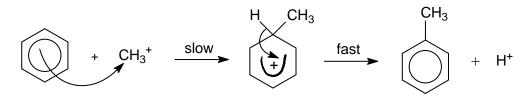
H2 Chemistry 9647

1	(a)	(i)	C : Mg(OH) ₂	[1]
			D : [A <i>l</i> (OH) ₄] ⁻	[1]
			E: Al(OH) ₃	[1]
			$F: Al_2O_3$	[1]
		(ii)	acid-base reaction	[1]
		(iii)	No. of moles of Mg(OH) ₂ = $\frac{0.18}{24.3 + 2(17.0)}$ = 3.087 x 10 ⁻³ mol	
			No. of moles of Mg = 3.087×10^{-3} mol	
			Mass of Mg in the alloy = $3.087 \times 10^{-3} \times 24.3 = 0.07501 \text{ g}$	
			% composition of Mg in the alloy = $\frac{0.07501}{1.75} \times 100 = \frac{4.29\%}{1.75}$	[1]
	(b)	(i)	$BeCl_2 + H_2O \longrightarrow BeO + 2HCl$	[1]
			accept BeC l_2 + 2H ₂ O \longrightarrow Be(OH) ₂ + 2HC l	

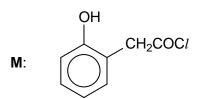

(ii) Al atom in AlCl₃ molecule is <u>electron-deficient</u> as it has only 6 valence [1] electrons around it. Hence, the Al atom can <u>accept another 2 electrons</u> from the lone pair of N atom in one molecule of NH₃ to achieve the (stable) octet configuration.

(iii)	++ +C1+	[1]
	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} + + + \\ + C l \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\ + \\$	
(iv)	NH ₃ ↓	[1]
	Cl - Be - Cl	
	↑ NH ₃	

accept condensed formula: BeCl₂(NH₃)₂

(c) (i) Electrophilic substitution

Generation of electrophile: $CH_3Cl + AlCl_3 \longrightarrow CH_3^+ + AlCl_4^-$


Regeneration of catalyst: $A/Cl_4^- + H^+ \longrightarrow A/Cl_3 + HCl$

[1m] for correct equations for generation of electrophile & regeneration of catalyst
[1m] for curly arrows & charges + slow & fast
[1m] for correct structure of intermediate

(ii) H: $ClCH_2CH_2Cl$

J:
$$OH$$
 [1] CH_2CH_2Cl

Step 2: NaOH(aq), heat under reflux[1]Step 3: $K_2Cr_2O_7(aq)$, dil. H_2SO_4 , heat under reflux[1]Step 4: PCl_5 or $SOCl_2$ [1]

[1m] for correct structure of **M** and reagents/conditions for step 4

[3]

[1]

2 (a) (i) When the temperature is increased, the <u>forward endothermic</u> reaction is [2] favoured. The position of equilibrium will shift to the <u>right</u> in order to reduce temperature by <u>absorbing extra heat</u>. Partial pressure of hydrogen will <u>increase</u>.

When the pressure is increased, the <u>reverse</u> reaction is favoured. The position of equilibrium shifts to the <u>left</u> in order to <u>decrease pressure</u> by producing <u>less</u> <u>gaseous particles</u>. Partial pressure of hydrogen will <u>decrease</u>.

[1m] for <u>each</u> change

(ii) The two assumptions are:

[3]

There are <u>negligible intermolecular forces</u> between the gaseous particles.

The volume of the gaseous particles is negligible compared to the volume it occupies.

 $H_2O(g)$ has <u>stronger hydrogen bonding</u> between molecules compared to the <u>weaker van der Waals' forces</u> between H_2 molecules, and the <u>volume of H_2O </u> molecules is greater than that of H_2 , hence $H_2O(g)$ deviates more from ideality than H_2 .

[1m] for <u>each</u> assumption [1m] for correct explanation

$$K_{\rm p} = \frac{{\rm P}_{\rm CO_2}}{{\rm p}_{\rm CO}^2 {\rm p}_{\rm O_2}}$$

n

2

Initial amt / mol	2CO(g) 5.00	+ O ₂ (g) 2.50	\rightarrow	2CO ₂ (g) 0
change in amt / mol	- 4.95	$-\frac{4.95}{2}$		+ 4.95
amt at eqm / mol	0.05	0.025		4.95

total amt at eqm = 4.95 + 0.05 + 0.025 = 5.025 mol

$$p(CO_2) \text{ at eqm} = \frac{4.95}{5.025}(101) = 99.5 \text{ kPa}$$

$$p(CO) \text{ at eqm} = \frac{0.05}{5.025}(101) = 1.00 \text{ kPa}$$

$$p(O_2) \text{ at eqm} = \frac{0.025}{5.025}(101) = 0.502 \text{ kPa}$$

1 05

$$K_{\rm p} = \frac{(99.5)^2}{(1.00)^2 (0.502)} = \frac{19700 \text{ kPa}^{-1}}{1000 \text{ kPa}^{-1}}$$

[1m] for correct K_p expression and calculated value (ignore units) [1m] for correct amt at eqm / partial pressures at eqm

[2]

(iv) Use of an <u>alkaline</u> material / sorbent e.g. amine / hydroxide to <u>react with the</u> [1] <u>acidic CO₂</u>.

Removing the CO_2 formed will <u>shift</u> the <u>position of equilibrium</u> for reaction (2) to [1] the <u>right</u> and hence <u>eliminating the CO present</u> and possibility of the catalyst being 'poisoned'. This improves the efficiency of the purification of H₂.

(v) Gold nanoparticles are in the <u>solid phase</u>, different from the <u>gaseous reactants</u>. [2]

Due to the <u>availability of vacant (or partially filled)</u> d<u>orbitals</u> in the nanoparticles, the CO and O_2 molecules can <u>form temporary bonds</u> on the catalyst surface. This <u>weakens the bonds within the molecules</u>, hence <u>lowering</u> the activation energy.

By <u>concentrating</u> the CO and O_2 molecules on the catalyst surface, the <u>number</u> of these molecules with energy greater or equal to E_a increases and hence the frequency of effective collision increases.

[1m] for differentiating solid catalyst from gaseous reactants [1m] for <u>either</u> factor that brings about increase in rate

(b) (i) anode:
$$H_2 \longrightarrow 2H^+ + 2e^-$$
 [1]
cathode: $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ [1]

(ii)
$$2H_2 + O_2 \longrightarrow 2H_2O$$

 $E^{\circ} = E_{O2|H2O} - E_{H+|H2} = +1.23 - 0.00 = +1.23 V$


(iii) shape: square planar [1] bond angle: 90°

accept tetrahedral; 109°

- (iv) $[Pt(NH_3)_4]^{2+} + 2e^- \longrightarrow Pt + 4NH_3$ [1] accept $Pt^{2+} + 2e^- \longrightarrow Pt$
- (c) (i) $CH_3CH_2OH + NaH \longrightarrow CH_3CH_2O^-Na^+ + H_2$

accept ionic form w/o Na⁺ but not $H^+ + H^- \longrightarrow H_2$

(ii) Nucleophilic substitution $(S_N 2)$

[1m] for correct movement of electrons and lone pair on $CH_3CH_2O^-$ [1m] for correct charges, and transition state

(iii) **T** is $\underline{CH_2=CHCH_3}$

[1]

[1]

[1]

[2]

3 (a) (i) Since $K_{a1} >>> K_{a2}$, only the first dissociation makes an appreciable contribution to the pH of the solution.

$$K_{s1} = \frac{[HA\cdot][HAO^{-1}]}{[HAA]} \approx \frac{[HBO^{-1}]^{2}}{[HA]}$$

$$1.30 \times 10^{-2} = \frac{[HBO^{+1}]^{2}}{0.10}$$

$$[H_{3}O^{+}] = 0.03606 \text{ mol dm}^{-3}$$

$$pH = -log[H_{3}O^{+}] = 1.44$$

$$(1)$$

$$2NaOH + H_{2}A \longrightarrow A^{2^{-}} + 2Na^{+} + 2H_{2}O$$
No. of moles of A²⁻ formed = (25/1000) × 0.10 = 0.0025 mol
No. of moles of A²⁻ formed = (25/1000) × 0.10 = 0.0025 mol
No. of moles of NaOH required for complete neutralisation
= 0.0025 × 2 = 0.00500 mol
Volume of NaOH required = (0.0050 / 0.10) × 1000 = 50 cm³

$$[A^{2^{-}}] = \frac{0.0025}{25 + 50} \times 1000 = 0.0333 \text{ mol dm}^{-3}$$

$$[A^{2^{-}}] = \frac{0.0025}{25 + 50} \times 1000 = 0.0333 \text{ mol dm}^{-3}$$

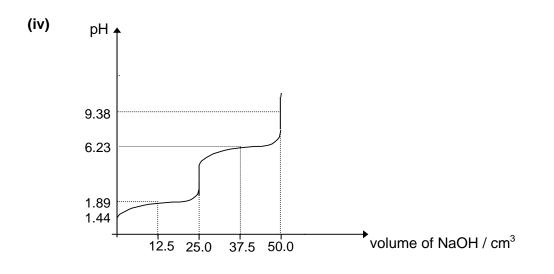
$$[A^{2^{-}}] = \frac{(HA^{-}][OH^{-}]}{(A^{2^{-}}]} \approx \frac{[OH^{-}]^{2}}{(A^{2^{-}})_{1}}$$

$$K_{b1} = \frac{[HA^{-}][OH^{-}]}{(A^{2^{-}}]} \approx \frac{[OH^{-}]^{2}}{(A^{2^{-}})_{1}}$$

$$[AH^{-}] = 10^{-14} / (5.90 \times 10^{-7}) = 1.695 \times 10^{-8} \text{ mol dm}^{-3}$$

$$[OH^{-}] = 2.377 \times 10^{-5} \text{ mol dm}^{-3}$$

$$pOH = -log[OH^{-}] = 4.62$$


$$pH = 14 - 4.62 = 9.38$$

$$[1]$$

(ii)

(iii)

5

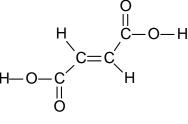
[1m] for correct shape of curve until 50 cm³.

[1m] for correct indication of 2 equivalence points at 25.0 cm³ and 50.0 cm³ with corresponding pH at 9.38.

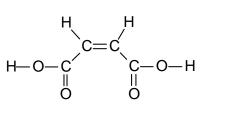
[1m] for correct indication of 2 pK_a values (1.89 and 6.23) and corresponding volumes (12.5 cm³ and 37.5 cm³)

(v) Indicator: thymolphthalein [1]

[2]


[3]

The working pH range of thymolphthalein lies within the range of rapid pH [1] change at the end point.

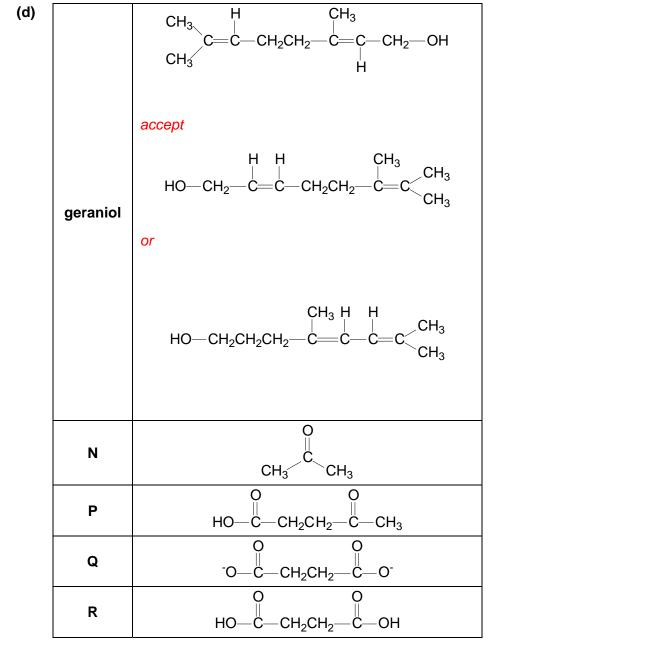

or

The pH at the second equivalence point is within the working pH range of thymolphthalein.

(b) (i)

trans

cis


[1m] for correct displayed formulae [1m] for correct labelling

(ii) There is <u>intramolecular hydrogen bonding</u> involving H of –OH group with the neighbouring C=O group. Hence, there are <u>fewer sites available for</u> <u>intermolecular hydrogen bonds</u> to be formed between the molecules. Less energy is needed to overcome the less extensive intermolecular H–bonding during melting.

or

Cis-butenedioic acid results in kinks which cause the molecules to be <u>less</u> <u>closely packed</u> in the structure. Less energy is required to overcome the intermolecular forces.

$$\begin{array}{c} \textbf{(c)} & \textbf{0} \\ \textbf{0} \\ \hline \end{array} \\ \textbf{0} \\ \hline \end{array} \\ \textbf{0} \\ \textbf{$$

[1m] each

[7]

	Reaction	Type of reaction	Deduction
1.	1 mole of geraniol decolourises 2 moles of Br ₂ (aq)	electrophilic addition	Presence of two C=C bonds in geraniol
2.	Heating geraniol with excess conc. acidified $KMnO_4(aq)$ produces N , P and a colourless gas.	oxidative cleavage	Presence of more than one C=C bond in geraniol The colourless gas is CO_2 .
3.	Both N and P react with 2,4– dinitrophenylhydrazine	condensation	Presence of ketone group in N and P
4.	P gives a yellow precipitate and compound Q on warming with alkaline aqueous iodine	tri-iodomethane reaction or oxidation	Presence of CH ₃ CO– group in P
5.	R can be produced from butenedioic acid on reaction with H_2 in the presence of a catalyst	reduction / hydrogenation	R is $\begin{array}{c} O & O \\ \parallel \\ HO - C - CH_2CH_2 - C - OH \end{array}$

[2m] for <u>any correct 3 out of the 5 points</u> [1m] for <u>any correct 2 out of the 5 points</u>

- 4 (a) (i) Insert a hot wire into a test tube of HX gas or by heating
 - (ii) Extent of reaction increases down the group

<u>Decrease in H–X bond strength</u> due to increasing atomic radius of X (weaker overlap of orbitals between H and X)

[1m] for correct trend [1m] for correct explanation

(b) $C\Gamma$ ions give white fumes of HCl as concentrated H₂SO₄ is unable to oxidise HCl. [3] H₂SO₄ + $C\Gamma \longrightarrow HCl + HSO_4^-$

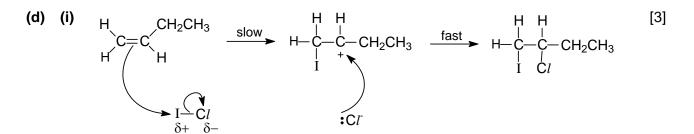
 I^- ions give copious <u>purple fumes of I₂ and H₂S gas</u> (rotten egg smell) as concentrated H₂SO₄ readily oxidises HI to I₂, itself is reduced to H₂S.

[1m] for correct observation and balanced equation for Cl^- [1m] for correct observations for Γ^- [1m] for correct balanced equations for Γ^-

Under the conditions of these reactions, iodine is readily vaporised.

(c) (i) (Chloromethyl)benzene undergoes nucleophilic substitution with hot NaOH(aq) [1] readily while <u>4-chloromethylbenzene requires vigorous conditions</u> (or does not react).

The <u>p-orbital of Cl</u> in 4-chloromethylbenzene can <u>overlap with the π electron</u> [1] <u>cloud of the benzene ring</u>, resulting in <u>partial double bond</u> between C and Cl and <u>strengthening it</u>. Hence, the C-Cl bond does not undergo nucleophilic substitution with NaOH(aq) easily.


(ii) (lodomethyl)benzene reacts much faster than (chloromethyl)benzene due to the weaker C–X bond and more stable X⁻ formed.

<u>BE(C–I) is smaller than BE(C–C*l*). C–I bond is weaker than C–C*l*, hence [1] (iodomethyl)benzene tends to react much faster than (chloromethyl)benzene.</u>

From the smaller pK_a (hence higher K_a), <u>HI ionises more readily than HCl</u>, <u>I</u>⁻ is [1] <u>a more stable</u> conjugate base. Hence, I⁻ is formed more readily and hence (iodomethyl)benzene tends to react much faster than (chloromethyl)benzene.

[1]

[2]

[1m] for correct carbocation intermediate [1m] for partial charges & lone pair + slow & fast [1m] for curly arrows

- (ii)Step II: Cl2(g), UV light[1]Step III: NaOH in ethanol, heat under reflux[1]
- (iii) H H H H H HC-C-C-C-C-HI C_{l} OH H H (1)
- (e) (i) sp^2 (with 1 unhybridised p orbital)

[1]

[1]

(ii)

The three sp² hybrid orbitals are arranged at an angle of 120° from each other.

(iii) The <u>unhybridised p orbital of the C2 atom</u> <u>overlaps</u> with the <u>unhybridised p</u>
 <u>orbital of the neighboring C3 atom</u> resulting in <u>a partial double bond character</u>.
 [1] Consequently, the C2–C3 bond will become shorter.

or

The change of a carbon hybrid orbital from sp^3 to sp^2 implies <u>an increase in the percentage of s character</u> exhibited by the hybrid orbital. When there is an increase in s character, the <u>orbitals will exhibit more of the character of a s</u> <u>orbital</u> where <u>electrons are held more tightly by the nucleus</u> than that of an orbital with less s character (i.e. sp^3). Consequently, the C2–C3 bond will become shorter.

5	(a)	(i)	Complex A : red (or orange) Complex B : green (or blue)	[1] [1]
		(ii)	<u>Complex A</u> , because absorption is at a <u>shorter wavelength</u> corresponding to a higher energy.	[1]
		(iii)	absorbance = ε c l 0.32 = ε x 0.25 x 1 ε = <u>1.28 mol⁻¹ dm³ cm⁻¹</u>	[2]
			[1m] for correct answer [1m] for correct units	
		(iv)	Absorbance of solution $\mathbf{B} = 0.6$	[1]
			absorbance = ε c l 0.6 = 1.28 x c x 1	
			concentration of solution B , c = 0.6 / 1.28 = $0.469 \text{ mol dm}^{-3}$	[1]
	(b)	(i)	$\mathcal{K}_{sp} = [Cu^{2+}][OH^{-}]^2$	[1]
		(ii)	When first trace of ppt is formed, $[Cu^{2+}][OH^{-}]^{2} > K_{sp}$ $\frac{[Cu^{2+}]}{2} \left(\frac{0.1}{2}\right)^{2} > 2.2 \times 10^{-20}$ $[Cu^{2+}] > 1.76 \times 10^{-17} \text{ mol dm}^{-3}$	
	\Rightarrow Minimum [Cu ²⁺] = <u>1.76 x 10⁻¹⁷ mol dm⁻³</u>			[1]
	(c)	H—	Н Н О Н Н Н О Н С С С Н С С С С Н НН С Н Н Н Н Н Н	[3]

[1m] for <u>each</u> correct <u>structural</u> formula [1m] for correct <u>displayed</u> formulae for both compounds

(d) (i) <u>iron(II) hydroxide</u> or Fe(OH)₂

[1]

The CO_3^{2-} ions dissociate partially in water to produce OH^- ions which then [1] precipitate out the Fe^{2+} ions as $Fe(OH)_2$.

or $CO_3^{2^-} + H_2O \implies OH^- + HCO_3^ Fe(H_2O)_6^{2^+} + 2OH^- \implies [Fe(OH)_2(H_2O)_4](s) + 2H_2O$

(ii) The <u>small and highly charged Fe³⁺</u> ions <u>hydrolyse</u> in water to produce an <u>acidic</u> [1] solution.

The added $\underline{CO_3}^{2-}$ reacts with $\underline{H_3O^+}$ present in the solution to produce CO_2 and [1] hence, $Fe_2(CO_3)_3$ is not formed.

The brown precipitate produced is Fe(OH)₃.

 $2[Fe(H_2O)_6]^{3+} + 3CO_3^{2-} \implies 2[Fe(H_2O)_3(OH)_3] + 3CO_2 + 3H_2O$ equation not required

(e)
$$S_2O_8^{2^-} + 2e^- \implies 2SO_4^{2^-}$$

 $Fe^{3^+} + e^- \implies Fe^{2^+}$
 $I_2 + 2e^- \implies 2I^-$
 $E^{\Theta} = +0.77 V$
 $E^{\Theta} = +0.54 V$

Step I: $2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$ Step II: $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$ $E_{cell}^{\Theta} = \pm 1.24 \text{ V}$ $E_{cell}^{\Theta} = \pm 0.23 \text{ V}$ [2]

[1m] for <u>both</u> balanced equations [1m] for <u>both</u> correctly calculated E°_{cell} values

Since $E_{cell}^{\theta} > 0$, both reactions are feasible. Hence, Fe^{2+} acts as a catalyst in the two–step reaction by <u>providing an alternative pathway with lower activation energy</u> via the intermediate Fe^{3+} . [1]

[1]