2022 DHS H2 Physics Prelim Paper 2 Suggested Solutions

1 (a)
$$v_{x} = (6.0^{2} - 4.8^{2})^{1/2}$$
 M1
= 3.6 m s⁻¹ A0
or
6.0 sin $\theta = 4.8$, so $\theta = 53.1^{\circ}$ and $v_{x} = 6.0 cos 53.1^{\circ}$ M1
= 3.6 m s⁻¹ A0
(b) (i) straight line from (0, 4.8) to (0.49, 0) A1
straight line continues with same slope to (0.98, -4.8), labelled Y A1
(ii) a horizontal line A1
from (0, 3.6) to (0.98, 3.6), labelled X A1
velocity/ms⁻¹ $\frac{4.0}{0.0}$ $\frac{100}{0.1002} = 0.3004 = 0.066 = 0.7008 = 0.991 = 10$
 $\frac{100}{0.01002} = 0.3004 = 0.066 = 0.7008 = 0.991 = 10$
 $\frac{100}{0.01002} = 0.3004 = 0.066 = 0.7008 = 0.991 = 10$
 $\frac{100}{-1.0} = \frac{100}{-1.0} = \frac{100}{-1.0} = \frac{100}{-1.0} = \frac{100}{-1.0} = \frac{12}{-1.2} = \frac{12}{-1.2}$

(d)
$$\frac{\text{kinetic energy at maximum height}}{\text{change in gravitational potential energy}} = \frac{\frac{1}{2}(mv_x^2)}{mgh} = \frac{\frac{1}{2}(3.6^2)}{9.81(1.2)}$$
 C1

= 0.56 **A1**

$$\frac{\text{kinetic energy at maximum height}}{\text{change in gravitational potential energy}} = \frac{\frac{1}{2}(mv_x^2)}{\frac{1}{2}(mv_Y^2)} = \frac{\frac{1}{2}(3.6^2)}{\frac{1}{2}(4.8^2)}$$
C1

(e) With air resistance, the resultant force is larger than weight, resulting in larger deceleration, hence the actual time is shorter. **B1**

2 (a)		energy (stored) / work done represented by area under graph	
		energy = ½ (180) (4.0 x 10 ⁻²)	C1
		= 3.6 J	A1

(b)	(i)	either momentum before release is zero		M1
		so s	sum of momenta of trolleys after release is zero	A1
		or	force = rate of change of momentum	M1
			force on trolleys equal and opposite	A1
		or	impulse = change in momentum	M1

impulse on each trolley is equal and opposite **A1**

(ii) 1.
$$M_1V_1 = M_2V_2$$
 B1

2.
$$E = \frac{1}{2} M_1 V_1^2 + \frac{1}{2} M_2 V_2^2$$
 B1

(iii) 1.

or

$$E_{\kappa} = \frac{1}{2}mv^{2}$$

$$= \frac{1}{2}(\frac{m}{m})mv^{2}$$

$$= \frac{(mv)^{2}}{2m}$$

$$= \frac{p^{2}}{2m}$$
A0

2. As trolley B has a smaller mass, it has a larger kinetic energy because momentum is the same/ constant for both trolleys. **B1**

3	(a)	Pha	se difference = $\frac{2\pi t}{T} = \frac{2\pi (2.5 - 1.5)}{3} = \frac{2\pi}{3} = 120^{\circ}$	A1
	(b)	At t :	= 0.75 ms, resultant displacement = $s_Y + s_Z = 4.0 - 1.0 = 3.0 \ \mu m$	A1
	(c)	I oc A	4 ²	C1
	(-)	Thu	$I = k (\Lambda)^2$	
		inus		• •
		and	$I_Z = \kappa (2)^2 = 0.25I$	A 1
	(d)	v = f	$f\lambda = \frac{\lambda}{T}$	C1
		so λ	z = <i>vT</i> = 330 (3.0 x 10 ^{−3}) = 0.99 m	A1
4	(a)	(i)	Current in <i>R</i> ₄ or <i>R</i> ₁ = 0.30 + 0.30 = 0.60 A <i>R</i> = <i>V</i> / <i>I</i>	C1 M1
		or	= 2.4 / 0.60 = 4.0 Ω	A 0
		•.	p.d. across R_3 or R_2 = 2.4 / 2 = 1.2 V	C1
			R = V / I	M1
			= 1.2 / 0.30	• •
		(ii)	$= 4.0 \Omega$ F = 24 + 24 + 12	AU C1
		(")	= 6.0 V	A1
		or		
			total resistance = 10 Ω	C1
			$E = 10 \times 0.60$	
	4.		= 6.0 V	A1
	(a)	total	resistance increases	B1 B1
		Curre	en decreases (in ballery) so lotar power decreases	ы
5	(a) Com	(i) iment	It is to increase the magnetic flux linkage between the coils is: Most candidates answered correctly.	B1
		(ii)	It is to reduce energy losses	R1
		(")	by reducing induced currents	B1
	(b)	(i)	maximum $V_{OUT} = (N_s/N_p) V_p$	
			= (025 / 25 000) 12 000 = 300 V	Δ1
		(ii)	r.m.s. current = peak current $/\sqrt{2}$	AI
		(<i>)</i>	$= 300 / (640 \times \sqrt{2})$	
			= 0.33 A	A 1

- 7 (a) Half-life of a radioactive nuclide is defined as the time taken for half of the original number of radioactive nuclides in a sample to decay on <u>average</u>. B1
 - (b) The beta decay is <u>exothermic / releases energy</u>. B1

Thus, the total binding energy of
$$^{90}_{39}$$
Y and $^{0}_{-1}$ e is more than that of $^{90}_{38}$ Sr .

B1

Since
$$_{-1}^{0}$$
 e has no binding energy, $_{39}^{90}$ Y has a greater binding energy. **B1**

(c) (i) 1.
$$A = \lambda N$$

$$3.7 \times 10^{6} = \frac{\ln 2}{(27.7)(365)(24)(60)(60)}N$$

$$N = 4.66 \times 10^{15}$$
 A1

Mass of 4.66 x 10¹⁵ atoms =
$$\frac{4.66 \times 10^{15}}{6.02 \times 10^{23}}$$
 (90/1000) C1

$$= 6.97 \times 10^{-10} \text{ kg}$$
 A1

OR

Mass of
$$4.66 \times 10^{15}$$
 atoms = $N(90u)$
= $(4.66 \times 10^{15}) (90) (1.66 \times 10^{-27})$ C1
= 6.97×10^{-10} kg A1

Mass of 4.66×10^{15} atoms =N(38 mass of electrons + 38 mass of protons + 52 mass of neutrons)= $(4.66 \times 10^{15}) (38 \times 9.11 \times 10^{-31} + 38 \times 1.67 \times 10^{-27} + 52 \times 1.67 \times 10^{-27})$ = 7.01×10^{-10} kg

(ii) $A = A_o e^{-\lambda t}$

 8 (a) Energy has discrete/fixed values.
 B1 Comments: Generally poorly answered. Use of the word packet does not connote quantised.

- (ii) In the visible region, the <u>intensity</u> of the emitted radiation <u>increases with</u> <u>increasing wavelength</u>.
 B1
 The <u>red region has the longest wavelength</u> and according to the graph highest intensity at 1100 K
 B1
 The hot object is perceived by the eye as glowing red.
- (c) (i) The wavelength, λ_{max} , that corresponds to the peak intensity of the emitted radiation. The higher the temperature, the shorter the λ_{max} . **B1**
 - (ii) advantage: The radiation can be detected at a distance. Hence there is no need for contact between device and the body to measure its temperature.
 B1 disadvantage: At lower temperature, the peak cannot be easily identified.
 B1
- (d) (i) Electric force of attraction on electron provides the centripetal force for its motion about the nucleus.
 B1

$$\frac{e^2}{4\pi\varepsilon_0 r^2} = \frac{mv^2}{r}$$
 C1

$$v = \sqrt{\frac{e^2}{4\pi\varepsilon_0 mr}} = \sqrt{\frac{(1.6 \times 10^{-19})^2}{4\pi (8.85 \times 10^{-12})(9.11 \times 10^{-31})r}}$$
 M1

$$=\frac{15.9}{\sqrt{r}}$$
 A0

(ii)
$$v = \frac{nh}{2\pi mr} = \frac{15.9}{\sqrt{r}}$$

 $n = 1 \text{ so } \frac{h^2}{4\pi^2 m^2 r^2} = \frac{(15.9)^2}{r}$ C1
 $r = \frac{h^2}{4\pi^2 m^2 (15.9)^2} = 0.053 \text{ nm}$ A1

(iii) Energy = potential energy + kinetic energy

$$= -\frac{e^2}{4\pi\varepsilon_0 r} + \frac{1}{2}mv^2$$

= $-\frac{(1.6 \times 10^{-19})^2}{4\pi(8.85 \times 10^{-12})(5.3 \times 10^{-11})} + \frac{1}{2} (9.11 \times 10^{-31}) \frac{(15.9)^2}{(5.3 \times 10^{-11})}$ C1

$$= -2.17 \times 10^{-18} \text{ J}$$

$$= -\frac{2.17 \times 10^{-18}}{1.6 \times 10^{-19}} \text{ eV}$$

= -13.6 eV A0

(e) (i) For minimum wavelength, *n* is infinity

$$\lambda = \frac{1}{1.097 \times 10^7} = 91.2 \text{ nm}$$

(ii)
$$E = \frac{hc}{\lambda} = \frac{(6.63 \times 10^{-34})(3.00 \times 10^8)}{\lambda}$$

 $E\lambda = 1.99 \times 10^{-25}$ J m

$$= 1.99 \times 10^{-25} \quad J (x10^{9}) \text{ nm} \qquad \qquad \textbf{M1}$$
$$= 1.99 \times 10^{-16} \quad J \text{ nm} \qquad \qquad \textbf{A0}$$

(iii)

wavelength λ / nm	$E = \frac{hc}{\lambda} / eV$
121.6	10.23
102.6	12.12
97.3	12.8
95.0	13.1

energy in eV A1

8

5 energy levels shown, with progressively smaller energy	difference
between higher energy levels	C1
Correct energy values for each level	C1
Correct electron transitions from higher to lower energy levels	3 C1

(v) For $\lambda = 434.1$ nm, $E_h - E_l = 2.87$ eV. Hence the transition is from n = 5 to n = 2 A1