| 8   | 3) |     |       | e acting on the body is zero in all directions ue /moment acting on the body about any point is zero  B1                                                                                                                                                                                                                             |          |
|-----|----|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1   | p) | ir  | exter | nooth spheres M <sub>1</sub> and M <sub>2</sub> , both of mass 2.0 kg, are connected by an isible bar of negligible mass to form a rigid body. The spheres rest on 45° inclines as shown in Fig. 1.1.                                                                                                                                |          |
|     |    |     | 1)    | 45° M <sub>1</sub> N <sub>2</sub> M <sub>2</sub> 45° W <sub>2</sub> Fig. 1.1                                                                                                                                                                                                                                                         |          |
| 143 |    |     |       | correct identification of forces correct orientation of forces (marker please decide)                                                                                                                                                                                                                                                | B1<br>B1 |
|     |    |     |       | Tarry # Charling = For TEC                                                                                                                                                                                                                                                                                                           |          |
| ó   |    |     | (ii)  | N cos 45° = 2(9.81)<br>N = 27.7 N                                                                                                                                                                                                                                                                                                    | M1<br>A1 |
|     |    | (c) | (i)   | Yes. The horizontal components of N1 and N2 must be equal in magnitude (so that horizontal net force is zero).                                                                                                                                                                                                                       | B0<br>B1 |
|     |    |     | (ii)  | Consider moments about the intersection of $N_1$ and $N_3$ .  The clockwise moment produced by $4g$ is larger than the anti-clockwise moment produced by $2g$ .  OR  Consider the lines of action of $N_1$ , $N_3$ and $6g$ .  Since the C.G. lies closer to $M_3$ than $M_1$ , the lines of action will not intersect at one point. |          |

| 2(a) | The g | gravitational field strength g at a point is the gravitational force per unit mass g on a small test point mass placed at the point. | [1] |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------|-----|
|      |       |                                                                                                                                      |     |
| (b)  | (i)   | Acceleration of the satellite = g at that point = $\frac{GM_E}{r^2}$                                                                 | [1] |
|      | (ii)  | The gravitational force on satellite by Earth provides for the required centripetal force to keep the satellite in circular orbit.   | [1] |
|      |       | $\frac{GM_Em}{r^2} = mr\omega^2$ $\omega - \text{angular velocity}$                                                                  |     |
|      |       | Since $T = \frac{2\pi}{\omega}$ , $\frac{GM_E m}{r^2} = mr(\frac{2\pi}{T})^2$ $T^2 = \frac{4\pi^2 r^3}{GM_E}$                        | [1] |
|      |       | $GM_{\rm E}$ $T^2 \propto r^3$ (Shown) and constant of proportionality is $\frac{4\pi^2}{GM_{\rm E}}$                                | [1] |
|      | (iii) | Period for geostationary satellite, T = 24 h = 24 x 60 x 60 s = 86400 s                                                              |     |
|      |       |                                                                                                                                      | U   |

| Angular velocity, $\omega = \frac{2\pi}{T} = 7.3 \times 10^{-5} \text{ rad s}^{-1}$ |  |
|-------------------------------------------------------------------------------------|--|

$$r^{3} = \frac{GM_{E}}{\omega^{2}} = \frac{(6.67 \times 10^{-11})(6.0 \times 10^{24})}{(7.3 \times 10^{-5})^{2}}$$

$$r = (7.51 \times 10^{22})^{1/3} = 4.22 \times 10^{7} \text{ m}$$
Thus, altitude =  $r - R_{E} = 3.6 \times 10^{7} \text{ m}$ 
[1]

Thus, altitude =  $r - R_E = 3.6 \times 10^7$  m

One possible use is for communication purpose to a particular region on Earth where there is a line of sight to the satellite. The geostationary satellite is always at a fixed position above the Earth and this ensure an uninterrupted [2] communication channel with the satellite. For monitoring / spying a particular region on Earth below the satellite as the

geostationary satellite is always at a fixed position above the Earth.

| 3 | (a) | At the equilibrium point,                                                                                                                                                                                                                        |    |
|---|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   |     | $F_{res} = 0 \rightarrow kx - mg = 0$                                                                                                                                                                                                            | M1 |
|   |     | $kx = mg \rightarrow k = \frac{mg}{x}$ , where x is the extension of spring.                                                                                                                                                                     |    |
|   |     | Any of these points or other correct points from the graph; When a mass of 150 g is hung, the extension on the spring is 10.0 cm. When a mass of 300 g is hung, the extension is 20.0 cm. When a mass of 450 g is hung, the extension is 30.0 cm | М1 |
|   |     | $k = \frac{0.150g}{0.100} = 14.7 \text{ N m}^{-1}.$                                                                                                                                                                                              | A0 |
| _ |     |                                                                                                                                                                                                                                                  |    |

| (b) | (i)  | $\omega = 2\pi f \rightarrow f = \frac{1}{2\pi} \sqrt{\frac{14.715}{0.450}} = 0.91 \text{ Hz}$           | A1                                                                                                       |
|-----|------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
|     | (ii) |                                                                                                          | T                                                                                                        |
|     |      | $\Delta EPE = \frac{1}{2}k(e_1^2 - e_2^2) = \frac{1}{2}(14.715)(0.400^2 - 0.100^2) = 1.103625 \text{ J}$ | M1                                                                                                       |
|     |      | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                    | M1                                                                                                       |
|     | (b)  |                                                                                                          | $\Delta EPE = \frac{1}{2}k(e_2^2 - e_1^2) = \frac{1}{2}(14.715)(0.400^2 - 0.100^2) = 1.103625 \text{ J}$ |

|   | $0.220725 = \frac{1}{2}mv^2 \rightarrow v = 0.990 \text{ m s}^{-1}$                                         | M1 |
|---|-------------------------------------------------------------------------------------------------------------|----|
|   | 2                                                                                                           | A  |
|   | OR Note that question is asking for v for an oscillation with amplitude 20.0 cm at displacement of 10.0 cm. |    |
| J | $V = \omega \sqrt{x_0^2 - x^2} = 2\pi (0.91) \sqrt{0.200^2 - 0.100^2}$                                      |    |

|      | (c)     | The effective mass of the spring-mass system increases. The resonant frequency of heavier masses is at lower values of frequencies (or at greater periods). Hence, the frequency of the oscillation would be reduced. | M1<br>A1 |
|------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| if Y |         | OR use $\omega = 2\pi f \to f = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$ , deduce that $f$ is inversely                                                                                                                     |          |
|      | gazroli | proportional to $\sqrt{m}$ . When $m$ increases, $f$ is reduced.                                                                                                                                                      |          |
|      |         | · Lasta S                                                                                                                                                                                                             |          |

| 4 | (a) | Diffraction is the spreading of waves (into their "geometrical shadows"), after passing through small apertures or round obstacles. | В1        |
|---|-----|-------------------------------------------------------------------------------------------------------------------------------------|-----------|
|   |     | Destructive interference is when two waves superpose/meet/overlap completely out                                                    | В1        |
|   | 1 2 | of phase, resulting in a wave of zero (or reduced) amplitude.                                                                       | B1<br>[3] |

| (b) | (i) | d sin 90° ≥ nλ                                                                                                                                                                               |     |
|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     |     | $n \le \frac{d}{\lambda} = \left(\frac{10^{-2}}{1000}\right) \left(\frac{f}{c}\right) = \left(\frac{10^{-2}}{3000}\right) \left(\frac{4.69 \times 10^{14}}{3.00 \times 10^{6}}\right) = 5.2$ | [2] |
|     | pr  | n = 5                                                                                                                                                                                        | 121 |
|     |     | (correct d - 1, correct λ - 1)                                                                                                                                                               | 112 |
|     |     | The possible number of maxima = 5 + 5 + 1 = 11                                                                                                                                               | [1] |

(ii) 
$$\sin \theta = \frac{n\lambda}{\sigma} = n \left(\frac{3000}{10^{-2}}\right) \left(\frac{c}{f}\right) = 5 \left(\frac{3000}{10^{-2}}\right) \left(\frac{3.00 \times 10^{6}}{4.69 \times 10^{14}}\right)$$

$$\theta = 73.6^{\circ}$$

$$\tan 73.6^{\circ} = \frac{x}{2.30}$$

$$x = 2.30 \tan 73.6^{\circ} = 7.83 \text{ m}$$
[1]

 $\sin \theta = \frac{n\lambda}{d}$ As green light has shorter wavelength,  $\lambda$  is decreased then  $\sin \theta$  also decreases.

This means the separation between maxima will be closer.

(d) The diffraction grating causes sharper, brighter maxima, which spread out a lot more than a double slit. The bigger angle and better visibility give more accurate data to calculate the wavelength.







$$\frac{hc}{\lambda_0} = \Phi$$

$$\frac{(6.63 \times 10^{-34})(3.00 \times 10^8)}{\lambda_0} = 3.54 \times 10^{-19}$$

$$\lambda_0 = 562 \text{ nm}$$



| B1 for (560, 0.00)         | manufacture and an extension of the second |  |
|----------------------------|--------------------------------------------|--|
| B1 for $\frac{1}{x}$ curve |                                            |  |

e) There is no effect.

Doubling the intensity will double the rate of arrival of photons on the metal surface, but the energy of individual photon remains unchanged.

| 1 | (a) | (i) |            | cotopes are atoms that have the same number of protons but different umber of neutrons.                                                                                                                                                                                                                       | [1]   |
|---|-----|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| _ |     |     |            |                                                                                                                                                                                                                                                                                                               |       |
|   |     | (   | ii)        | As the half-life of X (in years) is very long, the measured activity of sample X is thus relatively constant.                                                                                                                                                                                                 | [1]   |
| į |     |     |            |                                                                                                                                                                                                                                                                                                               |       |
|   |     |     | (iii)<br>1 | Decay constant of Y, $\lambda_{y} = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{1.5 \times 60 \times 60} = 1.283 \times 10^{-4} \text{ s}^{-1}$                                                                                                                                                                      | [1]   |
|   |     |     | 2          | Equilibrium is reached when the rate of production of Y (from the decay of X) is equal to its rate of decay. Hence, the number of isotope Y in the sample will stabilise at a constant value.                                                                                                                 | [1]   |
|   |     |     | 3          | Thus, the activity of Y is about 1.1 x 10 <sup>7</sup> Bq.                                                                                                                                                                                                                                                    | [1]   |
|   |     |     |            | Amount of Y, $N_r = \frac{A_r}{\lambda_r} = \frac{1.1 \times 10^7}{1.283 \times 10^{-4}} = 8.6 \times 10^{10} \text{ atoms}$                                                                                                                                                                                  | [1]   |
|   |     |     | rise.      |                                                                                                                                                                                                                                                                                                               |       |
|   |     | (c) | (i)        | By $N = N_o e^{-\lambda t}$ : $5N = 6Ne^{-\lambda t}$<br>Take In on both sides,<br>In $5 = \ln 6 - \lambda t$                                                                                                                                                                                                 | [1]   |
|   |     |     |            | $t = \frac{\ln 6 - \ln 5}{1.570 \times 10^{-18}} = 1.161 \times 10^{17} \text{ s} = 3.682 \times 10^9 \text{ years} = 3.7 \times 10^9 \text{ years}$                                                                                                                                                          | [1]   |
|   |     |     | (ii)       | Decay of Th-232 will give rise to a radioactive series where there will b                                                                                                                                                                                                                                     | e     |
| į | 0   |     |            | a number of radioactive daughter products before ending up as the stabl Pb-208. It is assume that these intermediate radioactive daughte products have very short half-life (much shorter than that of Th-232) s the number of intermediate daughter products are insignificant compare to Th-232 and Pb-208. | er [1 |
|   |     |     | (iii       | ) If the assumption is not valid, the current amount of decay products wi                                                                                                                                                                                                                                     |       |
|   |     |     | 2 139      | be more than 1N. The fraction of undecayed Th-232 is actually less than $\frac{5}{6}$ , thus answer for (b)(i) will be an under-estimate.                                                                                                                                                                     | I     |

| turkey of twice the mass will have twice the volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| tarkey of twice the mass will have twice the volume.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                   |
| ince $V\alpha L^3$ , $L\alpha \sqrt[3]{V}$ and so if volume is doubled $L$ will increase by a factor of $\sqrt{2} = 1.2599$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                                                                                                                                                                                                                                               |
| ince $A\alpha L^2$ , A will increase by a factor of $(\sqrt[3]{2})^2 = 1.5873$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |
| 2 × 1.26 = 27.7 cm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1]                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                   |
| 0.46/1.59 = 0.29 m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]                                                                                                                                                                                                                                                                               |
| the second of th |                                                                                                                                                                                                                                                                                   |
| $E = mc\Delta t = 9 \times 3200 \times 90 = 2.59MJ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2]                                                                                                                                                                                                                                                                               |
| $P = \frac{E}{1} = \frac{2590000}{1200} = 1200$ s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                   |
| t 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | i,                                                                                                                                                                                                                                                                                |
| Vast majority of heat is lost.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                   |
| Heat is lost to surroundings/ endothermic chemical reactions/change of state water.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e of                                                                                                                                                                                                                                                                              |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $2 \times 1.26 = 27.7 \text{ cm}$ $A6/1.59 = 0.29 \text{ m}^2$ $E = mc\Delta t = 9 \times 3200 \times 90 = 2.59 MJ$ $P = \frac{E}{t} = \frac{2590000}{2200} = 1200s$ Vast majority of heat is lost. Heat is lost to surroundings/ endothermic chemical reactions/change of states |

| (d) | S     | Alass ×2<br>surface area ×1/1.5873<br>Vidth ×1.2599<br>scale factor is therefore given by 2×1/1.5873 × 1.2599 = 1.59                                                              |                 |
|-----|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (e) | 0     | Half width of 9 Kg turkey = 0.277/2 = 0.1385 m  Area of 9 kg turkey = 0.46+2=0.23 m <sup>2</sup> $\frac{\Delta Q}{\Delta t} = 0.6 \times 0.23 \times \frac{140}{0.1385} = 139W$   |                 |
|     | (II)  | $t = \frac{E}{P} = \frac{2590000}{139} = 18633s = 5.18 hours$                                                                                                                     | ı               |
|     | (iii) | Since 18.0 kg turkey is double the mass of the 9.0 kg turkey the cooking time will increase by the same factor as before i.e. 1.59.  Hence cooking time = 5.18×1.59 = 8.24 hours. | Į1              |
| 0   | v)    | S. I units are W m <sup>-1</sup> *C <sup>-1</sup> Base units are kg m s <sup>-3</sup> *C <sup>-1</sup>                                                                            | <u>.</u><br>[2] |