Title	Junior College 'A' Levels H1/H2 Mathematics – Normal Distribution
Author	AprilDolphin
Date	10/4/2025

In many situations out there, many types of continuous random variables, such as test scores, height and weight of students of a certain age would show the following characteristics once data got collected and plotted as it would be on a probability distribution.

• You would realize that majority of the data are centred in the middle, with extreme small and big values tailing off symmetrically on the left and right of the average measurement respectively.

When this happens, the random variable X is said to follow a Normal Distribution with parameters μ and σ^2 , where $X \sim N(\mu, \sigma^2)$, with μ referring to the mean and σ^2 referring to the variance of the Normal Distribution.

(*Be careful when dealing with notations, certain books, software and calculators deal with Normal Distribution using the Standard Deviation σ parameter rather than variance which is σ^2 . In such cases, the obvious first step you should take is to square-root the variance to get the value of standard deviation σ .)

A basic visual look at the Normal Distribution and some properties to note.

- The probability value is the area between the curve and the x-axis. (Which is also the definite integral of the Normal Distribution in question.)
- The probability of getting a very specific value in a Normal Distribution is basically zero since area under curve cannot be created on a continuous random variable just with specific values. Instead of defining specific value on a Normal Distribution, we usually define a range of values to calculate probability in a Normal Distribution. [Therefore P(X = x) = 0]

 Any Normal Distribution is symmetrical at the mean μ. (This property is important as certain questions you will encounter requires you to understand this symmetrical property of any Normal Distribution.)

Understanding the concept of a Standard Normal Distribution

- Any Normal Distribution can technically be transformed to a Standard Normal Distribution.
- A Standard Normal Distribution has the property of which the area under curve from negative infinity to positive infinity is exactly 1.
- A Standard Normal Distribution also has property of mean $\mu = 0$ and $\sigma^2 = 1$, for this reason, a Standard Normal Distribution will also have standard deviation $\sigma = 1$ as well.

(Note: In order to input "negative infinity" in Graphing Calculator, press -E99. In order to input a value of "positive infinity" in Graphing Calculator, press E99.)

A visual look at the standard normal distribution.

Understanding the concept of Z-score in Standard Normal Distribution

- Z-score refers to the number of standard deviations from the mean in a standardized normal distribution where the Z −score can take on any finite values. (-∞ < Z < ∞)
- *Z*-score of any normal distribution can be computed using the below formula.

$$Z = \frac{X - \mu}{\sigma}$$

Z refers to the Z-score

X refers to the position of the normal random variable on the X-axis as it is in original unstandardized form.

 μ refers to the mean of the normal distribution as it is in original unstandardized form.

 σ refers to the standard deviation as it is in the original unstandardized form.

Process of Finding Probability in a Standard Normal Distribution:

In order to find probability in a Standard Normal Distribution, we use the TI-84 graphing calculator in the following manner.

Example 1. Find the probability of the following

- a) P(Z < 1.96)
- b) P(Z > -0.586)
- c) P(0.43 < Z < 1.23)

Procedures (Example 1a)	Output on Graphing Calculator Screen
Press [2ND] followed by [VARS]	DISTR DRAW 1:normalpdf (2:normalcdf (3:invNorm (4:invT (5:tpdf (6:tcdf ($7:\chi^2$ pdf (
Look for "normalcdf" option and press [ENTER]	normalcdf Lower: Upper: μ : 0 σ : 1 Paste
For probability values less than Z We key in -E99 in the field "lower" and we key in 1.96 in the upper field. Since Standard Normal Distribution has a value of $\mu = 0$ and $\sigma = 1$, we input $\mu = 0$ and $\sigma = 1$	normalcdf Lower: -E99 Upper: 1.96 μ : 0 σ : 1 Paste
Press the down arrow after checking the inputs and press down arrow until the cursor is on "Paste" and press [ENTER] twice. The probability is 0.975 (3sf)	normalcdf(-E99, 1.96, 0, 1) .9750021748

Procedures (Example 1b)	Graphing Calculator Output
Press [2ND] followed by [VARS]	DISTR DRAW 1:normalpdf (2:normalcdf (3:invNorm (
	4:invT (
	5:tpdf (
	6:tcdf (
	7:x ² pdf (
Look for "normalcdf" option and press [ENTER]	normalcdf Lower: Upper: μ : 0 σ : 1 Paste
For probability values more than Z .	
We key in -0.586 in the "Lower" field and	normalcdf
E99 into the "Upper" field.	Lower: -0.586
Since Standard Normal Distribution has a value of $\mu = 0$ and $\sigma = 1$, we input	u: 0
$\mu = 0$ and $\sigma = 1$.	σ : 1
	Paste
Press the down arrow after checking the inputs and press down arrow until the cursor is on "Paste" and press [ENTER] twice.	normalcdf(-0.586, E99, 0, 1) .7210622905
The probability is 0.721 (3sf)	

Procedures (Example 1C)	Graphing Calculator Output
Press [2ND] followed by [VARS]	DISTR DRAW 1:normalpdf (2:normalcdf (3:invNorm (4:invT (5:tpdf (6:tcdf ($7:\chi^2$ pdf (
Look for "normalcdf" option and press [ENTER]	normalcdf Lower: Upper: μ : 0 σ : 1 Paste
Since the question mentioned we have to find the probability for which the Z-score is in between 0.43 and 1.23. We key in 0.43 in the "Lower" field and 1.23 in the "Upper" field. We set $\mu = 0$ and $\sigma = 1$.	normalcdf Lower: 0.43 Upper: 1.23 μ : 0 σ : 1 Paste
After checking that the values are correct, we can press down arrow key on calculator until the cursor is on "Paste", press enter twice. The probability of obtaining Z-score between 0.43 and 1.23 is 0.224 (3sf)	normalcdf (0.43, 1.23, 0, 1) .2242492346

Example 2 Find the probability of the following (a) P(|Z| < 1.234)

(a) $P(|Z| \le 1.234)$ (b) $P(|Z| \ge 2.17)$ (c) P(|Z - 1| > 1.1389)

2(a) |Z| < 1.234 is to be rewritten as -1.234 < Z < 1.234

Steps taken	Graphing Calculator Output
Enter "normalcdf" functionality of the	normalcdf
graphing calculator	lower:
	upper:
	μ:
	σ:
	Paste
Set "lower" as -1.234	normalcdf
Set "upper" as 1.234	lower: -1.234
Set μ as 0	upper: 1.234
Set σ as 1	μ:0
Press down arrow key until the cursor is	σ :1
on "Paste"	Paste
Press [ENTER] twice and the following	normalcdf(-1.234, 1.234, 0, 1)
should appear.	.7827969667
The probability is 0.783 (3sf)	

2(b) $|Z| \ge 2.17$ is to be written as Z < -2.17 OR Z > 2.17

Steps Taken	Graphing Calculator Output
Enter "normalcdf" functionality of	normalcdf
calculator	lower:
	upper:
	μ:
	σ :
	Paste

Input lower as - E99	normalcdf	
Input upper as -2.17	lower: -E99	
Set $\mu=0$ and $\sigma=1$	upper: -2.17	
Press arrow down key until the cursor is	μ:0	
at paste.	σ :1	
	Paste	
Press [ENTER] twice.	normalcdf(-E99,2.17,0, 1)	
	.150033693	
		_
Enter "normalcdf" functionality of	normalcdf	
calculator again.	lower: 2.17	
	upper: E99	
Input lower as 2.17	μ:0	
Input upper as E99	σ:1	
Set $\mu=0$ and $\sigma=1$	Paste	
Press arrow down key until the cursor is		_
at paste.		
Press [ENTER] twice.	normalcdf(2.17, E99, 0, 1)	
	. <mark>150033693</mark>	
$P(Z \ge 2.17) =$		
0.150033693+ <mark>0.150033693</mark> = 0.300 (3sf)		

2(c)

Rewrite P(|Z - 1| > 1.1389) as Z - 1 < -1.1389 as well as Z - 1 > 1.1389 which can be transformed as follows:

Z < -1.1389 + 1 OR Z > 1.1389 + 1Z < -0.1389 OR Z > 2.1389

Steps Taken	Graphing Calculator Output
Enter "normalcdf" functionality of	
calculator	normalcdf
	lower:
	upper:
	μ :
	0: Paste
Key in the values as follows	
Lower: -E99	normalcdf
Upper: -0.1389	lower:-E99
μ:0	upper:-0.1389
σ : 1	$\mu:0$
	0.1 Paste
	Taste
Press down arrow until the cursor is at	1
"paste" and press [ENTER] key twice	normalcdf(-E99, -0.1389, 0, 1)
	0.447645561
Enter "normaledf" functionality of	
calculator again	normalcdf
	lower:
	upper:
	μ :
	σ :
	Paste
Key in the values as follows	
Lower: 2.1389	normalcdf
Upper: E99	10wer: 2.1389
$\mu: 0$	
0.1	σ
	Paste

Therefore P(|Z - 1| > 1.1389) = 0.447645561 + 0.0162218257 = 0.461 (3sf)

Process of Finding Probability Values of Normal Distribution without consideration for Standardization.

Example 3. Given that $X \sim N(23,9)$, find the following probabilities

(a) P(20 < X < 25)

(b) *P*(*X* < 19)

(c) $P(X \ge 14)$

(a)	
Enter "normalcdf" functionality of calculator	normalcdf lower: upper: μ: σ: Paste
Key in the following values Lower: 20 Upper: 25 μ :23 σ : 3	normalcdf lower:20 upper: 25 μ :23 σ :3 Paste
Press down arrow until the cursor is on "Paste" and press [ENTER] twice to get probability value	normalcdf(20,25,23,3) .5888522734

 $\overline{P(20 < X < 25)} = 0.589$ (3sf)

(b)	
Enter "normalcdf" functionality of	
calculator	normalcdf
	lower:
	upper:
	μ:
	σ :
	Paste
Key in the following values	
Lower: -E99	normalcdf
Upper: 19	lower: -E99
μ:23	upper:19
σ: 3	μ:23
	σ:3
	Paste
Press down arrow until the cursor is on	
"Paste" and press [ENTER] twice to get	normalcdf(-E99,19,23,3)
probability value	.0912112819

P(X < 19) = 0.0912 (3sf)

(c)	
Enter "normalcdf" functionality of	
calculator	normalcdf
	lower:
	upper:
	μ:
	σ :
	Paste
Key in the following values	
Lower: 14	
Upper: E99	
μ:23	
σ:3	

	normalcdf lower: 14 upper: E99 μ :23 σ :3 Paste
Press down arrow until the cursor is on "Paste" and press [ENTER] twice to get probability value	normalcdf(14,E99,23,3) .9986500328

 $P(X \ge 14) = 0.999(3sf)$

Example 4.

Given that $X \sim N(15,3)$, find the following probabilities

(a) P(|X - 15| < 4)(b) P(|X - 15| > 2)

4(a)

P(|X - 15| < 4) can be rewritten as, P(-4 < X - 15 < 4)P(11 < X < 19)

Enter normalcdf functionality of	
calculator	normalcdf
	lower:
	upper:
	μ :
	σ :
	Paste

Key in the following values as follows Lower: 11 Upper: 19 μ :15 σ : $\sqrt{3}$	normalcdf lower:11 upper:19 μ :15 σ : $\sqrt{3}$ Paste
Press arrow down key until the cursor is on top of "paste" and press enter twice.	normalcdf(11, 19, 15, $\sqrt{3}$) .9790787186

P(|X - 15| < 4) = 0.979 (3sf)

4(b) P(|X - 15| > 2)

Rewritten, it will look like the following

P(X - 15 < -2) OR P(X - 15 > 2)

P(X < 13) OR P(X > 17)

Enter normalcdf functionality of graphing calculator	normalcdf lower: upper: μ: σ: Paste
Key in the following into the fields	normalcdf
Lower: -E99	lower:-E99
Upper: 13	upper:13
µ:15	µ:15
$\sigma:\sqrt{3}$	$\sigma:\sqrt{3}$
	Paste
Press arrow down key until the cursor is	normalcdf(-E99, 13, 15, $\sqrt{3}$)
on top of "paste" and press enter twice.	.1241065934

Enter normalcdf functionality of graphing calculator again	normalcdf lower: upper: μ : σ : Paste
Key in the following into the fields as	normalcdf
follows:	lower:17 upper:E99
Lower: 17	μ:15
Upper: E99	$\sigma:\sqrt{3}$
µ:15	Paste
$\sigma:\sqrt{3}$	
Press arrow key until the cursor is on top of "Paste" and press [Enter] twice	normalcdf(17, E99, 15, √3) . <mark>1241065934</mark>

Adding both probability values, we get the following 0.1241065934+0.1241065934=0.248 (3sf)

Using inverse Normal Distribution functionality to find Z-Score or number of standard deviations away from mean by input of *p*-values from negative infinity of a normal distribution.

After studying how to find probability upon knowing the values of Z-Score or number of standard deviations away from mean, along with parameters μ and σ . It will be a logical next step to wonder if the reverse is also possible. The TI-84 family of calculator has a functionality that allows students to deduce the Z-score after knowing the probability value from negative infinity of the normal distribution up to the Z - score, along with parameters μ and σ .

The instructions below explain how to get into the "InvNorm" functionality of Ti-84 graphing calculators.

Steps Taken	Calculator Output
-------------	-------------------

Press [2ND] followed by [VARS]	DISTR DRAW 1:normalpdf (2:normalcdf (3:invNorm (4:invT (5:tpdf (6:tcdf ($7:\chi^2$ pdf (
Press arrow down key until cursor is on top of "3:InvNorm" and press [ENTER]	InvNorm Area:
	μ:
	σ:
	Tail: LEFT CENTER RIGHT
	Paste:

Example 5

Given that $W \sim N(6,6)$, find the value of a or the range of values of a for each of the following:

(a) P(W < a) = 0.00144(b) $P(W \ge a) > 0.25$ (c) P(6 < W < a) > 0.4999(d) P(|W| < a) = 0.01(e) $P(|W| \ge a) = 0.975$

Go to InvNorm Functionality of Graphing	Area:
Calculator	μ:
	σ:
	Tail: LEFT CENTER RIGHT
	Paste
Key in the fields as follows	Area: 0.00144
Area:0.00144	μ:6
μ:6	$\sigma:\sqrt{6}$
$\sigma:\sqrt{6}$	Tail: LEFT CENTER RIGHT
Tail: Select "Left"	Paste:
Press down arrow until the cursor is at	invNorm (0.00144, 6, $\sqrt{6}$, LEFT)
"Paste" and press [ENTER] twice and the	-1.300126258
following should appear on the screen	

(a)

(b)	
Go to InvNorm Functionality of Graphing	Area:
Calculator	μ:
	σ:
	Tail: LEFT CENTER RIGHT
	Paste
Key in the fields as follows	Area: 0.25
Area: 0.25	μ:6
μ: 6	$\sigma:\sqrt{6}$
$\sigma:\sqrt{6}$	Tail: LEFT CENTER RIGHT
Tail: RIGHT	Paste
Press down arrow until the cursor is at	invNorm(0.25, 6, $\sqrt{6}$, RIGHT)
"Paste" and press [ENTER] twice and the	7.652155723
following should appear on the screen	

a < 7.65 (3sf)

(c)

Since $\mu = 6$ as well, we can agree that $P(W \le 6) = 0.5$ which implies

P(W < a) > 0.5 + 0.4999

P(W < a) > 0.9999

Go to "invNorm" functionality of graphing	InvNorm
calculator	Area:
	μ:
	σ :
	Tail: LEFT CENTER RIGHT
	Paste:
Key in the fields as follows	InvNorm
Area: 0.9999	Area: 0.9999
μ: 6	μ: 6
$\sigma:\sqrt{6}$	$\sigma:\sqrt{6}$
Tail: Left	Tail: LEFT CENTER RIGHT
	Paste:
Press arrow down key until the cursor is	invNorm(0.9999,6,√6, LEFT)
on top of "Paste" and press [ENTER] key	15.10969287
twice.	

a > 15.1(3sf)

(d) P(|W| < a) = 0.01Rewritten we get the following: P(-a < W < a) = 0.01

Press [Y=] button and press [2ND]	normalcdf
	lower: -X
Select "normalcdf" ontion and fill in as	upper: X
follows:	
lower: -X	$\frac{1}{6}$
Upper: X	0. 00
	Paste
$\frac{1}{\sigma}$	Taste
Scroll down until cursor is on ton of	V_{1} = normal off (V, V, G, $\sqrt{6}$)
"Paste" and press [Enter]	1 = 10111a1cu1(-7, 7, 6, 70)
	12-
	13- V/-
	V5=
	Y6=
	Y7=
	Y8=
Press [MATH] and scroll down to look for	Equation Solver
numeric solver and press [ENTER]	E1:
	E2:
Press [ALPHA] followed by trace and a	Equation Solver
pop up should appear, select Y1 and press	E1:
[ENTER]	Y1
	E2:

Scroll down to the box named "E2" and	Equation Solver
key in 0.01	E1:
	Y1
	E2:
	0.01
	OK
Press [GRAPH] and the following should	Y1 = 0.01
appear	X=0
	Bound= {-1F99 1F99}
	Calua
	Solve
Set X = 0.5	Y1 = 0.01
	X=0.5
	Bound= {-1E99, 1E99}
	Solve
Press [GRAPH] and the following should	Y1 = 0.01
annear on the calculator	Y=0.5882012575808
	A-0.3003012373030
	Bound= {-1£99, 1£99}
	Solve

a = 0.588(3sf)

(e)

 $P(|W| \ge a) = 0.975$ can be rewritten as the following

P(|W| < a) = 1 - 0.975 = 0.025 and hence,

P(-a < W < a) = 0.025

Press [Y=] button and press [2ND]	normalcdf
followed by [VARS] button.	
	lower: -X
Select "normalcdf" option and fill in as	upper: X
follows:	μ: 6
Lower: -X	$\sigma:\sqrt{6}$
Upper: X	
μ:6	Paste
$\sigma:\sqrt{6}$	

Scroll down until cursor is on top of	Y1= normalcdf(-X, X, 6, $\sqrt{6}$)
"Paste" and press [Enter]	Y2=
	Y3=
	Y4=
	Y5=
	Y6=
	Y7=
	Y8=
Press [MATH] and scroll down to look for	Equation Solver
numeric solver and press [ENTER]	E1:
	E2:
Press [ALPHA] followed by trace and a	Equation Solver
pop up should appear, select Y1 and press	E1:
[ENTER]	Y1
	E2:
Scroll down to the box named "E2" and	Equation Solver
key in 0.025	E1:
	Y1
	E2:
	0.025
	ОК
Press [Graph] and the following should	Y1 = 0.025
appear	X=0
	Bound= {-1E99, 1E99}
	Solve

Set X=0.5	Y1 = 0.025 X=0.5 Bound= {-1E99, 1E99}
	Solve
Press [Graph]	Y1 = 0.025
	X=1.2611029611347
	Bound= {-1E99, 1E99}
	Solve

a = 1.26