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1. Let N be an integer greater than 1. 

(i) Show that for any positive integer k, ( )
( )

2

2

1
1

1

k

k
N N

N N

+ − +

+ −

  is an 

integer.       [4] 

(ii) Hence or otherwise, show that for any positive integer k, ( )2 1
k

N N+ −  differs 

from the integer closest to it by less than 
1

2
2

k

N

−

 
− 

 
. [4] 

 

 

2. Let a, b and c be real numbers for all real x,  

( )( )( ) 2 31 1 1 1 .ax bx cx qx rx+ + + = + +   

(i) Express q and r in terms of a, b and c, and show that 0.a b c+ + =  

     [3] 

(ii) Find, in terms of q and r, the first four nonzero terms in the series expansion of

( )2 3ln 1 .y qx rx= + +  [2] 

(iii) Find the coefficient of 
nx , 1,n    in the series expansion of ( )2 3ln 1 ,y qx rx= + +

leaving your answer in the form ( )
1

1
n

nT
+

− , where nT  is in terms of , ,a b c  and n. 

  [2] 

(iv) Using the results in parts (ii) and (iii), show that  

  
( )( )2 2 2 3 3 3 5 5 5

6 5

a b c a b c a b c+ + + + + +
=  [2] 
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3. Find functions ( )a x  and ( )b x  such that u x=  and exu =  both satisfy the differential 

equation 

   ( ) ( )
2

2

d d
a b 0.

d d

u u
x x u

x x
+ + =                (1) [3] 

The general solution of (1) is given by e ,xu Ax B= +  where A and B are arbitrary 

constants.  

(i) Show that the substitution 
1 d

d

u
y

u x
=  transforms the differential equation 

2d 1

d 1 1

y x
y y

x x x
+ + =

− −
       (2) 

into (1).   [3] 

(ii) Find the particular solution to (2) that satisfies 2y =  at 0x = .  [3] 

 

4. A factory has 7 colours of paint (Red, Orange, Yellow, Green, Blue, Indigo and Violet). 

The factory wants to produce different cubes such that all sides are painted and no 2 

adjacent sides have the same colour. Cubes are considered different if and only if they 

cannot be rotated to form the same colour arrangement. For example in figure 1 below, 

the 2 cubes on the left are considered to be the same, while the cube on the right is 

different. 

 

Figure 1: 

 

 

 

 

 

 

 

(i) Let the least number of different colours required to paint such a cube be n. State 

the value of n and find the number of different n-coloured cubes. [3] 

(ii) Find the number of different cubes where all sides have different colours. [3] 

(iii) Find the total number of different cubes. [4] 

A C A 

Same cubes Different cube 
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5. It is given that real numbers a and b, such that 0 ,a b  satisfy  

( )
2

2d  d .
b b

a a
x x x x=   

(i) Show that 
2 2 23 3 ,  p q p q+ =  where  p b a= +  and .q b a= −  [3] 

It is given that 1.a =  

(ii) Show that b satisfies  

     
3 23 7 7 0.b b b− − − =  [2] 

(iii) By expressing 
2p  in terms of q and considering 

2 2 ,p q−  deduce that  

7
2 .

3
b      [3] 

 

6. For their school orientation, XYZJC ordered a large number of cushions with one of the 

letters  , , , ,X Y Z J C  printed on them. 

(a) Adam wanted to arrange the cushions in order so that only an odd number of 

consecutive same letters are allowed. For example when 4n = , XYYY is a valid 

arrangement of four cushions while XXYY is an invalid arrangement. Let ( )A n  be 

the number of ways to form such an n-lettered word. 

 Find the recurrence relation between ( )A n , ( )1A n+  and ( )2A n+ , justifying 

your answer. Hence find ( )5A . [4] 

(b) Becky took a dozen cushions. How many ways can she select 12 cushions such 

that all letters are selected and no letter is chosen more than 4 times? [3] 

(c) Chandra takes 7 cushions randomly. Find the probability that at least 1 of each 

letter is chosen. [3] 

(d) There are 10 misprinted identical cushions with no letter printed on them. How 

many ways can Dion pack them to return to the manufacturer if she can use up to 

3 identical boxes, assuming each box has a capacity of 10 cushions? [2]  
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7. A function f ( )x  is said to be concave downwards on an interval ( , )a b  if, for any x in the 

interval ( , )a b , f ''( ) 0x  .  

(i) Show algebraically that the functions 

  g( ) sinx x= , 0 x   , 

  h( ) lnx x= , 0x    

are concave downwards on their domains.      [2] 

Jensen’s inequality states that, given a function f  that is concave downwards on an interval 

( , )a b , for any 
1 2 3, , , nx x x x  in the interval ( , )a b ,  

    
1 1

1 1
f ( ) f

n n

k k

k k

x x
n n= =

 
  

 
  ,  

and the equality holds if and only if 
1 2 nx x x= = = .  

 Using Jensen’s inequality,  

(ii) show that for the three inner angles  ,   and   of any triangle,  

  
3 3

sin sin sin
2

  + +  ;   [2] 

(iii) with the use of a suitable function, show that for  any positive numbers 

1 2,  ,  , nx x x ,  

        1 2
1 2

nn
n

x x x
x x x

n

+ +
  .   [3] 

 Using the result in part (iii),  

(iv) find the minimum value of 5 5 5 20x y z xyz+ + −  for any positive integer x, y and z. 

State the values of x, y and z that this minimum value is obtained. [3]    
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8. Let f : →  be a function satisfying the functional equation 

( ) ( ) ( )f f f , ,x y xx y y+ = +    

(i) Verify that ( )f 0 0= .  [1] 

A function g  is known as an odd function if it satisfies ( ) ( )g gx x− = − . 

(ii) Show that f is an odd function.  [2] 

(iii) Using Mathematical Induction, show that ( ) ( )f fnx n x=  for all n + .  [3] 

(iv) Using the result in part (iii) or otherwise, show that ( )
1

f f
x

x
m m

 
= 

 
 for all 

m + .   [2] 

(v) Given that the graph ( )fy x=  passes through ( )1,3 , show that ( )f 3 ,  x x x=   

is the solution to the functional equation.  [2] 

 

 

9. Let 
( )

1
1

0
 d ,

1

n

n n

t
I t

t

−

=
+

  for .n +   

(i) Show that 1

1
.

2
n nI I+    [3] 

(ii) Show also that 1

1
,

2
n nn

I I
n

+ = − + and deduce that 
1

1
.

2
n n

I
n −

   [3] 

(iii) Using part (ii), prove that 1

1

1
ln 2 .

2

n

nr
r

I
r

+

=

= +  [3] 

(iv) Using parts (ii) and (iii), show that ln 2 0.69.     [3] 
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10. For any positive integer N whose unique prime factorisation is given by 1 2

1 2
lkk k

lN p p p= , 

with 
ip  being the prime factors, the function ( )f N  is given by  

  
1 2

1 1 1
f( ) 1 1 1

l

N N
p p p

   
= − − −   

    
, with f (1) 1= .  

For example, with 260 2 3 5=   , we have 
1 1 1

f (60) 60 1 1 1 16
2 3 5

   
= − − − =   

   
. 

(i) Evaluate ( )f 15  and ( )f 180 .     [2] 

(ii) Show that ( )f N  is an integer for any positive integer N. [2] 

(iii) Determine whether the following statements are true, justifying your answers. 

(a) For any positive integers a and b,  

  ( ) ( ) ( )f f fab a b= .   [2] 

(b)  For any positive integers a and b,  

  ( ) ( ) ( )f f fab a b=  

if and only if a and b are coprime to each other.  [4] 

(iv) Show that if p is a prime number and k is a positive integer, then ( )f kp n= , where 

n is the number of positive integers that are less than or equal to kp  and are coprime 

to kp . 

        [2] 

   

END 
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