Current of Electricity

At the end of the lesson, I can...

-		
1.	STATE that current is a rate of flow of charge and that it is measured in	
	amperes	
2.	DISTINGUISH between conventional current and electron flow	
3.	RECALL and APPLY the relationship <i>charge</i> = <i>current</i> × <i>time</i> to new	
	situations or to solve related problems	
4.	STATE that the electromotive force (e.m.f.) of an electrical source is the	
	work done per unit charge by the source in driving charges around a	
	complete circuit and that it is measured in volts	
5.	S TATE that the electromotive force (e.m.f.) of a source is the work done	
	per unit charge by the source in driving charges around a complete	
	circuit and that it is measured in volts	
6.	CALCULATE the total e.m.f. where several sources are arranged in series	
7.	STATE that the potential difference (p.d.) across a component in a circuit	
	is the work done per unit charge in driving charges through the	
	component and that it is measured in volts	
8.	S TATE that $resistance = p.d. / current$	<u> </u>
9.	APPLY the relationship $R = V/I$ to new situations or to solve related	
	problems	
10	RECALL and APPLY the relationship of the proportionality between	
	resistance and the length and cross-sectional area of a wire to new	
	situations or to solve related problems	
11.	DESCRIBE the effect of temperature increase on the resistance of a	
	metallic conductor	
12	SKETCH and INTERPRET the <i>I/V</i> characteristic graphs for a metallic	
	conductor at constant temperature (ohmic conductor), for a filament	
	lamp and for a semiconductor diode	\mathbf{v}

1. Electric Current and Charges

- **1.1** An electron current flows when <u>electrons</u> move through a <u>conductor</u>, such as a metal wire. Electrons flows from the <u>positive</u> terminal of a battery to its <u>negative</u> terminal.
- **1.2** Conventional current assumes that current flows out of the positive terminal of a source (e.g., battery), through the circuit and into the negative terminal of the source.

1.3 Unless otherwise stated, the term "electric current" means "conventional current", and directions indicated by the arrows in any circuit diagrams are that of convectional current.

1.4 An *electric current* is the <u>rate of flow of charges</u>.

Symbols and units for current and charges:

quantity	current	charges	time
symbol	Ι	Q	t
unit	A	С	S
name of unit	ampere	coulomb	second

1.5 One <u>coulomb</u> is the <u>amount of charges</u> passing any point in a circuit when a <u>steady current</u> of one <u>ampere</u> flows for one <u>second</u>.

DEFN

QUESTION: When the starter motor of a car is switched on for 0.5 s, 16 C of charge passes through the wires in the motor. How large is the electric current? I = Q/t = 16/0.5 = 32 A

2. Electromotive Force and Potential Difference

- 2.1 Electromotive force (emf) of a power source (e.g., battery) is the work done by the source in driving a <u>unit charge</u> around a <u>complete circuit</u>. In this process, non-electrical energy is converted to electrical energy.
- **2.2** *Potential difference (pd)* across an <u>electrical component</u> (e.g., resistor) is the <u>work done</u> in driving a <u>unit charge</u> through the component. In this process, electrical energy is converted to non-electrical energy.

quantity	work done	charges	emf	pd
symbol	W, WD	Q	ε	V
unit	<u>)</u>	С	V	\underline{N}
name of unit	joule	coulomb	volt	volt

QUESTION: A battery is labelled as "1.5 V". (a) Is the "1.5 V" stand for emf or pd? (b) What is the amount of electrical energy produced by the cell when 0.4 C of charge flow through it? (c) How many joules of energy is converted when a current of 2 A flows through it for 10 s?

- (a) emf
 (b) V= W/Q; W = 1.5 × 0.4 = 6.0 J
 (c) Q = It = 2 × 0.4 = 0.80 C W = 1.5 × 0.8 = 1.2 J
- **2.3** When more than one cell is connected in series, the total emf depends on how the cells are arranged.

3. Resistors and Resistance

3.1 *Resistance* of an electrical component is the <u>ratio</u> of the <u>potential different</u> across it to the <u>current</u> flowing through it.

QUESTION: A potential difference of 240 V applied across the heating coil of an electric kettle drives a current of 8 A through the coil. Calculate **(a)** the resistance of the coil, and **(b)** the current flowing through the coil if the p.d. applied is changed to 110 V.

(a) $R = V/I = 240/8 = 30 \Omega$ (b) I = 110/30 = 3.7 A

- **3.2** *Resistors* are conductors in electrical circuits with <u>known resistance</u>. They are designed to control the <u>currents</u> in a circuit.
- **3.2** There are two types of resistors: *fixed* resistors and *variable* resistors with symbols:

fixed resistor

variable resistor

5. Factors Affecting Resistance

- **5.1** *Temperature.* When the wire is heated up, the *positive ions* in the conducting wire *vibrate more vigorously* because of increase in energy. This causes *more collisions* between the electrons and the particles and increases resistance.
- **5.2** *Material.* The more *fightly* an atom holds on to its *outermost electrons* the harder it is for the current flow.
- **5.3** *Length.* In longer wires, electrons must travel *longer distances* and will have more collisions. Resistance of a wire is *directly proportional* to its length.
- **5.4** *Cross-sectional Area.* With larger cross-sectional area, there is <u>more space</u> for the electrons to travel through and so fewer collisions. Resistance of a wire is inversely proportional to its <u>cross-sectional area</u>.

- Simulation of factors affecting resistance
- **5.5** Combining the factors of length and cross-sectional area, the resistance of a wire *R*:

 $R \propto \frac{L}{4}$

QUESTION: A wire has a resistance of 7.5 Ω . what is its resistance when **(a)** its length is halved? **(b)** cross-sectional area is doubled? **(c)** length is halved, and cross-sectional area is doubled?

(a) 7.5/2 = 3.8 Ω
(b) 7.5/2 = 3.8 Ω
(c) 7.5/(2 × 2) = 1.9 Ω

6. Ohm's Law

- 6.1 *Ohm's Law* states that the *ratio* of the *potential difference across* a conductor to the *current flowing in* it is always a *constant*, provided its physical conditions, such as *temperature*, remain <u>unchanged</u>.
- 6.2 *Ohmic conductors* are conductors which obey Ohm's Law. The *I-V* characteristic graph of an ohmic conductor is a <u>straight line</u> passing through the <u>origin</u>. The resistance of an ohmic conductor is a <u>constant</u>.

DEFN

6.3 *Non-ohmic conductors* are conductors which do not obey Ohm's Law, e.g., filament

lamp and semiconductor diode.

6.4 *Resistance of a non-ohmic conductor.* From the *I-V* characteristics graph of a non-

ohmic conductor,

resistance at a point (*I*, *V*) on the graph is $R = \frac{V}{I} = \frac{V - Q_{-1}}{I - Q_{-1}}$, which is the <u>gradient</u> of the <u>reciprocal</u> of the line joining (0, 0) and (*I*, *V*). Since this gradient <u>decreases</u> as pd increases, the resistance of the this resistor <u>increases</u>.

QUESTION: The graph shows how the currents in a lamp **L** and in a wire **W** vary with the potential difference (p.d.) applied. Find the resistance of **L** and **W** when the potential difference across them is (a) 5.0 V, and (b) 10 V.

