

CHIJ ST. THERESA'S CONVENT PRELIMINARY EXAMINATION 2024 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

Paper 2			23 Aug 2024 2 hours 15 minutes
ADDITIONA	L MATHEMATICS		4049/2
CLASS		INDEX NUMBER	
CANDIDATE NAME			

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number in the spaces at the top of this page.

Write in dark blue or black pen.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all the questions.

Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$

where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{(n-r)!r!} = \frac{n(n-1)...(n-r+1)}{r!}$.

2. TRIGONOMETRY

Identities

$$\sin^2\!A + \cos^2\!A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A\cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2 \tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

$$\Delta = \frac{1}{2}ab\sin C$$

- 1 The equation of a curve is $y = 5\sin^2\left(x \frac{\pi}{6}\right)$, where $0 \le x \le \frac{\pi}{2}$.
 - (a) Given that y is decreasing at a rate of 0.3 units per second, find the rate of change of x at $x = \frac{5\pi}{12}$.

$$y = 5\sin^{2}\left(x - \frac{\pi}{6}\right)$$

$$\frac{dy}{dx} = 10\sin\left(x - \frac{\pi}{6}\right)\cos\left(x - \frac{\pi}{6}\right)$$
At $x = \frac{5\pi}{12}$,
$$\frac{dy}{dx} = 10\sin\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{4}\right) = 5$$

$$\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$$

$$-0.3 = 5 \times \frac{dx}{dt}$$

$$\frac{dx}{dt} = -0.06 \text{ units/s}$$
A1

(b) The normal to the curve at $x = \frac{5\pi}{12}$ intersects the vertical axis at (0, k). Find the exact value of k.

Gradient of normal
$$=-\frac{1}{5}$$

At $x = \frac{5\pi}{12}$, $y = 5\sin^2\left(\frac{\pi}{4}\right) = \frac{5}{2}$

M1 – for finding value of y

$$\therefore y - \frac{5}{2} = -\frac{1}{5}\left(x - \frac{5\pi}{12}\right)$$

$$y = -\frac{1}{5}x + \frac{5}{2} + \frac{\pi}{12}$$

At horizontal axis, $x = 0$

$$\therefore k = \frac{5}{2} + \frac{\pi}{12}$$

A1

(a) Find the values of x and y which satisfy the equations 2

$$8^{x} - 2^{-y} = 0,$$
$$\left(\sqrt{125^{x}}\right)^{y} = \frac{1}{\sqrt{5}}.$$

[3]

$$8^x - 2^{-y} = 0$$

$$2^{3x} = 2^{-y}$$

$$y = -3x$$

and

$$\left(\sqrt{125^x}\right)^y = \frac{1}{\sqrt{5}}$$

$$5^{\frac{3xy}{2}} = 5^{-\frac{1}{2}}$$

$$\frac{3xy}{2} = -\frac{1}{2}$$

$$3xy = -1$$

M1 - Correct simplification of equations

Hence, solving simultaneous equations 3x(-3x) = -1

$$9x = 1$$

$$x = \frac{1}{3} \quad or \quad -\frac{1}{3}$$
$$y = -1 \quad or \quad 1$$

$$y = -1$$
 or 1

M1 – Eliminating one variable using substitution

When
$$x = \frac{1}{3}$$
, $y = -1$, $x = -\frac{1}{3}$, $y = 1$

(b) Show that the equation $3(2^{x+2})-1=35(2^{-x})$ has only one solution and find its value correct to 2 significant figures. [5]

$$3(2^{x+2})-1=35(2^{-x})$$

$$12(2^x)-1=\frac{35}{2^x}$$
let $y=2^x$

$$12y-1=\frac{35}{y}$$

$$12y^2-y-35=0$$

$$(4y-7)(3y+5)=0$$

$$y=\frac{7}{4} \text{ or } y=-\frac{5}{3}$$

$$2^x=\frac{7}{4} \text{ or } 2^x=-\frac{5}{3}(rej)$$

$$x\lg 2=\lg\frac{7}{4}$$

$$x=\frac{\lg\frac{7}{4}}{\lg 2}=0.81$$
M1 - Correct substitution to obtain a quadratic equation

M1 - Factorisation

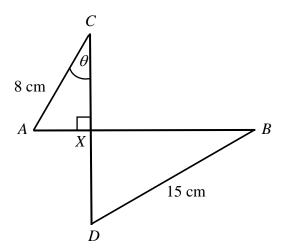
M1 - Factorisation

M1 - Factorisation

A1

A1 - Answer to 2s.f.

3



The diagram shows two perpendicular lines AB and CD which intersect at X. The points A, B, C and D lie on the circumference of a circle. AC = 8 cm, BD = 15 cm, and angle ACD equals to θ° .

Show that the length of AB is $8\sin\theta + 15\cos\theta$. [2]

As A, B, C and D lie on the circumference of a circle,

Angle $ABD = \theta^{\circ}$

$$AX = 8\sin\theta$$

$$XB = 15\cos\theta$$

M1

$$\therefore AB = AX + XB = 8\sin\theta + 15\cos\theta \quad (shown)$$
 AG1

(b) Express AB in the form $R \sin(\theta + \alpha)$, where R > 0 and $0^{\circ} \le \alpha \le 90^{\circ}$. [4]

$$R = \sqrt{8^2 + 15^2} = 17$$

$$\alpha = \tan^{-1} \frac{15}{8} = 61.9^{\circ}$$

$$\therefore 8\sin\theta + 15\cos\theta = 17\sin(\theta + 61.9^{\circ})$$

M1, A1

$$\alpha = \tan^{-1} \frac{15}{8} = 61.9^{\circ}$$

M1

$$\therefore 8\sin\theta + 15\cos\theta = 17\sin(\theta + 61.9^{\circ})$$

(c) Find the value(s) of θ if AB = 16 cm.

 $17\sin(\theta + 61.9275^{\circ}) = 16$ $\sin(\theta + 61.9275^{\circ}) = \frac{16}{17}$ $\alpha = \sin^{-1}\frac{16}{17} = 70.250^{\circ}$ $\theta + 61.9275^{\circ} = 70.250^{\circ} \quad or \quad 180^{\circ} - 70.250^{\circ}$ $\theta = 8.3226^{\circ} \quad or \quad 47.8225^{\circ}$ $\theta = 8.3^{\circ} \quad or \quad 47.8^{\circ}$ A1, A1

[3]

4 A calculator must not be used in this question.

It is given that
$$\frac{\cos(A+B)}{\cos(A-B)} = \frac{1}{3}$$
.

(a) Show that
$$\tan A \tan B = \frac{1}{2}$$
.

[3]

$$\frac{\cos A \cos B - \sin A \sin B}{\cos A \cos B + \sin A \sin B} = \frac{1}{3}$$

 $3\cos A\cos B - 3\sin A\sin B = \cos A\cos B + \sin A\sin B$

 $2\cos A\cos B = 4\sin A\sin B$

$$\frac{\sin A \sin B}{\cos A \cos B} = \frac{2}{4}$$

$$\tan A \tan B = \frac{1}{2}$$

M1 – Correct use of addition formulae

M1 – Cross multiplying and simplifying

M1 – Dividing by $\cos A \cos B$ to obtain expression

(b) If $\tan A = 2 + \sqrt{3}$, find an expression for $\tan B$, in the form $a + b\sqrt{3}$, where a and b are constants.

$$(2+\sqrt{3})\tan B = \frac{1}{2}$$

$$\tan B = \frac{1}{2(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$$

$$\boldsymbol{M1}-Rationalising\ denominator$$

$$=\frac{2-\sqrt{3}}{2(4-3)}$$

$$=\frac{2-\sqrt{3}}{2}$$

$$=1-\frac{1}{2}\sqrt{3}$$

[3]

(c) Hence, express $\sec^2 B$ in the form $c + d\sqrt{3}$, where c and d are constants.

 $\tan^2 B$ $= \left(1 - \frac{1}{2}\sqrt{3}\right)^2$ $= 1 - \sqrt{3} + \frac{3}{4} = \frac{7}{4} - \sqrt{3}$ **FTB1** – Correct squaring of tan B

 $\sec^2 B = 1 + \tan^2 B = \frac{11}{4} - \sqrt{3}$ M1 A1

[4]

[2]

- The equation of a circle is $x^2 + y^2 6x + 16y + 48 = 0$.
 - (a) Find the radius and coordinates of the centre of the circle.

 $(x^{2}-6x)+(y^{2}+16y)+48=0$ $(x-3)^{2}-9+(y+8)^{2}-64+48=0$ $(x-3)^{2}+(y+8)^{2}=25=5^{2}$ M1 – Use of completing the square A1 – for correct $(x-3)^2$ $\mathbf{A1}$ – for correct $(y+8)^2$

Radius = 5 units

Coordinates of center = (3, -8)FTA1

OR

2g = -6-g = 3∴ C(3,-8)and 2f = 16-f = -8 $r = \sqrt{3^2 + (-8)^2 - 48} = 5$ **B1**, **B1**

M1, A1

The point A(0, -4) lies on the circle. Given that AB is a diameter of the circle, find the coordinates of B.

Let B(x, y). As centre is the midpoint of a diameter

$$3 = \frac{x + (0)}{2}$$

M1 – Using midpoint or proportions

- A line with equation y = mx, where m > 0, does not intersect the circle. A is the point on the (c) circle closest to the line.
 - **(i)** Find the value of m. [2]

Equation of line passing through *A* and centre of circle:

gradient =
$$\frac{-4 - (-8)}{0 - 3} = \frac{4}{-3}$$

M1 – for finding equation of line passing through the centre

$$y+4=-\frac{4}{3}x$$

$$y = -\frac{4}{3}x - 4$$

$$\therefore m = \frac{3}{4}$$

A1

(ii) Hence, find the coordinates of the point on the line that is closest to the circle. [2]

$$\frac{3}{4}x = -\frac{4}{3}x - 4$$

M1 – Equating the lines to solve

$$x = -\frac{48}{25}$$

$$\frac{3}{4}x = -\frac{4}{3}x - 4$$

$$x = -\frac{48}{25}$$

$$y = \frac{3}{4}\left(-\frac{48}{25}\right) = -\frac{36}{25}$$

$$\therefore \left(-\frac{48}{25}, -\frac{36}{25}\right)$$

$$\left. \left(-\frac{48}{25}, -\frac{36}{25} \right) \right.$$

- It is given that $f(x) = 4x^p + qx^2 3x + 1$, where p and q are constants, has a factor of x-1 and leaves a remainder of -33 when divided by x+2.
 - (a) Find the values of p and q. [3]

Using factor theorem, $0 = 4(1)^p + q - 3 + 1$

M1 – Correct use of factor theorem 0 = 4 + q - 3 + 1

Using remainder theorem, M1 - Correct use of remainder $-33 = 4(-2)^{p} + 4(-2) + 6 + 1$ theorem

 $-32 = 4(-2)^{p}$ $-8 = (-2)^{p}$ p = 3

A1

Using the values of p and q found in part (a), solve the equation f(x) = 0 completely, leaving non-integer roots in their simplest surd form. [4]

Using factor theorem,

$$4x^3 - 2x^2 - 3x + 1 = 0$$

 $(x-1)(4x^2+2x-1)=0$

 $4x^2 + 2x - 1 = 0$

M1 – Correct use of quadratic formula

M1 – Correct Factorisation

 $x = \frac{-2 \pm \sqrt{2^2 - 4(4)(-1)}}{2(4)}$ $\therefore x = 1 \quad or \\ = \frac{-2 \pm \sqrt{20}}{8} = \frac{-2 \pm 2\sqrt{5}}{8}$

 $=\frac{-1+\sqrt{5}}{4} \quad or \quad \frac{-1-\sqrt{5}}{4}$

Name: _____ Class: ____ ()

7 (a) Prove the identity
$$\frac{1 - 2\cos^2 \theta}{\sin \theta \cos \theta} = -2\cot 2\theta.$$
 [3]

$$LHS = \frac{1 - 2\cos^2\theta}{\sin\theta\cos\theta}$$

$$= \frac{-\left(2\cos^2\theta - 1\right)}{\frac{1}{2}\left(2\sin\theta\cos\theta\right)}$$

$$= \frac{-\cos 2\theta}{\frac{1}{2}\sin 2\theta}$$

$$= \frac{-2\cos 2\theta}{\sin 2\theta}$$

$$= -2\cot 2\theta = RHS \quad (shown)$$
M1 - Correct use of double angle formulae for $\cos 2\theta$

M1 - Correct use of double angle formulae for $\cos 2\theta$

M1 - Correct use of double angle formulae for $\cos 2\theta$

(b) Hence, solve the equation
$$\frac{1-2\cos^2\theta}{\sin\theta\cos\theta} + \tan 2\theta + 1 = 0$$
, for $0^\circ \le \theta \le 90^\circ$. [5]

$$-2\cot 2\theta + \tan 2\theta + 1 = 0$$

$$\frac{-2}{\tan 2\theta} + \tan 2\theta + 1 = 0$$

$$(\tan 2\theta)^2 + \tan 2\theta - 2 = 0$$

$$(\tan 2\theta + 2)(\tan 2\theta - 1) = 0$$

$$\tan 2\theta = -2$$

$$Basic Angle \alpha$$

$$= \tan^{-1} 2$$

$$= 63.435^{\circ}$$

$$or$$

$$= 45^{\circ}$$

$$\theta = 58.3^{\circ}, 148.3^{\circ}(rej)$$

$$\therefore \theta = 22.5^{\circ}, 58.3^{\circ}$$

M1 - Correctly forming quadratic equation

M1 - Correctly solving quadratic equation

M1 - Correctly solving quadratic equation

M1 - Correctly finding basic angle for $\tan 2\theta = -2$

8 The blood alcohol concentration, *C* mg/L, in a person *t* minutes after he consumes a bottle of wine can be modelled by the formula

$$C = 1250 \left(e^{kt} - e^{-0.1t} \right).$$

(a) In Singapore, a driver can be charged with drink driving if he drives when his blood alcohol concentration exceeds 800mg/L. When Jonathan consumes a bottle of wine, his blood alcohol concentration will only fall to 800mg/L after three hours.

Show that k = -0.0025 when corrected to 2 significant figures, and find his blood alcohol concentration after 1 hour. [4]

$$800 = 1250 \left(e^{180k} - e^{-0.1(180)}\right)$$

$$\frac{800}{1250} = e^{180k} - e^{-18}$$

$$e^{180k} = \frac{800}{1250} + e^{-18}$$

$$180k = \ln\left(\frac{800}{1250} + e^{-18}\right)$$

$$k = -0.0024793$$

When $t = 60$,
$$C = 1250 \left(e^{-0.0024793(60)} - e^{-0.1(60)}\right)$$

$$= 1074.123$$

$$= 1070 \text{ mg/L}$$

M1 - Separating constants and variable

M1 - Correctly using logarithms to solve for k

AG1

Using k = -0.0025,

(b) Find the rate of change of Jonathan's blood alcohol concentration after 1 hour. [2]

$$\frac{dC}{dt} = 1250 \left(-0.0025e^{-0.0025t} + 0.1e^{-0.1t} \right)$$
When $t = 60$,
$$\frac{dC}{dt} = 1250 \left(-0.0025e^{-0.0025(60)} + 0.1e^{-0.1(60)} \right)$$

$$= -2.3799$$

$$= -2.38 \text{ mg/Lmin}$$
B1

(c) After consumption of alcohol, the blood alcohol concentration will rise to a peak before decreasing slowly over time. Explain why the blood alcohol concentration found in part (a) is not the peak level, and find the peak blood alcohol concentration level. [5]

When $t = 60$, $\frac{dC}{dt} = -2.38 \neq 0$	B1				
Hence blood alcohol concentration is not at peak.					
$\frac{dC}{dt} = 1250 \left(-0.0025e^{-0.0025t} + 0.1e^{-0.1t} \right) = 0$ $-0.0025e^{-0.0025t} + 0.1e^{-0.1t} = 0$	M1 – equating to 0 to solve				
$0.0025e^{-0.0025t} = 0.1e^{-0.1t}$					
$\frac{e^{-0.0025t}}{e^{-0.1t}} = \frac{0.1}{0.0025}$	M1 – Correctly solving				
$e^{0.0975t} = 40$	using logarithms				
$0.0975t = \ln 40$					
t = 37.835 mins	A1				
$\Rightarrow C = 1250 \left(e^{-0.0025(37.835)} - e^{-0.1(37.835)} \right)$					
=1108.756	A1				
=1110 mg/L	AI				

9 (a) The equation of a curve is $y = \ln \sqrt{\frac{x^2 + 1}{2x + 1}}$.

Show that
$$\frac{dy}{dx} = \frac{x}{x^2 + 1} - \frac{1}{2x + 1}$$
. [4]

$$y = \ln \sqrt{\frac{x^2 + 1}{2x + 1}}$$
$$= \frac{1}{2} \left[\ln \left(x^2 + 1 \right) - \ln \left(2x + 1 \right) \right]$$

 $\begin{array}{l} \textbf{B1}-\text{Simplifying Logarithms using} \\ \text{power rule} \end{array}$

B1 – Simplifying Logarithms using quotient rule

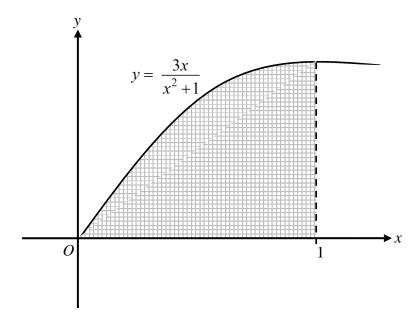
$$\frac{dy}{dx} = \frac{1}{2} \left(\frac{2x}{x^2 + 1} - \frac{2}{2x + 1} \right)$$
$$= \frac{x}{x^2 + 1} - \frac{1}{2x + 1} \quad (shown)$$

A2,1 – Correct derivatives

(b) The diagram below shows part of the graph of $y = \frac{3x}{x^2 + 1}$.

Using the result from part (a), find the area of the shaded region bounded by the curve, the x- axis and the line x = 1. Express your answer in the form $a \ln b$, where a and b are constants.

[6]



Continuation of working space for Question 9.

By reverse differentiation

$$\int \frac{x}{x^2 + 1} - \frac{1}{2x + 1} dx = \ln \sqrt{\frac{x^2 + 1}{2x + 1}} + c$$

$$\int \frac{x}{x^2 + 1} \, dx = \ln \sqrt{\frac{x^2 + 1}{2x + 1}} + \frac{1}{2} \ln (2x + 1) + c$$

B1 – Correct identification of reverse differentiation

$$\mathbf{B1} - \frac{1}{2}\ln\left(2x+1\right)$$

Area of shaded region

$$= \int_0^1 \frac{3x}{x^2 + 1} \, \mathrm{d}x$$

$$=3\int_0^1 \frac{x}{x^2+1} dx$$

$$= 3 \left[\ln \sqrt{\frac{x^2 + 1}{2x + 1}} + \frac{1}{2} \ln (2x + 1) \right]_0^1$$

$$= 3 \left[\left(\ln \sqrt{\frac{2}{3}} + \frac{1}{2} \ln 3 \right) - 0 \right]$$

$$= 3\left(\frac{1}{2}\ln\frac{2}{3} + \frac{1}{2}\ln 3\right)$$

$$=\frac{3}{2}\ln\left(\frac{2}{3}\times3\right)$$

$$=\frac{3}{2}\ln 2$$

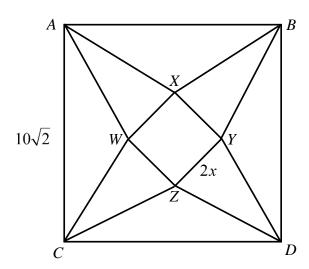
B1 – Correct definite integral

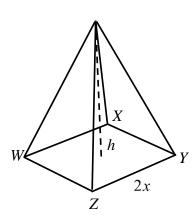
M1 – substitution into a logarithmic function to find value

M1- combining into single fraction using logarithm laws

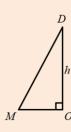
A1 – Simplified form

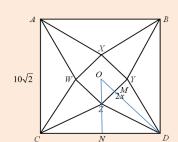
In the diagram below, ABCD is a square paper with side $10\sqrt{2}$ cm. The net of a regular pyramid **10** with square base WXYZ was cut from the paper. AB is parallel to WY and the base of the pyramid has sides 2x cm.





By expressing the perpendicular height, h cm, of the pyramid in terms of x, show that $V = \frac{8}{3}x^2\sqrt{25-5x}$. [4]





Let centre of square paper be O and midpoint of YZ and CD be M and N respectively.

$$OM = \frac{1}{2}XY = x$$

$$ON = ND = \frac{1}{2}AC = 5\sqrt{2}$$

$$OD = \sqrt{\left(5\sqrt{2}\right)^2 + \left(5\sqrt{2}\right)^2} = \sqrt{100} = 10$$

$$\Rightarrow MD = 10 - x$$

$$M1$$
 – Finding OD or AD

$$h = \sqrt{MD^2 - OM^2}$$

$$= \sqrt{(10 - x)^2 - x^2}$$

$$= \sqrt{100 - 20x}$$

$$=\sqrt{100-20x}$$

$$V = \frac{1}{3} (2x)^2 \sqrt{100 - 20x}$$

$$= \frac{1}{3} \left(4x^2 \right) 2\sqrt{25 - 5x}$$

$$=\frac{8}{3}x^2\sqrt{25-5x} \quad (shown)$$

M1 – Using Pythagoras Thm to find *h*

$$\mathbf{A1} - h = \sqrt{100 - 20x}$$

AG1

(b) Given that x can vary, find the value of x for which the volume of the pyramid is stationary. [6]

$$\frac{dV}{dx} = \frac{16}{3}x\sqrt{25 - 5x} + \frac{8}{3}x^2 \left(\frac{-5}{2\sqrt{25 - 5x}}\right)$$

B1, B1 – Correctly using product rule

At stationary point,

$$0 = \frac{16}{3}x\sqrt{25 - 5x} + \frac{8}{3}x^2 \left(\frac{-5}{2\sqrt{25 - 5x}}\right)$$

$$\frac{16}{3}x\sqrt{25-5x} = \frac{8}{3}x^2 \left(\frac{5}{2\sqrt{25-5x}}\right)$$

$$\frac{16}{3}x(25-5x) = \frac{20}{3}x^2$$

$$20x - 5x^2 = 0$$

$$5x(4-x)=0$$

$$x = 0 (rej)$$
 or $x = 4$

M1 – Finding stationary point by equating to 0

M1 – removing surds in denominator through cross multiplication or combining into a single fraction

M1 – Correct simplification

A1

(c) Determine whether this value of x gives a maximum or minimum value for the volume of the pyramid. [2]

By first derivative test,

x		3.99	4	4.01
$\frac{\mathrm{d}V}{\mathrm{d}x}$		+	0	-
Shaj	pe	/		\

M1 – First derivative test

When x = 4, Volume is a **maximum**.