

Q2 (i)

Let the mass (in kg) of arabica, robusta and liberica coffee beans brought in by Starluck Coffee on International Coffee Day be x, y and z respectively.

Q3	
	(a)
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(3x^{\frac{2}{3}}-\frac{2}{x}\right)^{5}$
	$=5\left(3x^{\frac{2}{3}}-\frac{2}{x}\right)^{4}\left(2x^{-\frac{1}{3}}+\frac{2}{x^{2}}\right)$
	(b)
	$\int_0^1 \frac{1}{\sqrt{3-2x}} \mathrm{d}x$
	$=\int_0^1 (3-2x)^{-\frac{1}{2}} dx$
	$= \left[\frac{(3-2x)^{\frac{1}{2}}}{(-2)(0.5)}\right]_{0}^{1}$
	$= -\left[\left(3-2\right)^{\frac{1}{2}} - \left(3-0\right)^{\frac{1}{2}} \right]$
	$= -[1 - \sqrt{3}]$
	$=\sqrt{3}-1$

Q4		
	(a)	2 - px = 0
		$x = \frac{2}{p}$
	(b)	At <i>A</i> , <i>y</i> =0
		$0 = 3 - \ln(2 - px)$
		$\ln(2 - px) = 3$
		$2 - px = e^3$
		$x = \frac{2 - e^3}{p}$
		x-coordinate of A is $\frac{2-e^3}{p}$.
	(c)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{-p}{2-px} = \frac{p}{2-px}$
		At point A,

$$\frac{dy}{dx} = \frac{p}{2 - p\left(\frac{2 - e^3}{p}\right)}$$
$$= \frac{p}{2 - 2 + e^3}$$
$$= \frac{p}{e^3}$$

Equation of tangent at A:

$$y - 0 = \frac{p}{e^3} \left(x - \frac{2 - e^3}{p} \right)$$
$$y = \frac{p}{e^3} x - \frac{2 - e^3}{e^3}$$
$$y = \frac{p}{e^3} x + 1 - \frac{2}{e^3}$$

From the GC, the point of intersection is (1.5,7)

Area

$$= \int_{0}^{\frac{3}{2}} 2x + 4 \, dx + \int_{\frac{3}{2}}^{a} 1 + \frac{9}{x} \, dx$$

$$= 8.25 + \left[x + 9\ln x\right]_{\frac{3}{2}}^{a}$$

$$= 8.25 + a + 9\ln a - \frac{3}{2} - 9\ln \frac{3}{2}$$

$$= 6.75 + a + 9\ln a - 9\ln \frac{3}{2}$$

$$= 6.75 + a + 9\ln \frac{2a}{3}$$

Alternative (using area of trapezium) 1(3)

$$= \frac{1}{2} \left(\frac{3}{2}\right) (4+7) + \int_{\frac{3}{2}}^{a} 1 + \frac{9}{x} dx$$
$$= 8.25 + \left[x + 9\ln x\right]_{\frac{3}{2}}^{a}$$
$$= 8.25 + a + 9\ln a - \frac{3}{2} - 9\ln \frac{3}{2}$$
$$= 6.75 + a + 9\ln a - 9\ln \frac{3}{2}$$
$$= 6.75 + a + 9\ln \frac{2a}{3}$$

Q6	
	(i)
	When $t = 0$,
	$C = 2e^{0.5(0)-1} - 0.4(0) - \frac{1}{e} = \frac{1}{e}$
	$\frac{1}{e}$ million dollars
	(ii)

$$\frac{dC}{dt} = 2e^{0.5t-1}(0.5) - 0.4 = 0$$

$$e^{0.5t-1} = 0.4$$

$$0.5t - 1 = \ln 0.4$$

$$t = 0.16742$$

$$t \approx 0.167$$

$$C = 0.36515 \approx 0.365$$

Method 1: Using 1st derivative test

t	0.167-	0.167	0.167+
$\frac{\mathrm{d}C}{\mathrm{d}t}$	E.g. use $t = 0.166$ $\frac{dC}{dt} = 2e^{0.5(0.166)-1}(0.5) - 0.4$ $= -2.84 \times 10^{-4} < 0$	0	E.g. use $t = 0.168$ $\frac{dC}{dt} = 2e^{0.5(0.168)-1}(0.5) - 0.4$ $= 1.16 \times 10^{-4} > 0$
Slope of tangent	\	-	/

\therefore Value is a minimum

Method 1: Using 2nd derivative test

$$\frac{d^2 C}{dt^2} = e^{0.5t-1}(0.5)$$

when $t = 0.16742$, $\frac{d^2 C}{dt^2} = 0.20000 > 0$
∴ Value is a minimum

$$\int_{1}^{3} 2e^{0.5t-1} - 0.4t - \frac{1}{e} dt = 1.8330 \approx 1.83$$

The total cost incurred between 1st Jan 2023 to 1st Jan 2025 is 1.83 million dollars.

(v)

Using GC, when $t = \frac{5}{12}$,

 $\frac{\mathrm{d}P}{\mathrm{d}t} = 2.53453 \approx 2.53$

Rate of increase of total profit is 2.53 million dollars per year.

Q7
(i)
Number of ways = ${}^{4}C_{2} \times {}^{6}C_{3} \times {}^{8}C_{5} = 6720$
(ii)
Number of ways to arrange 17 units $(4+5+7+1 \text{ pair of sisters}) = 17!$
Number of ways to arrange within the group of sisters $= 2!$
$17! \times 2! 1$
$Probability = \frac{18!}{18!} = \frac{19}{9}$
(iii)
P(4 students from School of Engineering are all separated 2 sisters are next to each other)
P(4 students from School of Engineering are all separated \cap 2 sisters are next to each other)
P(2 sisters are next to each other)
Number of ways to arrange all students except those from the School of Engineering $(5+7+1 \text{ pair of sisters})=13!$
Number of ways to arrange within the group of sisters $= 2!$
Number of ways to slot the students from the School of Engineering = ${}^{14}C_4 \times 4!$
$13! \times 2! \times {}^{14}C_4 \times 4!$
$\frac{4}{18!} 143$
$\frac{1}{1} = \frac{1}{340}$
$\overline{9}$
Alternatively,
$\frac{13! \times 2! \times {}^{14}P_4}{100}$
Probability = $\frac{18!}{16000000000000000000000000000000000000$
$\frac{1}{2}$ 340
9

(a) P(A'|B) represents the conditional probability that event A do not occur given that event B has already occurred.

(b)
$$P(A'|B) = 0.8$$

$$\frac{P(A'\cap B)}{P(B)} = 0.8$$
 $P(A'\cap B) = 1.6p$
 $P(A \cup B) = P(A) + P(A' \cap B)$
 $0.728 = p + 1.6p$
 $p = 0.28$ (Shown)
(c) $P(A \cap B) = P(B) - P(A' \cap B)$
 $= 2p - 1.6p$
 $= 0.4p$
 $= 0.112$
Since $P(A \cap B) = 0.112 \neq 0$, events A and B are not mutually exclusive.
(d)

0.168 0.112 0.448

Q9		
	(a)	P(student is in Year 1 and takes up sports) = $\frac{320}{1100} = \frac{16}{55}$
	(b)	P(student is in Year 2 \cup takes up sports) = $\frac{285 + 154 + 61 + 320}{1100} = \frac{41}{55}$
	Alte	rnatively,
	P(stı	udent is in Year 2 \cup takes up sports)
	=P(s	student in Year 2) + P(takes up sports) – P(in Year 2 and takes up sports)

$$=\frac{500}{1100} + \frac{605}{1100} - \frac{285}{1100}$$
$$=\frac{41}{55}$$

(c) P(student in Year 2 | does not take up performing arts) = $\frac{346}{800} = \frac{173}{400}$ (=0.4325)

(d) Required Probability =
$${}^{3}C_{2}\left(\frac{195}{1100}\right)\left(\frac{194}{1099}\right)\left(\frac{905}{1098}\right)$$

= 0.0774

Q10

(i) Let *X* represent the number of rotten avocados in a box of 16 avocados. $X \sim B \mid 16,$ 100 Using mean = np3.52 100 p = 22(Shown) (ii) $X \sim B(16, 0.22)$ $P(X > 3) = 1 - P(X \le 3)$ = 0.48143= 0.481(iii) Let Y represent the number of boxes with more than 3 rotten avocados, out of 15. $Y \sim B(15, 0.48143)$ $P(Y < 5) = P(Y \le 4)$ = 0.078234= 0.0782(iv) Probability $=(1-0.48143)^{6}$ = 0.019446= 0.0194

Q11 (i)

Let X denote the mass of one oatmeal cookie, $X \sim N$ (40, 1.2 ²) in grams. Let Y denote the mass of one white chip cookie, $Y \sim N$ (45, 0.4 ²) in grams.

P(X > 1.02(40)) = P(X > 40.8)
= 0.25249
= 0.252
$\begin{array}{c} (ii) \\ P(W - t + 0) - P(W - t + 0) \end{array}$
$P(Y < 44.9) \times P(Y < 44.9)$
$= 0.40129^{-1}$
= 0.161
(iii)
Let $A = 0.04(X_1 + X_2 + X_3 + + X_6)$
E(A) = 0.04(40+40+40++40) = 9.6
$Var(A) = 0.04^2 (1.2^2 + 1.2^2 + 1.2^2 + + 1.2^2) = 0.013824$
$A \sim N(9.6, 0.013824)$
Let $B = 0.06(Y_1 + Y_2 + Y_2 + + Y_n)$
$E(B) = 0.06(45 \pm 45 \pm 45) = 27$
$U_{0}r(A) = 0.06(43 + 43 + 43 + + 43) = 27$ $V_{0}r(A) = 0.06^{2}(0.4^{2} + 0.4^{2} + 0.4^{2}) = 0.00576$
Var(A) = 0.00 (0.4 + 0.4 + 0.4 + + 0.4) = 0.00570
$B \sim N(27, 0.00576)$
A + B = N(26.6, 0.010594)
$A + B \sim N(50.0, 0.019384)$
P(A + B < 36.5) = 0.23743
= 0.237
(iv)
E(T) = 10
$\operatorname{Var}(T) = 2.5^2$
$\overline{T} = rac{1}{80} (T_1 + T_2 + + T_{80})$
\overline{z} \overline{z} \overline{z} \overline{z} \overline{z}
Since $n = 80$ is large, by Central Limit Theorem, $T \sim N\left(10, \frac{10}{80}\right)$ approximately.
$\mathbf{P}\left(0 \le \overline{T} - 10 \le 0.5\right) = \mathbf{P}\left(10 \le \overline{T} \le 10.5\right)$
= 0.46318
= 0.463
012

(i)
Using GC,
unbiased estimate of the population mean $\bar{x} = 37.15$
unbiased estimate of the population standard deviation $s = 4.0734$
unbiased estimate of the population variance $s^2 = 4.0734^2 = 16.593 \approx 16.6$
(ii)

The probability of any student being selected for the sample is the same and the selection of any student is independent of the selection of other students.

(iii)

Let X denote the studying time, in hours, of one randomly chosen student

Let μ be the population's mean studying time.

Test $H_0: \mu = 38$ against $H_1: \mu < 38$

at 10% Level of significance

Under H₀, since n = 40 is large, by Central Limit Theorem, $\overline{X} \sim N\left(38, \frac{4.0734^2}{40}\right)$ approximately.

Using a one-tailed test, $\overline{x} = 37.15$ gives $p - \text{value} = 0.093459 \approx 0.0935$

Since p - value = 0.0935 < 0.1, we reject H_0 . Hence, there is sufficient evidence at 10% level of significance to conclude that the mean studying times of the students are less than 38 hours/ management has overstated the mean studying times of the students. The teacher's suspicion is valid.

(iv)

Sample mean, $\bar{x} = 38.4$

Test $H_0: \mu = 38$ against $H_1: \mu \neq 38$

at 10% Level of significance

Under H₀, since n = 90 is large, by Central Limit Theorem, $\overline{X} \sim N\left(38, \frac{\sigma^2}{90}\right)$ approximately.

Since the value of r is positive and close to 1, there is a strong positive linear correlation between the average temperature and the sales from ice-cream. Furthermore, the scatter diagram reveals a strong positive linear relationship.

(c) y = 1.044348185x - 16.41007632

y = 1.04x - 16.4 (3 s.f)

(d) y = 1.044348185x - 16.41007632

y = 1.044348185(31) - 16.41007632= 15.964717 = 16.0 (3 s.f)

An estimate of sales from ice cream on a day with average temperature of $31^{\circ}C$ is \$1600.

The estimate is reliable as there is a strong linear correlation (|r|=0.957 is close to 1) and the data points lies close to regression line. x = 31 lies within the data range $28 \le x \le 33.4$, the estimate is obtained by interpolation.

(e) There will be no change in the value of m as the sales of ice-cream falls by the same amount, p on all days. m which is the rate of increase of sales of ice-cream with average temperature remains the same.

c will decrease by the same fixed amount, p as it is the sales from ice-cream when average temperature is $0^{\circ}C$.