1	D	Depth of swimming pool = 2m					
		Pressure at the bottom of the pool = $p_0 + \rho gh = 10^5 + (10^3)(10)2 = 10^7 Pa$					
2	С						
3	С	$s_x = u_x t$					
		220 = (72)t					
		t = 3.06 s					
		$s_{y} = u_{y}t + \frac{1}{2}at^{2}$					
		$=0+\frac{1}{2}(9.81)(3.06)^2$					
		= 46 m					
4	В						
5	В						
6	Α	$F_{\text{resistive}} = -\text{thrust}$					
		$=-v_{rel}\frac{dm}{dt}$					
		=-(-100)(20)					
		= 2 000 N					
7	D	$\Delta a = 0.80 - (-0.30) = 1.10 \text{ m s}^{-2}$					
		$\Delta F = m\Delta a = (70)(1.10) = 77 \text{ N}$					
		Apparent difference in mass = $\frac{77}{9.81}$ = 7.8 kg					
8	D						

JC2 2020 Page 1 of 4

9	С	When the string just slackens, the tension in the string is zero. The component of the weight								
		acting in the radial direction provides for the centripetal force.								
		$mg\cos\theta = \frac{mv_{\rm B}^2}{r}$								
		mgccc	r r							
		gcosθ=	$g\cos\theta = \frac{V_{\rm B}^2}{r}$							
			I	Γ 2.2 ²	٦					
		θ =	$\theta = \cos^{-1}\left(\frac{v_{\rm B}^2}{rg}\right) = \cos^{-1}\left \frac{2.2^2}{(1.5)(9.81)}\right $							
10	D	_	= 71°							
11	D									
12	D	At steady	At steady state, pressure in both flasks are the same.							
		_	Applying ideal gas law							
		$P_P = P_Q$								
		$n_P R T_P$	$n_P R T_P = n_Q R T_Q$							
		V_P	$\frac{n_{P}RT_{P}}{V_{P}} = \frac{n_{Q}RT_{Q}}{V_{Q}}$							
		$M_{\rm p}$ $T_{\rm o}$ $V_{\rm p}$								
		$\frac{\dot{M}_Q}{M_Q} = \frac{\dot{T}}{T_P}$	$\frac{M_P}{M_Q} = \frac{T_Q}{T_P} \frac{V_P}{V_Q} = 9$							
13	Α	pV = nR	pV = nRT							
		n nR	$pV = nR(t + 273.15)$ $nR_{tt} = 379.45$							
		$\rho = \overline{V}$	$p = \frac{nR}{V}(t + 273.15)$							
14	D		Heat loss by block of higher temp = Heat gained by block of lower temp $Q = mc\Delta T$							
		$15c(T_{t}-3)$	$15c(T_f - 35) = 30c(95 - T_f)$							
		T_{f} –35 =	$T_f - 35 = 190 - 2T_f$							
		$T_f = 75$								
15	С	_ 1 /	- 1 (2 c) ² 2							
		$E = \frac{1}{2}m(2)$	$E = \frac{1}{2} m \left(2\pi f\right)^2 x^2$							
		$\frac{1}{-}(0.5m)$	$\frac{1}{2}(0.5m)(2\pi)^2(3.0f)^2(0.40x)^2 = (0.72)\left(\frac{1}{2}m(2\pi f)^2x^2\right)$							
		$2^{(0.517)(2\pi)(0.517)(0.708)} - (0.72)(\frac{1}{2}m(2\pi))$								
16	Α	= 0.72 <i>E</i>								
17	D									
18	A									
10		Freq / Hz	wavelength / m	9.0 cm tube	13.5 cm tube					
		5500	0.060	1.50	2.25					
		7330	0.045	2.00	3.00					
		7940 0.042 2.17 3.25								
		11000 0.030 3.00 4.50								

JC2 2020 Page 2 of 4

	_							
19	Α		λ / nm	X	n			
		Α	400	200	12.5			
		В	400	500	5.0			
		С	650	200	7.7			
		D	650	500	3.1			
20	С	gain in kinetic energy = loss in electric potential energy						
		$=qV_{initial}-qV_{final}$						
		$= qE\left(d - \frac{d}{4}\right) - qE\left(d - \frac{3d}{4}\right)$						
		$=\frac{1}{2}qEd$						
		$=\frac{1}{2}q\left(\frac{V}{d}\right)d$						
		$=\frac{1}{2}qV$						
		The gain in kinetic energy of the positive ion is independent of <i>d</i> .						
21	С							

JC2 2020 Page 3 of 4

22	Α	I = nevA						
		$V = \frac{I}{neA}$						
		$=\frac{1}{\left(d\right)^{2}}$						
		$=\frac{1}{ne\pi\left(\frac{d}{2}\right)^2}$						
		$V \propto \frac{1}{d^2}$						
		If d increases linearly with position x , $d \propto x$.						
		$V \propto \frac{1}{\mathbf{r}^2}$						
		$\int_{0}^{\infty} \sqrt{x^2}$						
		When x increases, v decreases at a decreasing rate.						
23	С							
24	D	$I = \frac{\varepsilon}{R} = \frac{BLV}{R}$						
		$F = BIL = B(\frac{BLv}{R})L$						
		$F = \frac{B^2 L^2 V}{R}$						
		$P = Fv = \frac{B^2L^2v^2}{R}$						
		$\Gamma = \Gamma v = \frac{1}{R}$						
		L is the length of the rod in contact with the rail.						
25	В	Centripetal force when entering is upwards hence magnetic force is upwards.						
		Using Fleming's right hand rule, current is in the same direction as the path so it						
		must be positively charged.						
		If direction of magnetic force is upwards, electric force must be downwards so electric field must also be downwards.						
26	С							
20		Laminating the iron core in a transformer narrows the eddy current paths which reduces the induced e.m.f. and hence the eddy currents.						
27	D	For a 4-level system, the number of possible transitions is ${}^{4}C_{2} = 6$						
28	Α	Higher p.d. \rightarrow higher KE \rightarrow max energy of photon is higher $\rightarrow \lambda_{min}$ is smaller						
29	В	3, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,						
30	В							

JC2 2020 Page 4 of 4