
 
 

 

 

 
Ocean waves exhibit both transverse and longitudinal behaviour. It is observed that particles near the 
water surface move in a vertical circular motion without significant net displacements in their average 
positions as a wave propagates. This wave motion “flattens” out as the ocean wave reaches shallower 
waters, resulting in more of a forward/backward ebbing motion near coasts. This phenomenon also 
partially explains why tsunamis are devastating: as a tsunami reaches shallower water, its speed of 
propagation is forced to slow down, its horizontal wavelength is forced to decrease and the kinetic 
energy is converted to gravitational potential energy – the wave height increases dramatically before 
smashing onto coastal areas.   

 
Content 

• Progressive waves 

• Transverse and longitudinal waves 

• Polarisation 

• Determination of frequency and wavelength of sound waves 

 

Learning Objectives: 

Candidates should be able to:  

(a) show an understanding of and use the terms displacement, amplitude, period, frequency, phase difference, 

wavelength and speed  

(b) deduce, from the definitions of speed, frequency and wavelength, the equation 𝑣 = 𝑓𝜆 

(c) recall and use the equation 𝑣 = 𝑓𝜆 

(d) show an understanding that energy is transferred due to a progressive wave  

(e) recall and use the relationship, intensity ∝ (amplitude)2  

(f) show an understanding of and apply the concept that a wave from a point source and travelling without loss of energy 

obeys an inverse square law to solve problems  

(g) analyse and interpret graphical representations of transverse and longitudinal waves  

(h) show an understanding that polarisation is a phenomenon associated with transverse waves 

(i) recall and use Malus’ law (intensity ∝ cos2 θ) to calculate the amplitude and intensity of a plane polarised 

electromagnetic wave after transmission through a polarising filter  

(j) determine the frequency of sound using a calibrated oscilloscope  

(k) determine the wavelength of sound using stationary waves (* to be done in H212 Superposition) 

 

 
 



 
 

 

 
We think of waves as a “bulk phenomenon” – it 

happens on a larger scale and are made up of 

adjacent smaller units (such as water molecules, 

gas molecules, rope segments) individually 

exhibiting oscillations.  

 

Waves can result in energy (but not matter) being moved from one point to another OR energy can 

also be confined to a region in space without transfer. In this topic, we will focus on the former: 

progressive waves.  

 

 
In our A-Levels journey we will encounter 3 main types of waves: 

Mechanical waves e.g. water waves, sound waves 

and seismic waves (earthquakes).  

 

They obey Newton’s laws of motion, and can only 

exist within a material medium (correspondingly liquid  

water, air, rock). 

 

Electromagnetic waves do not need a material 

medium to exist. They travel through vacuum at a 

speed of 8 110  3 0 m s0c . −= . 

Visible light ranges from 400 nm to 700 nm. Take note 

of the order of magnitude of EM wavelengths: 

 
 

Matter waves is a concept from Quantum Physics in 

which small particles (e.g. electrons, protons, 

neutrons or even some molecules) can behave like 

waves. We will visit it near the end of JC2, in H219. 
 

 

Before continuing it is useful to 

introduce wavefronts.  

A wavefront is an imaginary line 

that joins all the points on a 

wave that are at the same 

phase. It helps to visualize how 

a wave propagates spatially.     
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In progressive waves, energy is 

propagated from one place to another 

in the direction of wave travel without 

bulk movement of medium. 

adjacent 
wavefronts 



 
 

 

Let’s compare some terms against those introduced under H210 Oscillations: 

 describe oscillation describe waves 

displacement 

x 

distance in a specified direction  

from equilibrium position of  

oscillating mass 

distance in a specified direction  

from equilibrium position of  

particle or point on the wave 

period  

T 

time taken for one complete oscillation of 

the oscillating mass 
time between adjacent wavefronts 

frequency  

f 

number of complete to-and-fro motions   

made by the oscillating mass  

per unit time 

1
f

T
=  

number of wavefronts passing a point  

per unit time 

 
Two types of graphical representations are commonly used to describe waves:  

variation of displacement with distance variation of displacement with time 

  

Shows displacements of all the particles / segments 

in a wave and how they vary with distance from the 

source at a particular instant in time. 

 

Since it is a spatial freeze-frame of the wave, it is 

like a photograph of the oscillations. 

 

Shows displacement of a single particle / 

segment and how it varies with time. 

 

Since it tracks the displacement of 1 single 

entity only, it is like a log of displacements. 

 

If the wave is travelling to the right, a particle at the 

origin  is currently moving downwards. 

This particular particle is currently moving 

upwards. 
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v  : speed of wave (m s-1) 
f  : frequency of wave (s-1) 

 : wavelength of wave (m)  
 

The speed of a progressive wave can also be seen from the speed of the wavefront. The speed of 

oscillation of any individual particle or wave segment 2 2

0v x x=  −  is different from the speed 

of wave profile v f= . 

 

Example 1 

Use the definitions of wavelength and frequency to deduce the relationship between ,   

f and v, the speed of a wave.  

 

Solution 

Frequency is the number of wavefronts passing a point per unit time. wavelength is the 

minimum distance between two points with the same phase; in other words: wavelength is 

also the distance moved by a wavefront in the time for a complete oscillation of source 

 

distance moved by wavefront in a period

one time period
v

T
f


= = =  

 

 

Example 2 

A wave is represented by the graphs shown.  

Find the speed of the wave. 

 

Solution 
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The speed of a progressive wave is  

the speed at which energy is transferred.  

The wavelength   of a wave is the minimum 

distance between two points with the same phase. 

v f=  



 
 

 

Example 3 

A sound wave travels through a gas. The gas molecules oscillate with simple harmonic 

motion. Each gas molecule is of mass 2610 kg5 3  . − , vibrates at a frequency of 835 Hz, and 

has an vibration amplitude of 60 nm. The variation with time t of the vibrational kinetic energy 

EK of a molecule is shown below. Find the  

(i) period of oscillations, 

(ii) time interval ( )2 1t t− , and 

(iii) maximum speed vmax for one vibrating molecule. 

(iv) By reference to the speed of sound in a gas at room temperature, comment on vmax. 
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(i) 
1

83

1
period 0 00120 s

5
T .

f
= = =   

 

(ii) time interval  

 

( )2 1
2

2

0 000599

1

 s

T
t

f

.

t

=

=

=

−

 

 

(iii) maximum oscillation speed  
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(iv) speed of propagation of sound waves in gas at room temperature is about 330 ms-1, 

which is about 5 orders of magnitude larger than maximum speed of oscillation of a gas 

molecule. Propagation of sound energy does not involve transfer of medium (mass), so can 

be greater than the maximum speed of vibration of individual particles in the medium. 

EK 

Emax 

t1 t2 t 



 
 

 

Here we revisit the concept of phase first introduced in H210 Oscillations: 

phase   

an angular measure (in either degrees or radians)  

of the fraction of a cycle  

completed by the oscillating mass 

phase difference   
measure of how much an oscillation is out of step  

with another oscillation at the same instant in time 

We represent phase as an angle because we draw an analogy from circular motion: 

The shadow is oscillating purely vertically and so doesn’t physically have any measurable angles. 

Because the vertical shadow oscillation repeats itself, like how the object repeats its circular motion, 

we apply the idea of a phase angle onto oscillations. 

We then need to clarify that phase difference compares 2 oscillations which can be 

(i) on the same wave OR  

(ii) on 2 different waves: 

compares 2 oscillations on same wave compares 2 different waves meeting at same point 
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Since phase   is measured by an angle, when we compare phase difference  , we consider the 

angle relative to the complete cycle of 360 or 2π:

Note that the denominators are all quantities relating to a 

full cycle. 

 

t  is sometimes called the time difference or time lag. It 

refers to the duration of time it takes for a 2nd oscillation 

to reach the same phase as the reference oscillation.  

s s  is usually called the path difference. It is the 

difference in length when comparing between particles 

that are at the same phase. 

 

Sometimes questions or other notes use 
x




  in place of

s




. If so, the x here is a length along the 

direction of travel of the energy of the wave, and not the displacement in each oscillation! 

 same wave different waves 

path 
difference 

 
 

phase difference   between P and Q: 

( )2
s

 



 =  

 

 
phase difference   between 2 waves (P 

and Q are at the same phase on their 
individual waves): 

( )2
s

 



 =  

time 
difference 

 
 
phase difference   between P and Q: 

( )2
t

T
 


 =  

 
 
phase difference   between P and Q: 

( )2
t

T
 


 =  

  

Note that a meaningful comparison 
between 2 waves can be made only if 
both waves are of the same wavelength 
and frequency, using particles / segment 
at the same phase. 
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Example 4 

A sound wave of frequency 400 Hz travels in air at a speed of 320 m s–1. Find the phase 
difference between two points on the wave that are 0.20 m apart in the direction of travel. 
 

Solution 
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Example 5 

The graphs below show the variation of displacement with time of 2 waves of the same 
frequency as received by a detector. Find the phase difference between the 2 waves. 
 

 
 

Solution 
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Example 6 

The graphs below show the variation of displacement with distance of a sinusoidal wave at 
an instant is shown. Find the phase difference of two particles, P and Q, along the wave. 
 

 

 

Solution 

phase angle of P 
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Example 7 

2 sinusoidal waves A and B have the same amplitude and frequency. Their variation of 
displacement with time is shown. Find the phase difference between the 2 waves wave. 
 

 

 

 

Solution 

We need to compare the  

time lag between points  

on the wave that are in phase: 
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In both illustrations above involving the slinky 

above, the arm is the source of oscillation of the 

progressive waves.  

 

Energy from the arm moves to the right - the 

wave front or wave profile is moving to the right 

even though there is no net movement of the 

slinky; the medium through which the energy is 

propagated. 

 

 

 

 
 

Conventionally, rightwards is taken to be the positive direction. For the longitudinal wave, the 

neighbouring particles before point P have positive displacement – they are displaced to the right of 

their average positions towards P. The reverse is true for points beyond P, so P is a region of 

compression. 

transverse 

longitudinal 

P distance 

displacement 

compression rarefaction compression 

A transverse wave is one where the 

oscillations are normal to the  

direction of energy propagation. 

A longitudinal wave is one where the 

oscillations are parallel to the  

direction of energy propagation. 

(plane of all possible) 
oscillations normal to 
direction of energy 
propagation 



 
 

 

Note that for a displacement-time 

graph, we track the displacement of 

a single particle across time.  

 

Each of the particle illustrated on the 

graphs here is akin to a single frame 

of a continuous video. 

 

P is not a region of compression.  

 

P tells of the time taken for half the 

period, and also gives directional 

information, that the particle has 

negative velocity at the time of P.  

 

Example 8 

 

Particles A, B, C and D are particles on a 
progressive transverse sinusoidal wave moving to 
the right. A photograph of the wave at time t = 0 s 
is identical to one when t = T where T is the period 
of an oscillation. Sketch the (i) variation of 
displacement with distance for particle A and (ii) 
variation of displacement with time for particles B 
C, and D. 
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Our ears work basically similar 

to a microphone – the sound 

waves vibrates a thin sheet of 

material (our ear drums, or a 

“diaphragm” in a microphone).  

 

Recall that there is acceleration associated with oscillatory vibrations – so there has to be force(s) 

acting across the area of the thin sheet of material. Sound waves are pressure waves. We hear 

sound due to the variations of pressure with time at our eardrums.  

 

 
We should take note: 

• at regions of maximum pressure (e.g. Q) the particle has no displacement but its “neighbours” 

have been displaced towards it 

• at regions of minimal pressure (e.g. R) the particle has no displacement but its “neighbours” 

have been displaced away from it 

• a phase difference of  or 90
2


  between the displacement and the pressure-variation graph 

• both the displacement and pressure-variation graph can give us the wavelength of the sound 

o the wavelength is the distance between adjacent compressions or rarefactions 
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Regard a cathode ray oscilloscope 

(c.r.o.) as a voltmeter that can display a 

rapidly varying voltage. It accepts a 

changing voltage signal as input – this 

changing voltage shows up on the y-

axis of the screen.  

 

The c.r.o. then “sweeps” the vertically 

changing signal horizontally across the 

x-axis at a steady speed to display the 

wave form. 

 

 

To measure the frequency of sound waves: 

(a) Use a microphone to convert the sound wave into a varying voltage which is of same 

frequency as the sound wave. 

(b) Connect the microphone to the input of a c.r.o. 

(c) Adjust the time-base and input sensitivity to display complete waveforms on the c.r.o. screen. 

(d) Read the period of the waveforms T. 

(e) Frequency is given by 
1

f
T

=   

 

 

Nowadays, the function of a CRO can 

be easily replicated by a voltage 

sensor connected to a datalogger. 

 

In both cases, the measurement we 

get is from the variation of voltage 

with time graph. 
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Example 9 

A sinusoidal sound wave of unknown frequency is fed into a c.ro.. The waveform on the c.r.o. screen 

is as shown. 

(a) Determine the frequency of the sound. 

(b) Sketch the trace produced by a sound wave of twice the frequency and the same loudness 

displayed on the c.r.o. screen with the same settings. 

 

 
 

Solution 
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Recall that a progressive wave is one in which energy is transferred 

from the source of disturbance, through surrounding regions.  

 

At the “micro” perspective, the oscillating particles in a wave transfers 

its energy from one particle to the next. To quantify the energy at a 

“macro” level, we typically discuss the  

 

(i)  source power,  

(ii)  geometry (shape) of how a wave spreads in space,  

(iii) intensity of the wave at different distances from the source, and  

(iv) received power. 

 

 

 

Intensity I is given by 
power

area
 , therefore the units for intensity I is W m-2. 

 

This per unit area here is imaginary – as a way of 

comparing the energy passing through that region. 

  

We previously referred to this concept of using 

ratios (per capita, per dm3, per unit mass) for 

comparing quantities in Gravitational Field:  

 

 

Recall from H210 Oscillations that the total energy (kinetic energy and potential energy) of an 

oscillating system is directly proportional to the square of the amplitude: 2 2
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Since a wave comprises of many oscillating 

particles, for waves of the same type and 

frequency,   
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The intensity of a wave is the 

rate of energy flow per unit area that is 

perpendicular to the direction of wave 

propagation. 

P

A
=I   

area normal to 
wave propagation 

source 

 intensity  (amplitude)2 
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As waves from a source spread out through space, the distribution energy may drop. The rate at 

which the energy density drops depends on the shape that the wavefronts are spreading at: 

 

spherical wavefronts planar wavefronts circular wavefronts 

a wave from a point source 

and travelling without 

loss of energy  

 

radiates outwards uniformly in 

all directions 

waves from a source travels 

without loss of energy  
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the intensity I obeys an 

inverse square law 
 

think of it as energy distributed 

along circumference (a “linear 

density” instead of “aerial 

density”) 
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Example 10 

A wave is produced on the surface of a liquid. At one particular time, the variation of the vertical 

displacement y with distance x along the surface of the liquid is shown. 

 

The wave has energy density I1 at distance x = 2.0 cm and energy density I2 at distance x = 10.0 

cm. Find the ratio 2

1

I

I
 . Hence, suggest if the wave is a circular wave. 

 

Solution 

 

intensity  (amplitude)2 
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Assuming that the source of the wave is a point source, the waves are confined to the liquid 

surface and travel uniformly via circular wave fronts, the energy density should be inversely 

proportional to the distance travelled: 
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As the value obtained is 0.200 which is different from the value of 0.309 obtained previously, 

we can tell that it is likely not a circular wave. This means that the wave may be directed 

towards a sector of the circle and is not a circular wave. 
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Example 11 

A point source emits sound waves uniformly in all directions. The loudness of the sound 

waves is initially measured at a distance of 7.0 m away from it. The power of the source is 

then halved. Find the new distance from the point source where the loudness is perceived 

to be the same as before. 

 

Solution 

loudness is a measure of intensity: 
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Note: Logic check: the power is reduced so to hear the same loudness we need to be nearer 

the source. 

 

 

 

 

 

 

 

 

 

Conversely, an unpolarized wave heading towards you will look like the 

planes of polarization are all random and changing: 

 

 

 

 

As polarisation deals with oscillations along 

directions that are normal to the direction of 

propagation, longitudinal waves cannot exhibit 

polarisation. 

 

  

In a polarised wave, the 

 

oscillations are along one direction only, 

in a single plane that is  

normal to the direction of energy transfer of the wave 

Only transverse waves can be polarised 



 
 

 

We can pass an unpolarised wave through a (linear) polarizer to get a linearly polarised wave or a 

plane polarised wave. A polariser only allows polarization along 1 specific direction to pass through. 

 
We can imagine a stretched rope and a slit as a mechanical analogy. This means that if we stack 2 

ideal linear polarisers at right angles to each other, we can cut out the waves.  

 

Selectively cutting out light has many useful applications. Some examples follow: 

LCD screens sunglasses 3D glasses 

 

 

 

“Old school” LCDs (e.g. 

watches and calculators) 

reflects ambient light through 2 

polarizers to your eyes. The 

dark parts have polarizations 

set at 90 relative to each 

other. Colour LCDs work 

similarly and give polarised 

light. OLED screens do not 

work this way and produce 

unpolarised light instead. 

Reflections off road puddles 

and snow tend to be largely 

polarized along one direction, 

so sunglasses manufacturers 

align their lenses (if it is the 

polarised variants) 90 to the 

reflections to cut glare. 

Photographers can use linear 

polarizers to reduce or 

enhance reflections off glass 

surfaces as well.  

An earlier generation of 3D 

glasses use linear polarizers 

set at 90 to each other so that 

each eye sees a slightly 

different image. However the 

effect is reduced if the head 

tilts.  

Later generations will use 

circular polarisers instead of 

linear polarizers for getting the 

eyes to see different images. 

unpolarised 
wave 

polariser 

oscillations along one direction only, 
in this single plane  

normal to direction of energy transfer of wave 



 
 

 

Malus’ Law applies to an (already) plane-polarised 

electromagnetic wave (e.g. beam of light) going through 

a polariser (polarising filter). 

 

We often use this form: 2

0 cos =I I  where I is the 

intensity of light after passing through the polariser, 
0I

is the intensity of incident polarised light before the 

polariser, and θ is the relative angle between the 

polarization of the incident light and that of the polarizer. 

 

Example 12 

Two polarisers P and Q are initially arranged such that their polarisation axes are parallel 

and vertical. The intensity of the emergent light after Q is I0. Q is then rotated such that the 

emergent intensity is reduced by 90%. Find (i) the angle by which Q is rotated, and (ii) the 

ratio of the amplitudes of the electric fields of light waves: 
amplitude between P and Q

amplitude after Q
 .  

 
Solution 

 
Note: Logic checks for (i): yes intensity is almost diminished completely so angle should be 

near 90 and (ii) yes amplitude, which indicates energy, should be larger before polariser. 

vertical axis 

P 

θ 

detector 

Q 

monochromatic 
light 

(i) before rotation, intensity of light  

 before Q and after Q is the same I0 

  

 after rotation, intensity of light  

 before Q is I0 and  

 after Q is 0.1 I0 

 

 

(ii) intensity  (amplitude)2 

  

 

 

 

Malus’ Law: 

intensity  cos2 θ 

( )2

0  cos =I I  



 
 

 

 
The oscillations of a wave exhibit displacement, which is a vector quantity and so can be resolved 

into components. 

  

When polarised light reaches a polariser, the component of the displacement that is  

• parallel to the transmission axis is allowed to pass,  

• perpendicular to the transmission axis is absorbed by the polariser 

 

So Malus’ Law, when expressed as amplitudes (maximum 

displacement) reads as 

 

( )

( )

transmitted before polariser

2

2

transmitted transmitted

2

before polariser

2

since   intensity  amplitu

 

de

 

 c

co

os

s

 cos

x x

x

x















=

I
 

  

unpolarised light 

θ 

(cannot use Malus’ 
Law at this 
polariser) 

(can use Malus’ Law 
at this polariser) 

This polariser allows only vertical 
components of a wave’s oscillations to 
pass through. 

y 

z 

amplitude 
along y, 

transmitted 

amplitude along 
z, absorbed 



 
 

 

Example 13 

A narrow, parallel beam of unpolarised light is directed towards three ideal polarising filters. 

The beam exits the first filter with its plane of polarisation vertical. The plane of polarisation 

of the second filter is at angle of 45 to the first filter. The beam emerges from the second 

filter with amplitude 
2

A
. The third filter has its plane of polarisation at 90 to the first filter 

as shown. Find the emergent intensity in terms of intensity after the first filter I. 

 
 

( )

Q P

P

P

 cos

 cos
2

45

A A

A
A

A A



= 

=

=

 

 

Consider amplitudes before and after 3rd polariser: 

( )

emergent Q

2 2

emergent emergent

P

emergent

2

s

 cos

 cos 45

2

o  

1

4

2
 

1

4

A A

A

A A /

A

A

A



= 

   
=    

 

=

=

=

=

=



I

I

I I

 

 

Note: In this H211 Waves, be sure to distinguish between A for amplitude of waves and A 

for the area when considering wave intensity. Also, we could have applied Malus’ Law twice 

to solve this question:  ( ) ( ) ( ) ( )2 2 2 4

emergent Q  cos 90 45  cos 45 cos 90 45  cos 45    = − − =I I = I I  

  

Solution 

 

Let the region between 1st and 2nd 

polariser be region P 

 

and the region between 2nd and 3rd 

polariser be region Q. 

 

Consider amplitudes before and after 

2nd polariser: 

 



 
 

 

This topic forms a large and important basis for the next topic, H212 Superposition.  

 

Superposition has been a topic that JC students consistently found challenging to master – securing 

the foundation in this topic is therefore crucial to a smoother advancement in your Physics journey. 

 

You may use the space below for your own summary and mind-map(s): 


