Eunoia Junior College 8873 H1 Chemistry 2020 Paper 1 Suggested Solution

1 Isotopes have the same number of protons, but different number of neutrons \Rightarrow A or C

Since the two particles have different charges, the *difference* between the number of protons and electrons must be different.

⇒ C

2 Examine the number of *p*, *n* and *e*

	⁵⁸ ₂₈ Ni ³⁺	${}^{60}_{28}\text{Ni}^{2+}$	${}^{62}_{28}\text{Ni}^{2+}$	⁶⁴ ₂₈ Ni ³⁺
р	28	28	28	28
n	30	32	34	36
е	25	26	26	25
n	9.712×10 ²⁶	1.005×10 ²⁵	1.038×10 ²⁵	1.072×10 ²⁵

 \Rightarrow C

- A *: The 3d subshell can hold a maximum of 10 electrons. The shell with principal quantum number 3 can hold a maximum of 2 (3s) + 6 (3p) + 10 (3d) = 18 electrons.
 - B ★: According to Aufbau principle, electrons fill atomic orbitals of the *lowest* available energy levels before occupying higher levels.
 - **C *:** The order of filling the orbitals is

1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s

D \checkmark : In atoms of transition elements, the electronic configuration is [Ar] $3d^n 4s^2$ or [Ar] $3d^5 4s^1$ (Cr), with n = 1-9

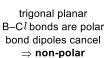
 \Rightarrow B

4 Within the same principal quantum shell *n*, the energy of the orbitals is in the order:

and there are 1 s orbital, 3 p orbitals, 5 d orbitals and 7 f orbitals in each principal quantum shell.

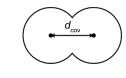
 $\Rightarrow \mathbf{A}$

5 Gaseous HCl has a simple molecular structure with a polar covalent bond between H and the electronegative atom Cl, *i.e.* uneven sharing of a pair of electrons between the two nuclei, with a resultant partial plus charge on the H and a partial minus charge on the Cl.


$$F^{\sigma,N} \xrightarrow{\sigma}_{N} \xrightarrow{\sigma}_{N} F \qquad \bigcirc N \xrightarrow{\pi}_{\pi} N \xrightarrow{\sigma}_{N}$$

 \Rightarrow C

7


6

8 By definition, bond energy is the energy needed to *break* one mole of the gaseous bond.

Covalent bond length:

9 Arrhenius acid produces H⁺(aq), while Arrhenius base produces OH⁻(aq).

 \Rightarrow D

 $\Rightarrow A$

10 For an indicator to show the end-point of a titration, the working pH range of the indicator *must lie within* the region of rapid pH change during the titration.

 $\Rightarrow A$

11 Blood contains the H₂CO₃/HCO₃⁻ buffer. To maintain the pH of blood, the conjugate base HCO₃⁻ must remove H₃O⁺ from the lactic acid produced during exercise:

 $\rm HCO_3^- + H_3O^+ \rightarrow H_2CO_3 + H_2O$

 \Rightarrow C

- 12 A *: Since both I and Xe does not conduct electricity and have rather low boiling points, both I and Xe exists as simple molecules.
 - B *: Te is only a semi-conductor (like Si), so it is a metalloid with a giant covalent structure.
 - C ✓: Period 3 only contains 3 metallic elements, Na, Mg and A*l*, while there are at least 5 metallic elements (high electrical conductivity and high boiling point) in Period 5.
 - D *: Rubidium in Group 1 is a metal despite having a melting point below 1000 K.

 \Rightarrow C

- 13 1 ★: Electronegativity of the halogen decreases down the group, all are more electronegative than H. Hence the difference in electronegativity decreases down the group.
 - 2 *: Down the group, the atomic (covalent) radius increases, hence the bond length is longer, with the bonding pair of electrons getting further from the halogen nucleus going down the group.
 - 3 ✓: Down the group, as H–X bond length increases, the H–X bond strength decreases, leading to a decrease in thermal stability down the group.

 \Rightarrow D

- **14** A \checkmark : More electrons \Rightarrow stronger id-id \Rightarrow higher boiling point \Rightarrow less volatile
 - B *: Volatility is related to strength of intermolecular forces of attraction and not the X–X bond strength.
 - **C *:** More electrons \Rightarrow stronger id-id \Rightarrow higher boiling point \Rightarrow less volatile
 - D *: Volatility is related to strength of intermolecular forces of attraction and not the X-X bond strength.

```
\Rightarrow \mathbf{A}
```

15 Atomic radius decreases across the period due to increase in ENC (nuclear charge increases while shielding is ~constant) \Rightarrow Since E is larger \Rightarrow E is in Group 15

Going from Group 15 $(ns^2 np^3)$ to Group 16 $(ns^2 np^4)$, there is a drop in first I.E. since there is inter-electronic repulsion between the pair np electrons in Group 16 \Rightarrow E should have a higher first I.E.

 \Rightarrow B

16 A *****:
$$n_{Cl_2} = \frac{71.0}{35.5 \times 2} = 1.0 \text{ mol}$$

 $\Rightarrow 6.02 \times 10^{23} \text{ C} l_2 \text{ molecules}$

B *: 1 mol of Mg(NO₃)₂ contains 3 mol of ions = 3 × 6.02 × 10^{23} = 1.81 × 10^{24} ions

C \checkmark : At s.t.p., $V_m = 22.7 \text{ dm mol}^{-1}$ $n_{O_2} = \frac{22.7}{22.7} = 1.0 \text{ mol}$

1 mol of O_2 contains 2 mol of O atoms = 2 × 6.02 × 10²³ = 1.20 × 10²³ O atoms

D *:
$$n_{\text{Be}^{2+}} = \frac{4.50}{9.0} = 0.50 \text{ mo}$$

Each Be²⁺ contains 4-2 = 2 electrons.

0.50 mol of Be²⁺ contains 0.50 × 2 × $6.02 \times 10^{23} = 6.02 \times 10^{23}$ electrons

⇒C

17
$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x CO_2 + \frac{y}{2} H_2 O$$

 $n_{O_2} = \frac{0.720}{24.0} = 0.030 \text{ mol}$
 $n_{H_2O} = \frac{0.36}{1.0 \times 2 + 16.0} = 0.020 \text{ mol}$
 $n_Z : n_{O_2} : n_{H_2O} = 0.0050 : 0.030 : 0.020$
 $1: x + \frac{y}{4} : \frac{y}{2} = 1:6:4$

 \Rightarrow *y* = 8 and *x* = 4

- \Rightarrow C
- 18 A ✓: Energy needed to overcome the stronger intermolecular forces of attraction in the liquid.
 - B *: Energy is released when stronger intermolecular forces of attraction is formed in the solid.
 - C ★: Enthalpy change of neutralisation. Energy is released when a O–H is formed between H⁺ and ⁻OH.
 - D ★: Opposite of bond dissociation. Energy is released when 2 O–H bonds are formed between the H and O atoms.

 \Rightarrow A

19 lattice energy $\propto - \left| \frac{q^+ q^-}{r_+ + r_-} \right|$

$$q_{_{Mg^{2^{*}}}} = 2q_{_{Na^{+}}}$$
 and $r_{_{Mg^{2^{*}}}} < r_{_{Na^{+}}} \Rightarrow$ lattice
energy of MgX₂ is more negative than that
of NaX

 $r_{\rm Br^-} > r_{\rm Cl^-} \Rightarrow$ lattice energy of MgC l_2 is more negative than that of MgBr₂

⇒B

20 unit of
$$k = \frac{\text{mol dm}^{-3} \text{ s}^{-1}}{(\text{mol dm}^{-3})^n}$$
, where *n* is the overall order of reaction

⇒D

21 Given rate =
$$k[X]^0[Y]^1[Z]^2 = k[Y][Z]^2$$

$$k = \frac{\text{rate}}{[Y][Z]^2} = \frac{4.68 \times 10^{-4}}{(0.0500)(0.0400^2)}$$

= 5.85

⇒B

be a constant $\left(=\frac{\ln 2}{k}\right)$ at the same temperature.

 \Rightarrow B

23 The presence of a catalyst does not affect the shape of the Boltzmann distribution, hence E_{mp} will not change.

However, presence of a catalyst lowers $E_{\rm a}$, hence increasing the frequency of effective collisions between the molecules.

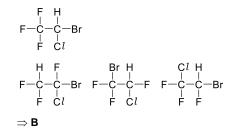
 \Rightarrow D

24 The K_c of a reaction is only affect by changes in temperature (provided $\Delta H \neq 0$) \Rightarrow A

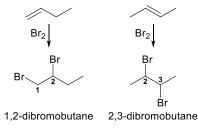
, . . .

 $\begin{array}{cccc} & Cl_2 & + & 2NO & \rightleftharpoons & 2NOCl\\ \text{initial amt} & 1 & 2 & 0\\ \text{change amt} & & \\ \text{eqm amt} & x & \end{array}$

The change in amt of Cl_2 is -(1-x).


By the stoichiometry of the reaction, changes in the amt of NO and NOC $l\,{\rm are}$

 $\begin{array}{rrrr} & Cl_2 & + & 2NO \rightleftharpoons & 2NOCl \\ \text{initial amt} & 1 & 2 & 0 \\ \text{change amt} & -(1-x) & -2(1-x) & +2(1-x) \\ \text{eqm amt} & x \end{array}$


Hence the eqm amts are:

 Cl_2 + 2NO 2NOC1 \rightleftharpoons initial amt 1 2 0 -2(1-x)+2(1-x)change amt -(1-x)eqm amt 2 - 2x2xх

26 The possible constitutional isomers are:

 $\textbf{27} \ \ The two straight-chain C_4H_8 are$

28 ethane $H \xrightarrow{\sigma} \sigma \sigma \sigma H$ $H \xrightarrow{\sigma} \sigma \sigma \sigma H$ $H \xrightarrow{\sigma} \sigma \sigma H$ tetrahedral ethene $H \xrightarrow{\sigma} \sigma \sigma H$ $G \xrightarrow{\pi} \sigma H$ tetrahedral $H \xrightarrow{\sigma} \sigma \sigma H$ $H \xrightarrow{\sigma} H$ $H \xrightarrow{H} H$ H

29 Due to the presence of –OH and –CO₂H groups in polymer 2 and 3, which can form hydrogen bonds with water, they are likely to be water soluble.

 \Rightarrow C

- 30 1 ✓: Surface area is important as catalytic converters relies on heterogeneous catalysis where the reactant molecules are adsorbed and react on the surface of the catalyst.
 - 2 ✓: The ability of gecko to climb a wall depends on sum of instantaneous dipole-induced dipole attractions between the millions of microscopic hairs on the feet of the gecko and the wall. The hairs increases the surface area allowing more extensive id-id attractions to form.
 - 3 *****: The high tensile strength of graphene is due to the strong C–C bond within the graphene sheet and is not related to the surface area.
 - $\Rightarrow \mathbf{B}$

Answer Key

Qn

11

12

13

14 15

16

17

18

19

20

Ans

С

С

D

A

В

С

С

А

В

D

Qn	Ans
1	С
2	С
3	В
4	А
5	С
6	С
7	А
8	А
9	D
10	А

Qn	Ans
21	В
22	В
23	D
24	А
25	С
26	В
27	В
28	D
29	С
30	В