.

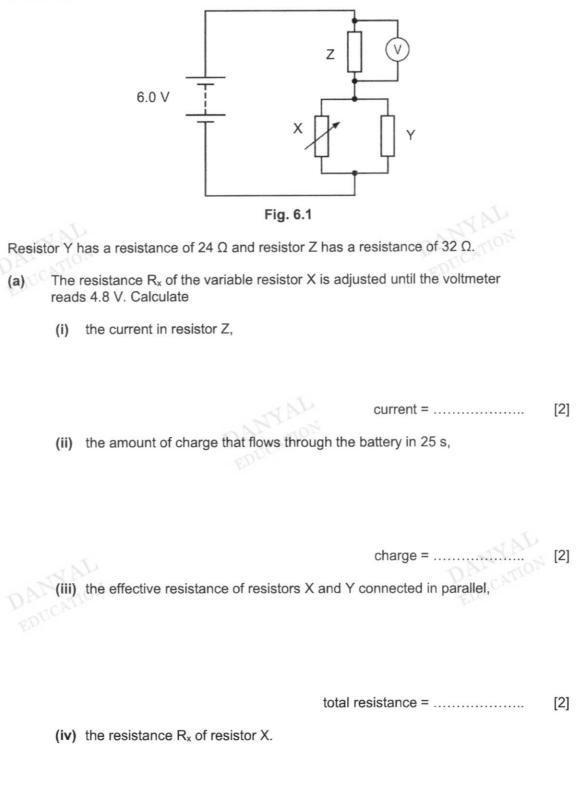

(a) Calculate the force exerted on the master piston.

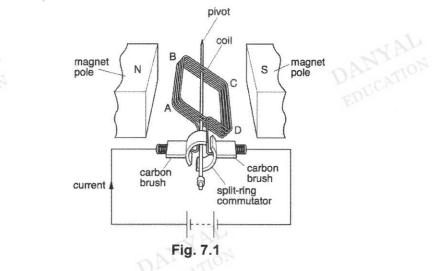
(b) Hence, calculate the force that the oil exerts on the slave piston.


- path of the ball direction of the force exerted by the boy 6 Fig. 3.1 As the boy kicks the ball, work is done. State what is meant by work done. (a) <u>5777</u> [1] The speed of the 200 g ball when it first leaves the ground is 20 m / s. (b) Calculate the initial kinetic energy of the ball. initial kinetic energy = [2] The ball reaches a maximum height of 12 m from the ground. The gravitational (c) field strength, g, is 10 N / kg. Calculate the gravitational potential energy gained by the ball. gravitational potential energy gained = [2] (d) Hence or otherwise, determine the speed of the ball at the maximum height.
- 3 Fig. 3.1 shows the path of a ball after being kicked by a boy.

speed = [2]

4 Fig. 4.1 shows three rays emerging from the top of an object. The path of one ray through the lens has been completed in the diagram.


(c) Fig. 4.2 shows how the distance of the image to the lens varies with the distance of the object to the lens.


5 Two small uncharged metal spheres A and B are suspended side by side by insulating strings, as shown in Fig. 5.1. The two small spheres are separated by a sheet of paper.

	<u></u>	
Rod >	insulating string rod X is positively charge	ed
and t	touches sphere A. Rod Y is neutral and touches sphere B. After a while, rod Y ved followed by rod X.	
(a)	State, if any, the charge of sphere B after the rods are removed.	
(b)	Explain your answer in (a) .	1]
(c)	Describe and explain what will happen to both spheres when the sheet of paper is subsequently removed.	3]
	[2]

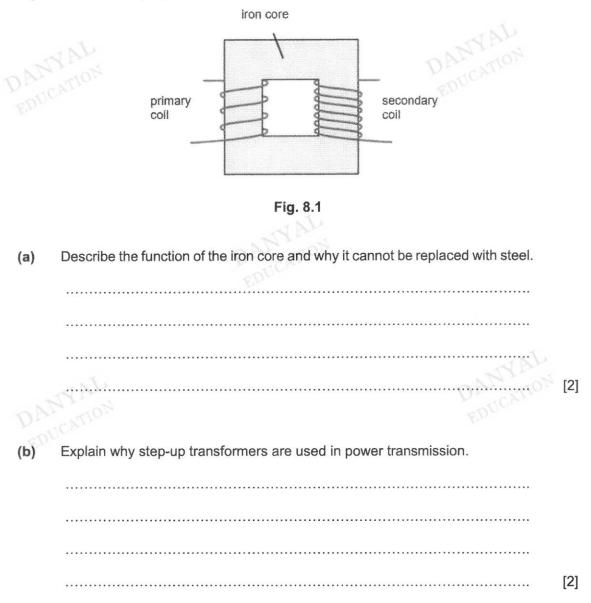
6 Fig 6.1 shows a circuit with a battery of e.m.f. 6.0 V connected to a network of resistors and a voltmeter.

- (b) The resistance R_x of resistor X is now decreased. State and explain the change, if any, to the voltmeter reading.
- 7 Fig. 7.1 shows a simple d.c. motor.

As current flows from the external circuit into the coil, a set of forces cause the coil to rotate about the pivot.

(a) On Fig. 7.1, draw an arrow to show the direction of a force acting on the coil. Label it as "F".

[1]


[2]

(b)	State the direction of rotation of the coil. Explain how you derive your answer.			
	10 TON EDUCA			
	DUCA			
		[3]		

(c) State the position of the coil when the moment on the coil is maximum. Explain your answer.

8 Fig. 8.1 shows a step-up transformer.

Section B

Answer **all** the questions in this section. Answer only one of the two alternative questions in **Question 11**.

9 Fig. 9.1 shows a cooling system used to cool a motor car engine by circulating water through it. The radiator is a heat exchanger where the hot water transfers its thermal energy to the air.

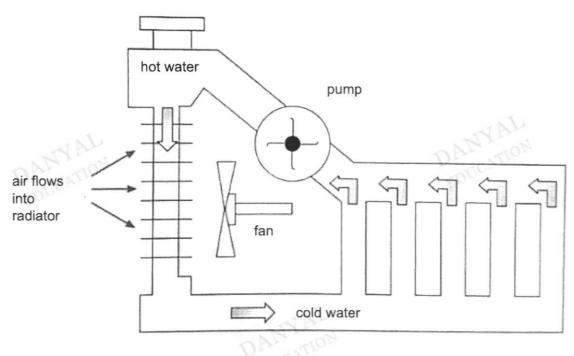


Fig. 9.1

A number of test runs are carried out to investigate the cooling system. Fig. 9.2 shows the data from one test run and the specific heat capacities of some substances.

duration of test / min	4.0
energy available from fuel used / J kg-1	5.0 x 10 ⁷
fuel consumed / kg	0.80
initial temperature of air / °C	20.0
initial temperature of cooling water / °C	30.0
final temperature of cooling water / °C	80.0
rate of flow of cooling water / kg s ⁻¹	0.22
rate of flow of air over radiator fins / kg s ⁻¹	1.25
specific heat capacity of castor oil / J kg ⁻¹ °C ⁻¹	1800
specific heat capacity of glycerine / J kg ⁻¹ °C ⁻¹	2430
specific heat capacity of water / J kg ⁻¹ °C ⁻¹	4200
specific heat capacity of air / J kg ⁻¹ °C ⁻¹	760

Fig. 9.2

	flow of water	HIIIIII	black narrow metal pipes
		Fig. 9.3	
(a)		d as a coolant in the radiate given in the table in Fig. 9.2	
		a Nu	
(b)	The manufacturer claims useful mechanical energy	that 20% of the energy from	n the fuel is converted into

Fig. 9.3 shows an expanded view of the cross-section of the radiator.

(i) Calculate the amount of thermal energy removed from the hot water in the test run based on the manufacturer's claim.

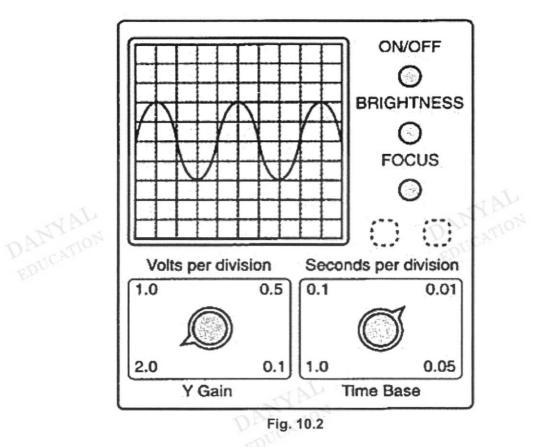
DANYAL

[2]

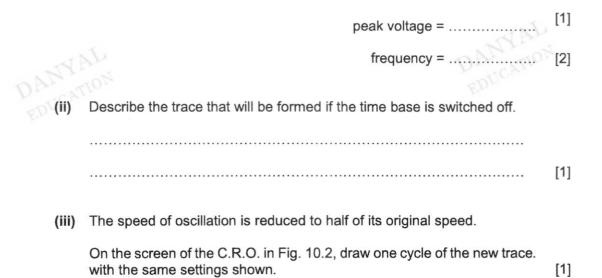
energy = [1]

(ii) Calculate the actual amount of thermal energy removed from the hot water during the test run.

energy = [1]

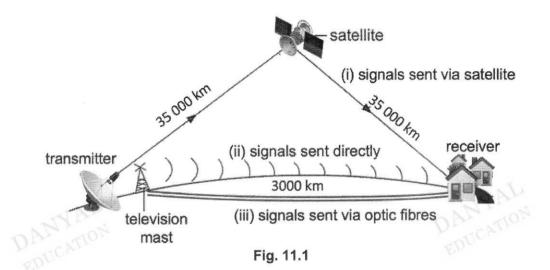

- (iii) Suggest a reason for the difference between the values in (i) and (ii).
 [1]
 (c) Using Fig. 9.3, explain the features of the radiator that allow thermal energy to be transferred easily away from the hot water which flows through the tubes.
- (d) Assuming that there is no heat loss by the cooling water as it flows from the engine to the radiator, calculate the average final temperature of air leaving the radiator in the test run.

10 Fig. 10.1 shows a solenoid connected to a sensitive galvanometer.


The South pole of a permanent magnet is placed next to the left end X of the solenoid.

m	agnet	×	solenoid	
(a) The	solenoid is moved away	from the magne	t and the needle of the	
	nometer deflects to the left			
(i)	Explain why the needle of	the galvanometer	deflects	
(1)	Explain why the needle of	the garvanometer		
				[2]
	DP	CATIO:		[4]
(::)	State the magnetic pole in	duced at the left a	nd X of the solenoid	
(ii)	State the magnetic pole in	iuuceu at the left e		
				[1]
(iii)			the galvanometer when the	
	coil is held stationary and Explain your answer.	the magnet is mov	ved towards the coil instead.	
	Explain your answer.			
			P.	
				[2]

(b) The galvanometer is replaced with a cathode ray oscilloscope (C.R.O.). The magnet is then oscillated continually towards and away from the solenoid. A trace is formed on the C.R.O. as shown in Fig. 10.2.



(i) Determine the peak voltage and frequency of the trace in Fig. 10.2.

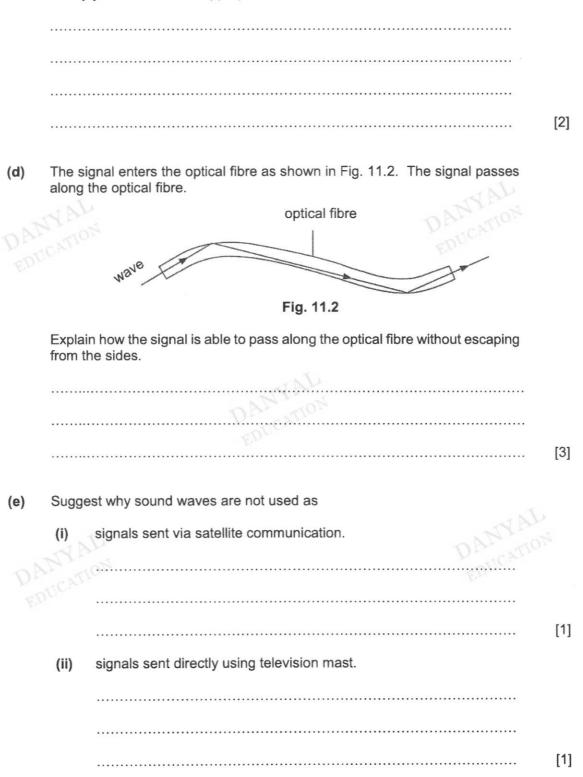
11 Either

Fig. 11.1 shows three different forms of long-distance communication.

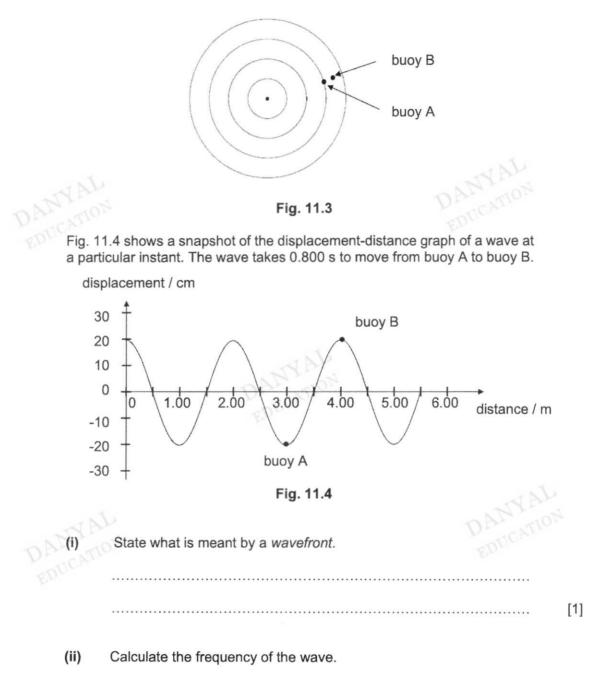
(a) State which region of the electromagnetic spectrum is used for each form of communication.

(i)	signals sent via satellite communication	
(ii)	signals sent directly using television mast	
(iii)	signals sent via optic fibres	

(b) The speed of light in vacuum is 3.0 x 10⁸ m / s. The refractive index of the glass used in optic fibre is 1.5.


Calculate the speed of light in glass.

[1]


speed of light in glass = [2]

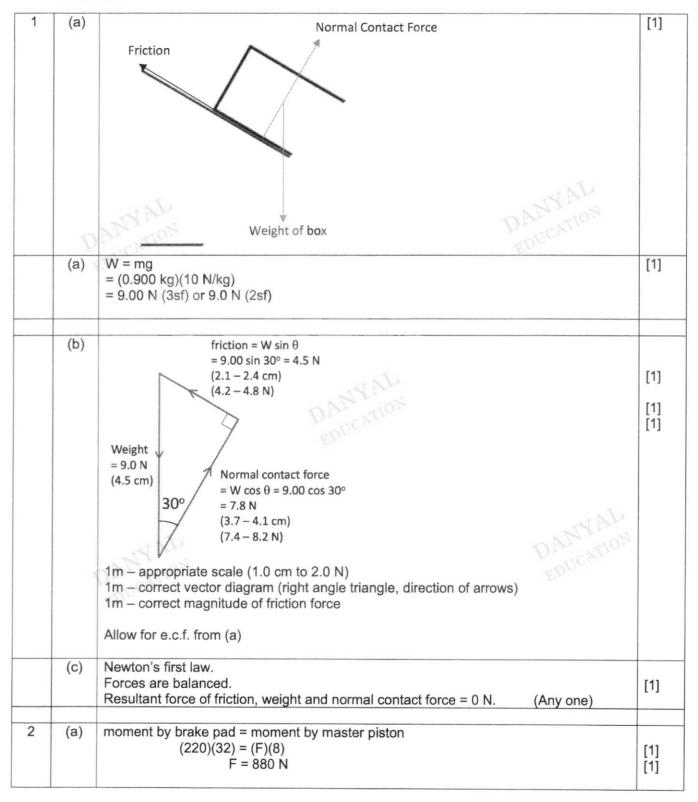
(c) State which form of communication took the least amount of time for each signal to be transmitted and received.

Justify your answer with appropriate calculations.

- 11 Or
 - (a) Fig. 11.3 shows circular wavefronts produced at the centre of a wave pool. Two plastic buoys, A and B, float on the water in the pool. Buoy A is on the crest of a wave at the instant shown.

 (iii) Calculate the wavelength of the wave and the speed of the wave.

wavelength = speed = [2] (iv) On Fig. 11.4, draw using arrows, the direction buoys A and B will be moving in at the next instant. [1] Sonar is used to locate schools of fish and the depth of the seabed in the sea. (b) The sonar sends pulses of ultrasound of frequency 45 kHz from the bottom of the ship to determine the depth of the seabed. The time intervals between the pulse and the subsequent echoes are then measured to determine the depth of the schools of fish or the seabed. The speed of the ultrasound in water is known to be 1450 m / s. (i) State one difference between the pulses of the echo and the pulses sent. Explain your answer. 17. 02,40 EDUCA [2] DANYAL (ii) The time interval between the pulse and the echo is 150 ms. Calculate the depth of the source of the echo.


End of Paper

Paper 1

	2	3	4	5	6	7	8	9	10
C	A	C	В	С	D	Α	B	D	D
	*3	1 40	-	45	40		40	40	20
1	12	13	14	15	16	17	18	19	20
A	С	В	D	D	В	C	A	A	C
21	22	23	24	25	26	27	28	29	30
D	D	A	D	A	Á	D	E	A	A
					-				х.
31	32	33	34	35	36	37	38	39	40
D	В	D	В	C	C	В	C	DUCATIO	B

	(b)	$\begin{array}{l} {P_{master piston} = P_{slave piston}} \\ {F_1/A_1 = F_2/A_2} \\ 880 / 1.5 = F_2/5.0 \\ {F_2 = 2930 N or 2900 N} \end{array} \qquad (allow for e.c.f.) \end{array}$	[1] [1]
3	(a)	The product of force applied and distance moved in the direction of the force	[1]
	(b)	$KE = \frac{1}{2} \times m \times v^2 = 0.5 \times 0.20 \times 20^2$ = 40 J	[1] [1]
	(c)	G.P.E at max height = m x g x h = 0.200 x 10 x 12 = 24 J (2sf)	[1] [1]
	(d)	At max height, KE remaining = $40 \text{ J} - 24 \text{ J} = 16 \text{ J}$ (allow for e.c.f.) $0.5 \times 0.200 \times v^2 = 16$ v = 12.6 m / s or 13 m / s	[1] [1]
4	(a)	The focal length is the distance along the principal axis , between the principal focus and the optical centre of the lens. OR Distance between the optical centre of the lens and the principal focus (focal point).	[1]
	(b)	Object F (ii) F (iii) I Principal axis	[1] [1] [1]
	(c)(i)	Accept either position of principal focus of (iii) Rays and arrowheads should be in solid lines 60.0 cm	[1]
	(c)(i)	L DUCAL	[1]
	(ii)	2f = 60.0 cm f = 30.0 cm	[1]
	(iii)	1. Virtual 2. Upright 3. Magnified	[1]
5	(a)	Negatively charged	[1]
	(b)	The negative charges will be transferred from rod Y to sphere B.	[1]

		The negative charges are attracted by positively charged rod X as unlike charges attract.	[1]
		Hence, there is more negative charges than positive charges in sphere B upon removal of the rods. (Sphere B has a net negative charge)	[1]
	(c)	Sphere A will become positively charged (and B is negatively charged).	[1]
		They will attract each other.	[1]
		Since unlike charges attract.	[1]
6	(a)(i)	I = V/R = 4.8 / 32 = 0.15 A	[1] [1]
	(ii)	Q = I(t) = (0.15)(25) = 3.75 C or 3.8 C (allow for e.c.f.)	[1]
	(iii)	Pd across parallel branch = 6.0 – 4.8 V = 1.2 V	[1]
		$R = V/I = 1.2 / 0.15 = 8.0 \Omega$	[1]
	D	EDUC EDUC	
	-	Alternative method:	
	E	Potential Divider method	
		$[32 / (32 + R)] \times 6.0 = 4.8$	
		(32 + R) / 32 = 6.0 / 4.8	
		$R = 8.0 \Omega$	
	(iv)	Method 1	
		$(1/R_1 + 1/R_2 = 1/R_{total})$	[1]
		1/R + 1/24 = 1/8	
		1/R + 1/24 = 1/8 R = 12 Ω allow for e.c.f.	[1]
		R = 12 Ω allow for e.c.f.	
		Method 2	
		Current flowing through $Y = 1.2 / 24 = 0.050 A$ Current flowing through $X = 0.15 - 0.050 = 0.10 A$	[1]
		$R = V/I = 1.2 / 0.10 = 12 \Omega$	[1]
	b	Overall resistance of circuit decreases, so overall current (I) increases.	[1]
		Voltmeter reading will increase since pd across Z increases (or V = RI).	[1]
			1.1
		Alternative Answer Overall resistance of parallel branch decreases. Pd across Z will increase since Z will receive a larger proportion of the e.m.f and voltmeter reading increases. (Potential Divider)	
	5	Overall resistance of parallel branch decreases. Pd across Z will increase	[1]
		since Z will receive a larger proportion of the e.m.f and voltmeter reading increases.	[1]
		(Potential Divider)	
7	(a)	Either	[1]
		AB – Downward arrow	1.1
		Or	
		CB – Upward arrow	
	(b)	Current flows from A to B. By Fleming's Left Hand rule, the induced force which is	[1]
		perpendicular to the magnetic field and current will be downwards.	
		For side, CD, current flows from C to D and the force will be upwards.	[1]
		The soil retates in an anti-lealer line direction	1 643
	(c)	The coil rotates in an anticlockwise direction. The coil is horizontal.	[1]

		That is when the perpendicular distance from the centre of rotation to the line of action of the force is maximum .	[1]
8	(a)	Iron is easily magnetised and demagnetised (or soft magnetic material) whereas steel does not magnetise or demagnetise easily (or hard magnetic material).	[1]
		This ensures better magnetic flux linkage between the 2 coils if iron is used instead of steel. Any other plausible answer.	[1]
	(b)	Reduce energy loss during transmission	[1]
		Since heat loss is P = I ² R, the lower the current, the lower the energy loss during transmission.	[1]

Section B

	Sectio	DANYAL DANYAL DANYAL	
9	(a)	Water is used as a coolant because of its very high specific heat capacity. It can take in a large amount of thermal energy with only a small rise in its temperature.	[1] [1]
	(b)(i)	Thermal energy required to be removed as claimed = $(0.8 \times 5.0 \times 10^7) \times 80\%$ = $3.2 \times 10^7 \text{ J}$	[1]
	(ii)	Actual amount of thermal energy removed $Q = mc\Delta\theta$ = (0.22 x 4 x 60) (4200)(80-30) = 1.1088 x 10 ⁷ J = 1.1 x 10 ⁷ J	[1]
	(iii)	Some thermal energy is lost to the surroundings, apart from it being absorbed by the cooling water.	[1]
	(c)	Metal pipes are used as they are good conductors of heat and allows heat to be conducted faster away from the hot water to the external wall of the pipe.	[1]
		The metal pipes being coloured in black are good emitters of radiation and therefore radiates heat to the surrounding air at a higher rate .	[1]
		Using narrow pipes increase the surface area to facilitate a higher rate of emission of heat to the surrounding air.	[1]
	(d)	Energy absorbed by air = $1.1088 \times 10^7 \text{ J}$ (allow for e.c.f.) ($1.25 \times 4 \times 60$)(760)($\theta - 20$) = $1.1088 \times 10^7 \text{ J}$ $\theta = 68.6 ^{\circ}\text{C}$	[1]
		= 69 °C (68.6 °C also accepted)	[1]
10	(a)(i)	As the coil moves away, there is a changing magnetic field experienced by it .	
		Or	[1]

		There is a changing magnetic flux linkage between the magnet and the solenoid.	
		According to Faraday's Law , there is an induced emf in a closed circuit, hence there is a flow of an induced current.	[1]
	(ii)	North-pole	[1]
	(iii)	Deflect right;	[1]
		According to Lenz's Law, the direction of the induced e.m.f. opposes the change producing it. Hence, the induced current flows in opposite direction as compared with the original motion.	[1]
	(b)(i)	4.0 V ;	[1]
	D	T = 0.04 s	[1]
	T	f = 1 / 0.04 = 25 Hz	[1]
	(ii)	Vertical line across 4 divisions	[1]
	(iii)	1 division above and 1 division below the x-axis 8 divisions along the x-axis	[1]
	1	PANYAL DANYAL DANYAL DANYAL DANYAL DANYAL	
11E	(a)	 (i) microwaves (satellite communication) (ii) radio waves (television broadcast) (iii) visible light (optic fibre communication) 	[1]
	(b)	$n = \frac{c}{v}$	
		$1.5 = \frac{3.0 \times 10^8 \ m/s}{v}$	[1]
		$v = 2.0 \times 10^8 \text{ m/s}$	
		v = 2.0 X 10 11/5	[1]

	(c)	Signal with least time = (ii) radio communication	[1]
		time = $\frac{distance}{speed}$	1
		Time taken for (i) satellite communication = $\frac{2 \times 35000000 \text{ m}}{3.0 \times 10^8 \text{ m/s}} = 0.23 \text{ s}$ (2sf)	
		Time taken for (ii) radio communication = $\frac{3\ 000\ 000\ m}{3.0 \times 10^8\ m/s}$ = 0.010 s (2sf)	
		Time taken for (iii) optic fibre = $\frac{3000000m}{2.0 \times 10^8 m/s} = 0.015 s$ (2sf)	[1]
	(d)	Signal / wave / light experiences total internal reflection.	[1]
		Angle of incidence is greater than critical angle. Light is traveling from optically denser medium (g rss) to optically less dense medium (air).	[1] [1]
	(e)	(i) Sound waves cannot be transmitted in vacuum. Sound waves require a medium for propagation.	[1]
	7	(ii) speed of sound in air = 330 m/s. This much slower speed of sound would mean a very long time between transmitting the signal and receiving the signal	[1]
		$(\text{time} = \frac{3000000\text{m}}{330\text{m/s}} = 9090\text{s} = 2.5\text{hours})$	
- C	(a)(i)	(time = $\frac{3 \text{ dot out m}}{330 \text{ m/s}}$ = 9090 s = 2.5 hours) The imaginary line drawn by joining all adjacent points of a wave that are on the same phase.	[1]
- C		The imaginary line drawn by joining all adjacent points of a wave that are on the same phase.	
- C	(a)(i) (a)(i)	The imaginary line drawn by joining all adjacent points of a wave that are on the same	[1]
- C	(a)(i) (a)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ f = 1/T = 1/1.60 = 0.625 Hz wavelength = 2.0 m	[1] [1] [1]
- C	(a)(i)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ f = 1/T = 1/1.60 = 0.625 Hz	[1] [1] [1]
- C	(a)(i) (a)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ $f = 1/T = 1/1.60 = 0.625 \text{ Hz}$ wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down	[1] [1] [1] [1] [1]
- C	(a)(i) (a) (ii) (a)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ $f = 1/T = 1/1.60 = 0.625 \text{ Hz}$ wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down	[1] [1] [1] [1] [1]
- T	(a)(i) (a) (iii) (a) (iv)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ $f = 1/T = 1/1.60 = 0.625 \text{ Hz}$ wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down	[1] [1] [1] [1] [1] [1] [1]
- T	(a)(i) (a) (iii) (a) (iv)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ $f = 1/T = 1/1.60 = 0.625 \text{ Hz}$ wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down	[1] [1] [1] [1] [1]
- T	(a)(i) (a) (iii) (a) (iv)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ $f = 1/T = 1/1.60 = 0.625 \text{ Hz}$ wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down	[1] [1] [1] [1] [1] [1]
11	(a)(i) (a) (iii) (a) (iv)	The imaginary line drawn by joining all adjacent points of a wave that are on the same phase. $T = 2 \times 0.80 \text{ s} = 1.60 \text{ s}$ f = 1/T = 1/1.60 = 0.625 Hz wavelength = 2.0 m speed = 2.0 x 0.625 = 1.25 m / s or 1.3 m / s (allow for e.c.f.) Arrows correctly drawn A - up, B - down Echo smaller in amplitude - some energy absorbed by the surrounding Echo may be diffused	[1] [1] [1] [1] [1]