

### Chapter 4A: Complex Numbers I

### SYLLABUS INCLUDES

- · extension of the number system from real numbers to complex numbers
- · complex roots of quadratic equations
- four operations of complex numbers expressed in the form (x + iy)
- · equating real parts and imaginary parts
- · conjugate roots of a polynomial equation with real coefficients
- · representation of complex numbers in the Argand diagram
- calculation of modulus (r) and argument (θ) of a complex number

### PRE-REQUISITES

- Trigonometry
- Coordinate Geometry
- Vectors

### CONTENT

- 1 Introduction to the Imaginary Number i
- 2 Complex Numbers
- 2.1 Definition of a Complex Number
- 2.2 Operations on Complex Numbers
- 2.3 Complex Conjugates
- 2.4 Some Properties of Complex Conjugates
- 3 Complex Roots of Polynomial Equations
- 4 Geometrical Representation of a Complex Number
- 4.1 Argand Diagram
- 4.2 Geometrical Representation of Addition and Subtraction of Complex Numbers
- 4.3 Modulus and Argument of a Complex Number

**Appendix:** Proof of Result that Non-Real Roots of a Polynomial Equation with Real Coefficients occur in Conjugate Pairs

# Introduction to the Imaginary Number i

We know that the solution to the equation  $x^2 + 1 = 0$  cannot be a real number, as the square of a real number cannot be negative. We say  $x^2 = -1$  has no real roots.

In order to solve the above equation, we need to find a "number" whose square is -1.

Let's suppose such a "number" exists.

Since we imagined it, let's call this number the imaginary number i.

We define i as



Hence the solutions to  $x^2 + 1 = 0$  are  $x = \pm \sqrt{-1} = \pm i$ .

### Example 1

(a) If  $i = \sqrt{-1}$ , simplify  $i^2$ ,  $i^3$ ,  $i^4$ ,  $i^{2009}$ ,  $i^{2010}$ ,  $i^{2011}$ ,  $i^{2012}$ .

### Solution

Let's generalize: If k is a positive integer, then

- (b) Perform the four basic operations on i:
- (i) i+i=i

(ii) 5i-i=4i

(iii)  $5i \times 3i = 15(i)^2$ 

- (iv)  $6i \div 3i = 2$
- (c) Solve for x if  $x^2 2x + 2 = 0$ .

tactorise, complete the square, quadratic formula

### Solution

Solution
$$x^{2}-2x+2=0 \qquad \text{conflicte the square}$$

$$x^{2}-2x+1 : -1 \quad \Leftrightarrow \quad (x-1)^{2} : -1$$

$$x-1: \implies = \pm i$$

$$x = \pm i$$

### 2 COMPLEX NUMBERS

Notice that the solution to Example 1(c) is a combination of real numbers and imaginary numbers. Such numbers are called complex numbers.

### 2.1 Definition of a Complex Number

A complex number is of the form x+iy where x and y are real numbers and  $i=\sqrt{-1}$ .

The set of complex numbers is denoted by  $\mathbb{C} = \{z : z = x + iy, x, y \in \mathbb{R}\}$ .

x is known as the <u>real</u> part of z, denoted by Re(z), and

y is known as the <u>imaginary</u> part of z, denoted by Im(z)

Note that Im(z) does not include i.

x+iy is known as the cartesian form of the complex number z.

### Example 2

Write down the real and imaginary parts of the following complex numbers:

| z       | Re(z) | Im(z) |
|---------|-------|-------|
| -2 + 3i | - 2   | 3     |
| 1 – i   | 1     | - (   |
| -4      | - 4   | 0     |
| 5i      | ٥     | 5     |

### Remarks:

- $\mathbb{Z} \subseteq \mathbb{Q} \subseteq \mathbb{R} \subseteq \mathbb{C}$
- If y = 0, then z = x is a real number.
- If x = 0, then z = iy is a purely imaginary number.
- Complex numbers cannot be ordered, i.e. given any two complex numbers  $z_1$  and  $z_2$ , we cannot compare whether  $z_1 < z_2$  unless they are real numbers.

### 2.2 Operations on Complex Numbers

In this section, let  $a, b, c, d \in \mathbb{R}$  and  $z_1, z_2, z_3 \in \mathbb{C}$ .

(a) Equality of Two Complex Numbers

2 complex numbers are equal if and only if their corresponding real and imaginary parts are equal, i.e.  $a+ib=c+id \Leftrightarrow a=c$  and b=d.

For example, if x + iy = 5 - 3i, we have  $\frac{x+5}{3} = \frac{3}{3}$ 

(b) Addition of Complex Numbers

$$(a+ib)+(c+id) = (a+c)+i(b+d)$$

Addition of complex numbers is commutative:  $z_1 + z_2 = z_2 + z_1$ Addition of complex numbers is associative:  $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$ 

For example, (3+4i)+(1-i) = 4+3i

(c) Subtraction of Complex Numbers

$$(a+ib)-(c+id) = (a-c)+i(b-d)$$

For example, (3+4i)-(1-i) = 2+5i

(d) Multiplication of Complex Numbers

$$(a+ib)(c+id) = ac+iad+ibc+i^2bd = ac+iad+ibc+(-1)bd$$
$$= (ac-bd)+i(ad+bc)$$

Multiplication of complex numbers is commutative:  $z_1z_2 = z_2z_1$ 

Multiplication of complex numbers is associative:  $(z_1z_2)z_3 = z_1(z_2z_3)$ 

Multiplication of complex numbers is distributive over addition:  $z_1(z_2 + z_3) = z_1z_2 + z_1z_3$ 

For example,  $(3+4i)(1-i) = \frac{3-4i^2+i}{2} = 7+i$  (note that  $i^2 = -1$ )

 $(3+4i)^2 = (3+4i)(3+4i) = 9+16i^2 + 7+i^2 -7+2+i$ 

Remarks: The above manipulations of complex numbers are the same as algebraic manipulations of expressions such as (a+b)(c+d),  $(a+b)\pm(c+d)$  and so on. The only additional consideration is  $i^2 = -1$ .

We can use the GC to perform operations on complex numbers

| Operation                                                              | Example            | GC Screen                                      |
|------------------------------------------------------------------------|--------------------|------------------------------------------------|
| Multiplication of complex numbers  (Press 2nd to get i)                | (3 + 4i)(1 - i)    | (3+4i)(1-i)<br>7+i<br>■                        |
| Square of a complex number                                             | $(3+4i)^2$         | (3+4i)²<br>-7+24i                              |
| Division of complex numbers  (Only works in Classic, not in MathPrint) | $\frac{3+4i}{1-i}$ | (3+4i)/(1−i)<br>5+3.5i<br>3+4i<br>1-i<br>Error |

How did the GC obtain  $\frac{3+4i}{1-i} = -0.5+3.5i$ ?

### (e) Division of Complex Numbers

Recall when we tried to simplify  $\frac{2-\sqrt{3}}{1+\sqrt{2}}$ , we multiply it by  $\frac{1-\sqrt{2}}{1-\sqrt{2}}$  so that we could

### rationalize the denominator.

For 
$$\frac{3+4i}{1-i}$$
, we will multiply it by  $\frac{1+i}{1+i}$ , so that
$$\frac{3+4i}{1-i} = \frac{(\frac{1+i}{1+i})(\frac{3+4i}{2})}{\frac{1-i^2}{2}} = \frac{\frac{3+4i}{1+i}}{2}$$

In general, 
$$\frac{a+ib}{c+id} = \frac{a+ib}{c+id} \times \frac{c-id}{c-id} = \frac{(a+ib)(c-id)}{c^2-i^2d^2} = \frac{(a+ib)(c-id)}{c^2+d^2}$$

Remark: Note that c-id is chosen based on the denominator of  $\frac{a+ib}{c+id}$ . We call c-id, the conjugate of c+id.

### Example 3

Find the square roots of 24 - 10i. By completing the square, or otherwise, solve  $z^2 - 6z = 15 - 10i$ .

```
Solution:
    at the equate root of 14 (of be + +yi, xiy FR
    square both rides 24-101, catying
                                    * 1 4 4 2 12 + 2 + 3 .
                                  · x1-y + 2 x g :
     company real and imaginary parts
      -10 : 2xy - 0
    1000 - 1 - B
   1 x 3 1 x ( 1 ) 5
              x 4 - 24x 2-25:0
             (x2-25) (x2+1).0
             x 5, -5, ( · · · · · (NA)
                            sine xisreal
    when x -5, when x -5,
  . the square roots or 24-101 are 5-1 or 1-5 9
 22-62 15-101
⇒ (2-3)<sup>2</sup> · 3<sup>2</sup> · + 15-101

⇒ (2-3)<sup>2</sup> · 24-101
⇒ Z-3 : \[ \sqrt{24-101}\]
     : + (5-1') (tion above result)
2: 3 + 5 - ( .. 2: 3-5+1
```

G( only gives ← onemot, other root is the negation of it

check answers:
1 who 2.8-1
and 7 .24i
1 ndo 22-62)
get 15-(0)

### 2.3 Complex Conjugates

The complex conjugate of z = x + iy, where  $x, y \in \mathbb{R}$ , is denoted by  $z^*$  and defined as  $z^* = x - iy$ 

Observe that  $Re(z^*) = x = Re(z)$  and  $Im(z^*) = -y = -Im(z)$ .

Note that z = x + iy and  $z^* = x - iy$  are conjugates of each other, and we call them a <u>conjugate</u> pair.

### 2.4 Some Properties of Complex Conjugates

The following properties can be easily proven by letting z = x + iy and w = u + iv where  $x, y, u, v \in \mathbb{R}$ .

| Prop | erties                              | Proofs                                     | Example                         |
|------|-------------------------------------|--------------------------------------------|---------------------------------|
| (a)  | $(z^*)^* = z$                       | $[(x+iy)^*]^* = (x-iy)^* = x+iy$           | [(1-31)*] *<br>. (1131)* : [-3] |
| (b)  | $z + z^* = 2\operatorname{Re}(z)$   | (x+iy)+(x+iy)*                             | (1-31)H(1-31)*                  |
|      |                                     | = (x + iy) + (x - iy)                      | (1-31)+(1+31)                   |
|      |                                     | =2x $= 2 k e(2)$                           | ? 2 ke(2)                       |
| (c)  | $z - z^* = 2i \operatorname{Im}(z)$ | $(x+iy)-(x+iy)^*$                          | (1-31) - (1-31)*                |
|      |                                     | = (x + iy) - (x - iy)                      | (1-31)-(1+31)                   |
|      |                                     | = 2iy                                      | - 6 i                           |
| (d)  | $zz^* = x^2 + y^2$                  | $(x+iy)(x+iy)^*$                           | (1-3i) (1-3i)*                  |
|      |                                     | =(x+iy)(x-iy)                              | (1.31)(1431)                    |
|      |                                     | $= x^2 - (iy)^2$ (difference of 2 squares) | 1-912                           |
|      |                                     | $=x^2-i^2y^2$ $(i^2=-1)$                   | : 10                            |
|      |                                     | $=x^2+y^2$                                 | · '                             |
| (e)  | $z = z^* \iff z \in \mathbb{R}$     | $z = z^*$                                  | (1-31): (1-31)*                 |
|      |                                     | $\Leftrightarrow x + iy = x - iy$          | (1+3i)                          |
|      |                                     | $\Leftrightarrow 2iy = 0$                  | 0 - 61                          |
|      |                                     | $\Leftrightarrow$ Im(z) = 0                | Im (2): 0                       |
|      |                                     | $\Leftrightarrow z$ is real                | : 2 is teel                     |
| (f)  | $(z+w)^* = z^* + w^*$               | $(x+iy+u+iv)^* = (x+u+i(y+v))^*$           |                                 |
|      |                                     | =x+u-i(y+v)                                |                                 |
|      |                                     | = (x - iy) + (u - iv)                      |                                 |
|      |                                     | $=z^*+w^*$                                 |                                 |

| Properties                    | Proofs                                                             | Example                          |
|-------------------------------|--------------------------------------------------------------------|----------------------------------|
| (g) $(zw)^* = z^*w^*$         | $((x+iy)(u+iv))^* = (xu-yv+i(xv+yu))^*$                            | (((11)(1-4))                     |
| (+°)* · + 2 · (+')            | $= xu - yv - i(xv + yu)$ $(x + iy)^*(u + iv)^* = (x - iy)(u - iv)$ | (11) - 1-                        |
| $(\xi_L)_{x}$ ; $(\xi_X)_{y}$ | = xu - yv - i(xv + yu)                                             | (1+31)* (1-21)*<br>:(1-31)(1+21) |
|                               |                                                                    | 1 (-i - 61)<br>17-1              |

# Example 4 [RJC Prelim 9233/2005/01/Q1(i)]

The complex numbers z and w are such that z=-1+2i and w=1+bi, where  $b \in \mathbb{R}$ . Given that the imaginary part of  $\frac{w}{z}$  is  $-\frac{3}{5}$ , find the value of b.

Solution
$$\frac{\frac{\ln}{2}}{2} = \frac{1+\ln x}{-1+2i} \times \frac{-1-2i}{-1-2i} \cdot \frac{-\frac{(2+1)}{5}}{5} \cdot \frac{3}{5}$$

$$\frac{-1-2i-\ln -2\ln^2}{1-4i^2}$$

$$\frac{-1-(2+1)i+2h}{5}$$
Given  $Im(\frac{h}{2}) = -\frac{3}{5} \Rightarrow \frac{-2-h}{5} = -\frac{3}{5} \Rightarrow h = 1$ 

### Example 5

Solve the simultaneous equations z + w = -1, 2z - iw = -1.

Solution
$$z+w=-1 - - (1) \qquad 2z-iw=-1 - - (2)$$

$$x i + 0 \qquad qires \qquad (i+1)z = -1 - 1 \Rightarrow z = \frac{i-2}{i+2} \times \frac{i-2}{i-2}$$

$$= \frac{-i^2+2i-i+2}{i^2-4}$$

$$= \frac{-i^2+2i-i+2}{i^2-4}$$

$$= \frac{-i^2+1i+3}{-5} \qquad 2 = \frac{-3}{5} - \frac{1}{5}i$$

$$= \frac{4+i}{-5} \qquad u = \frac{9}{5} + \frac{1}{5}i$$

### Example 6

- (a) Let z = 1 + ia and w = 1 + ib, where  $a, b \in \mathbb{R}$  and a > 0. If  $zw^* = 3 4i$ , find the exact values of a and b.
- (b) Without the use of GC, find z = c + id, where  $c, d \in \mathbb{R}$  such that  $z^2 = -8 6i$ .

### Solution

(b) 
$$z^2 = (c + id)^2 = (c^2 - d^2) + 2cdi = -8 - 6i$$
  
Equating real and imaginary parts,  $c^2 - d^2 = -8$  ---- (1)  
 $2cd = -6 \implies d = -\frac{3}{c}$  ---- (2)  
Subst (2) into (1),  $c^2 - \left(-\frac{3}{c}\right)^2 = -8$ 

$$c^{4} + 8c^{2} - 9 = 0$$

$$(c^{2} - 1)(c^{2} + 9) = 0$$

$$c^{2} = 1 \text{ or } c^{2} = -9 \text{ (NA since } c \in \mathbb{R} \text{ hence } c^{2} \ge 0)$$

$$c = \pm 1$$

When 
$$c = 1$$
,  $d = -3$ ; When  $c = -1$ ,  $d = 3$   
Hence  $z = 1-3i$  or  $z = -1+3i$ 

Chapter 4A: Complex Numbers I Page 9 of 18

#### 3 Complex Roots of Polynomial Equations

With complex numbers, we have the following theorem.

# Fundamental Theorem of Algebra:

# A polynomial equation of degree n has n roots (real or non-real).

Thus, taking non-real roots into account, a quadratic (degree 2) equation always has 2 roots, a cubic (degree 3) equation always has 3 roots, and so on.

Furthermore, if the coefficients of the polynomial equation are real, we have the following result:

# Non-real roots of a polynomial equation with real coefficients occur in conjugate pairs.

In other words, if  $\beta$  is a non-real root of a polynomial equation with <u>real coefficients</u>, then  $\beta^*$  is also a non-real root of the equation.

Note that real coefficients include the constant term as well.

[Refer to Appendix for the proof of this result]

From Example 1(c) we obtained  $x = 1 \pm i$  as conjugate pair solutions to  $x^2 - 2x + 2 = 0$ .

## Example 7 (Quadratic)

Find the roots of the equation  $z^2 + (-1+4i)z + (-5+i) = 0$ .

Solution

$$z^{2} + (-1+4i)z + (-5+i) = 0$$

$$z^{2} + (-1+4i)z + (-5+i) = 0$$

$$z^{2} + (-1+4i)z + (-5+i)z + (-5+i)z + (-5+i)z + (-1+4i)z + (-1+4i)$$

Question: Why are the roots not in conjugate pairs?

because not all the coefficients of the quadratic quation are real Answer:

### Example 8 (Cubic)

Find the exact roots of the equation  $z^3 - 2z^2 + 2z - 1 = 0$ .

#### Solution

Since the cubic equation has real coefficients, it has either 3 real roots or 1 real root and 1 conjugate pair of non-real roots.

z = 1 is clearly a solution of  $z^3 - 2z^2 + 2z - 1 = 0$ .

Observe that  $z^3 - 2z^2 + 2z - 1 = (z - 1)(z^2 - z + 1)$ .

Hence  $z^3 - 2z^2 + 2z - 1 = 0$   $\Rightarrow$   $(z - 1)(z^2 - z + 1) = 0$  $\Rightarrow z - 1 = 0$  or  $z^2 - z + 1 = 0$ 

$$\Rightarrow z = 1 \text{ or } z = \frac{1 \pm \sqrt{1-4}}{2}$$

i.e. 
$$z = 1$$
 or  $z = \frac{1 + i\sqrt{3}}{2}$  or  $z = \frac{1 - i\sqrt{3}}{2}$ 

Note that the **Polynomial Root Finder** of the **PlySmlt2** app in the GC can be used to solve equations with real coefficients.

1. Press [APPS] and select PlySmlt2.

2. Select 1: Polynomial Root Finder.

HORMAL FLOAT AUTO REAL RADIAN HP (CALLE)

MAIN MENU

■POLYNOMIAL ROOT FINDER
2:SIMULTANEOUS EQN SOLVER
3:ABOUT
4:POLY ROOT FINDER HELP
5:SIMULT EQN SOLVER HELP

3. Adjust the settings as depicted on the screen to solve a cubic equation.

Remember to select "a+bi" or "re^(θi)" for the GC to display all roots, not just the real roots.

4. Press [GRAPH] which is the button below NEXT.

5. Key in the values of the coefficients  $a_3, a_2, a_1$  and  $a_0$ .

6. Press [GRAPH] to solve the system of equations.

POLY ROOT FINDER MODE
ORDER 1 2 8 4 5 6 7 8 9 10
REAL FRAC
NORMAL SCI ENG
FLOAT 0 1 2 3 4 5 6 7 8 9
RADIAN DEGREE

MAIN HELPINEXT

HORMAL FLOAT FRAC 4-6L RADIAN HP PLYSHLT2 APP

33×3+32×2+31×+30=0

33=1

a<sub>2</sub>=-2 a<sub>1</sub>=2 a<sub>0</sub>=-1

6:QUIT APP

MAIN MODE CLEAR LOAD SOLVE

Read off the answers.

 $x_1$ ,  $x_2$  and  $x_3$  give the 3 roots of z.

Note: The GC cannot display the roots in exact form.



### Example 9 (Cubic)

Given that 1-i is a root of the equation  $z^3 - 5z^2 + 8z + p = 0$ , where  $p \in \mathbb{R}$ , find the other 2 roots and the value of p. x 2 + Mx + Nx + AB

### Solution

Method 1:

Since the cubic equation has real coefficients, \_\_\_\_!!! !! olso anot.

The third root must be 
$$\frac{a + cal}{a + cal} \frac{number t}{2^3 - 5z^2 + 8z + b}$$
:  $\frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left(2 - (1 + i)\right)} \frac{\left(2 - (1 + i)\right)}{\left($ 

Comparing the constant,  $p = - \sqrt{k}$ 

The other 2 roots are Iti and 3, and the value of p is -6.

### Method 2:

Alternatively, since 1-i is a root of the given equation, an alternative way of finding p is by substituting the root into the equation.

Since the cubic equation has real coefficients, 1+i is also a root. The third root must be a real number k.

$$z^{3} - 5z^{2} + 8z - 6 = [z - (1+i)] [z - (1-i)](z-k)$$
$$= (z^{2} - 2z + 2)(z-k)$$
$$= z^{3} - (k+2)z^{2} + (2k+2)z - 2k$$

Comparing the constant,  $-6 = -2k \implies k = 3$ 

The other 2 roots are 1+i and 3.

### 4 Geometrical Representation of a Complex Number

Recall that we represent real number on a number line. For complex numbers, since there are imaginary numbers, it makes sense for us to have a imaginary number line as well.

### 4.1 Argand Diagram

A complex number z = x + iy,  $x, y \in \mathbb{R}$  can be represented by the point P(x, y). This idea was formally introduced by the French mathematician Jean-Robert Argand, and hence the diagram which represents a complex number in this way was named after him.

An Argand diagram is similar to the Cartesian plane with the

- Horizontal axis (labeled as Re) representing the real part of z, and
- Vertical axis (labeled as Im) representing the imaginary part of z.



#### Remarks:

Points on the horizontal axis represent real numbers and points on the vertical axis represent purely imaginary numbers.

On an Argand diagram, complex numbers <u>behave (in terms of additions and subtractions)</u> like 2-D vectors, but they are <u>NOT</u> vectors. In particular, we can divide complex numbers, but we cannot do the same to vectors.

Consider the complex numbers

$$z_1 = -1 + i$$
 and  $z_2 = 2 + i$ .

Then 
$$z_1 + z_2 = 1 + 2i$$
  
and  $z_1 - z_2 = -3$ .

Draw the points A, B, C and D representing  $z_1$ ,  $z_2$ ,  $z_1 + z_2$  and  $z_1 - z_2$  respectively on an Argand diagram.



Note that *OACB* is a parallelogram.

As mentioned, the complex numbers behave like vectors on an Argand diagram. (Recall how we proved *OACB* is a parallelogram using vectors.)

### Example 10

The points A, B, C and D represent four complex numbers  $z_1$ ,  $z_2 = 3$ ,  $z_3 = 2 + 2i$  and  $z_4 = -2 + 3i$  respectively. Given that ABCD forms a parallelogram, find  $z_1$  by calculation (i.e. not by drawing).



Recall that if this is a vector question:

### 4.3 Modulus and Argument of a Complex Number

Let the point P represent the complex number z = x + iy,  $x, y \in \mathbb{R}$  on an Argand diagram. We are interested in 2 geometrical measurements:

- $r = \underline{\text{distance}} \text{ of } P \text{ from the origin } O$
- $\theta = \underline{\text{directed angle}}$  that  $\overline{OP}$  makes with the positive real axis

( $\theta > 0$  when measured in an anti-clockwise sense;

 $\theta < 0$  when measured in a clockwise sense)





r is known as the **modulus** of z and is denoted by |z|, where

$$|z|=r=\sqrt{x^2+y^2}.$$

Clearly  $r \ge 0$ .

 $\theta$  is known as the (principal) argument of z and is denoted by arg(z), where

$$-\pi < \arg(z) \le \pi$$
.

arg(z) should be given in radians.

### Questions

- 1. What is arg(z) if z is real?
- 2. What is arg(z) if z is purely imaginary?
- 3. What is |z| and arg(z) if z = 0?

### Answers

1. If z is real,

2. If z is purely imaginary,

arg(z): 
$$\begin{cases} \frac{\pi}{2} & \text{for } Im(z) > 0 \\ -\frac{\pi}{2} & \text{for } Im(z) < 0 \end{cases}$$

3. If z = 0, |z| = 0 but arg(z) is not defined

### Example 11

For each of the following complex number, find the exact value of the modulus and argument:

- (i)  $1+i\sqrt{3}$
- (ii)  $1 i\sqrt{3}$
- (iii)  $-1 + i\sqrt{3}$
- (iv)  $-1-i\sqrt{3}$

### Solution

(i)



11+151 : 114

(ii)



$$\left|1 - i\sqrt{3}\right| = \sqrt{1 + 3} = 2$$

$$\tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{3} \implies \arg(1 - i\sqrt{3}) = \frac{\pi}{3}$$

(iii)



$$\left| -1 + i\sqrt{3} \right| = \sqrt{1+3} = 2$$

$$\tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{3} \implies \arg(-1 + i\sqrt{3}) = \frac{2\pi}{3}$$

(iv)



$$\left|-1-i\sqrt{3}\right| = \sqrt{1+3} = 2$$

$$\tan \alpha = \sqrt{3} \implies \alpha = \frac{\pi}{3}$$
  
 $\implies \arg(-1 - i\sqrt{3}) = -\frac{2\pi}{3}$ 

$$\Rightarrow \arg(-1-i\sqrt{3}) = -\frac{2\pi}{3}$$

(v)



$$arg(i) \cdot \frac{\pi}{2}$$

to find arg (2)
(1) sketch ton an Argand diagram
(2) find basic angle of

### APPENDIX

# PROOF OF RESULT THAT NON-REAL ROOTS OF A POLYNOMIAL EQUATION WITH REAL COEFFICIENTS OCCUR IN CONJUGATE PAIRS

Consider the equation

$$a_n z^n + a_{n-1} z^{n-1} + a_{n-2} z^{n-2} + \dots + a_1 z + a_0 = 0$$
,

where  $a_n$ ,  $a_{n-1}$ ,  $a_{n-2}$ ,...,  $a_1$ ,  $a_0 \in \mathbb{R}$ ,  $a_n \neq 0$ ,  $n \in \mathbb{Z}^+$ .

Suppose  $\beta$  is a non-real root of the equation,

i.e.

$$a_n \beta^n + a_{n-1} \beta^{n-1} + a_{n-2} \beta^{n-2} + ... + a_1 \beta + a_0 = 0.$$

Taking conjugates on both sides of the equation,

$$(a_n \beta^n + a_{n-1} \beta^{n-1} + a_{n-2} \beta^{n-2} + \dots + a_1 \beta + a_0)^* = 0^*$$

$$(a_n \beta^n)^* + (a_{n-1} \beta^{n-1})^* + (a_{n-2} \beta^{n-2})^* + \dots + (a_1 \beta)^* + a_0^* = 0^*$$

Now  $(\beta^k)^* = (\beta^*)^k$  and  $(a_k)^* = a_k$  since  $a_k \in \mathbb{R}$ .

Clearly  $0^* = 0$  since  $0 \in \mathbb{R}$ .

Thus we have

$$a_n(\beta^*)^n + a_{n-1}(\beta^*)^{n-1} + a_{n-2}(\beta^*)^{n-2} + \dots + a_1(\beta^*) + a_0 = 0,$$

i.e.  $\beta^*$  is also a non-real root of the given equation.

## SUMMARY