

Section A: Pure Mathematics

Question 1

No.	Suggested Solution	Remarks for Student
	$x = 3t^2, \ y = 6t$	
(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 6t \ , \ \frac{\mathrm{d}y}{\mathrm{d}t} = 6 \Longrightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{t}$	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0.4 \Longrightarrow \frac{1}{t} = 0.4 \Longrightarrow t = 2.5$	
(ii)	Equation of tangent at point $P(3p^2, 6p)$ on C:	
	$y - 6p = \frac{1}{p} \left(x - 3p^2 \right)$	
	When $x = 0$, $y - 6p = \frac{1}{p}(-3p^2) \Rightarrow y = -3p + 6p = 3p$	
	Coordinates of <i>D</i> are (0, 3 <i>p</i>)	
	Mid-point of <i>PD</i> is $\left(\frac{3p^2}{2}, \frac{9p}{2}\right)$	
	$x = \frac{3p^2}{2}, y = \frac{9p}{2} \Rightarrow x = \frac{3}{2} \left(\frac{2}{9}y\right)^2 = \frac{2}{27}y^2$	
	$\therefore \text{ Cartesian equation is } x = \frac{2}{27}y^2$	

No.	Suggested Solution	Remarks for Student
	$\frac{9x^2 + x - 13}{(2x - 5)(x^2 + 9)} = \frac{A}{2x - 5} + \frac{Bx + C}{x^2 + 9}$	
	$9x^{2} + x - 13 = A(x^{2} + 9) + (Bx + C)(2x - 5)$	
	$x = \frac{5}{2}$: $9\left(\frac{5}{2}\right)^2 + \frac{5}{2} - 13 = A\left(\left(\frac{5}{2}\right)^2 + 9\right) \Longrightarrow A = 3$	

$$x = 0: -13 = 3(9) + C(-5) \Rightarrow C = 8$$

$$x = 1: 9 + 1 - 13 = 3(1 + 9) + (B + 8)(2 - 5) \Rightarrow B = 3$$

$$\int_{0}^{2} \frac{9x^{2} + x - 13}{(2x - 5)(x^{2} + 9)} dx = \int_{0}^{2} \frac{3}{2x - 5} + \frac{3x + 8}{x^{2} + 9} dx$$

$$= \frac{3}{2} [\ln|2x - 5|]_{0}^{2} + \int_{0}^{2} \frac{3x}{x^{2} + 9} dx + \int_{0}^{2} \frac{8}{x^{2} + 9} dx$$

$$= -\frac{3}{2} \ln 5 + \frac{3}{2} [\ln(x^{2} + 9)]_{0}^{2} + \frac{8}{3} [\tan^{-1}\frac{x}{3}]_{0}^{2}$$

$$= -\frac{3}{2} \ln 5 + \frac{3}{2} \ln 13 - \frac{3}{2} \ln 9 + \frac{8}{3} \tan^{-1}\frac{2}{3}$$

$$= \frac{3}{2} \ln \frac{13}{45} + \frac{8}{3} \tan^{-1}\frac{2}{3}$$

$$\therefore a = \frac{3}{2}, b = \frac{13}{45}, c = \frac{8}{3}, d = \frac{2}{3}$$

You may use the GC to verify your answers.

No.		Suggeste	ed Solution	Remarks for Student
(i) (a)	Distance re $2[4+8+1]$ $= 2\left[\frac{10}{2}(2)\right]$ $= 10(8+30)$	an by athelete who $a^{2} + + 40$ (4) + (10 - 1)(4) (6) = 440m	completes first 10 stages	
(b)	Distance ru	un by athelete who	completes first <i>n</i> stages	
	$= 2 \left\lfloor \frac{n}{2} \left(2 \left(\frac{n}{2} \right) \right) \right\rfloor$ $= n \left(4n + 4 \right)$ For $n \left(4n - \frac{n}{2} \right)$	4)+(n-1)(4)) ↓) +4) ≥ 5000, conside n(4n+4)	er the following	
	34	4760 < 5000		
	35	5040 > 5000		
	Least <i>n</i> is 3	35.		

	$O_{4i} = A$	
	$OA_1 - 4$	
$A_1A_2 = 4$	$OA_2 = 8 = 4(2)$	
$A_2A_3 = 8 = 4(2)$	$OA_3 = 16 = 4(2)^2$	
$A_3A_4 = 16 = 4(2)^2$	$OA_4 = 32 = 4(2)^3$	
:	:	
$A_{n-1}A_n = 4(2)^{n-2}$	$OA_n = 4(2)^{n-1}$	
Required distance		
=2(4+8+16++4)	$4(2)^{n-1}$)	
$=2(4)\left(\frac{2^n-1}{2-1}\right)$		
$=8(2^n-1)$		
Let <i>B</i> be the point w such that	here he completes 10	km exactly. Need <i>n</i>
$8(2^n-1) \ge 10000$		
$\Rightarrow 2^n \ge 1 + \frac{10000}{8}$		
\Rightarrow <i>n</i> \ge 10.289		
⇒Athlete ran a total but not the 11 th stage	of 10km after compl e.	eting the 10 th stage
Distance covered be	tween O and $B = 10$ ($000 - 8(2^{10} - 1)$
	= 181	6 6
$OA_{11} = 4(2)^{11-1} = 4(2)^{11-1}$	96	
Since $OA_{11} > 1816$, A_{11} when he reaches	athlete is running awa <i>B</i> and his distance fr	y from <i>O</i> towards om <i>O</i> is 1816 m.

(b)(i)

$$w = \sqrt{3} - i = 2e^{i\left(-\frac{\pi}{6}\right)}$$

$$|w| = 2 \text{ and } \arg(w) = -\frac{\pi}{6}$$

$$\Rightarrow |w^{6}| = |w|^{6} = 2^{6} \text{ and } \arg(w^{6}) = 6\arg(w) + 2\pi = -\pi + 2\pi = \pi$$

$$\Rightarrow w^{6} = 64e^{i\pi}$$
Or $w^{6} = \left(2e^{i\left(-\frac{\pi}{6}\right)}\right)^{6} = 2^{6}e^{i(-\pi)} = 64e^{i\pi}$
(ii)
For $\frac{w^{n}}{w^{*}}$ to be real, $\arg\left(\frac{w^{n}}{w^{*}}\right) = 0$ or π

$$\Rightarrow -\frac{n\pi}{6} - \left(\frac{\pi}{6}\right) = -\frac{(n+1)\pi}{6} = 0, \pm \pi, \pm 2\pi, \pm 3\pi, \dots$$
3 smallest positive whole number values of n are
 $-\frac{(n+1)\pi}{6} = -\pi, -2\pi, -3\pi \Rightarrow n = 5, 11, 17$

Section B: Statistics

No.	Suggested Solution	Remarks for Student
(i)	Re-order the list of customers by alphabetical order of their names.	
	We need a sample size of $10000 \times 0.05 = 500$	
	Note that $10000 / 500 = 20$	
	Thus, first customer is selected by randomly generating a number from 1 to 20 inclusive, say 4.	
	Then every 20^{th} customer from the 4^{th} customer will be included in the sample.	
	In other words, the sample of 500 will consist of the 4^{th} , 24^{th} , 44^{th} , 9984 th customers.	
(ii)	Advantage: customers of different first names (which has relation with religion and race as well) have equal chance of being represented.	
	Disadvantage: Any customer who is not able to make it for the survey would result in re-sampling which may be time	

consuming.	

No.	Suggested Solution	Remarks for Student
	Available are 3 goalkeepers, 8 defenders, 5 midfielders, 6 attackers. Total:22	
	Team consists of 1 goalkeeper, 4 defenders, 2 midfielders, 4 attackers. Total:11	
(i)	${}^{3}C_{1} {}^{8}C_{4} {}^{5}C_{2} {}^{6}C_{4} = 31500$ different teams can be formed.	
(ii)	Case 1: Brother(midfield) not in but Brother(attacker) in	
	${}^{3}C_{1} {}^{8}C_{4} {}^{4}C_{2} {}^{5}C_{3} = 12600$ possible teams	
	<u>Case 2: Brother(attacker) not in but Brother(midfield) in</u> ${}^{3}C_{1} {}^{8}C_{4} {}^{4}C_{1} {}^{5}C_{4} = 4200$ possible teams	
	\therefore Total number of possible teams is $12\ 600 + 4200 = 16800$	
(iii)	Let <i>A</i> be the midfielder who can play as either midfielder or defender.	
	After the brothers left, there are 3 goalkeepers and 5 attackers.	
	Case 1: A serves as a possible midfielder	
	There are 4 midfielders and 8 defenders	
	${}^{3}C_{1} {}^{8}C_{4} {}^{4}C_{2} {}^{5}C_{4} = 6300 \text{ possible teams}$	
	Case 2: A serves as a possible defender	
	There are 3 midfielders and 9 defenders	Note that teams formed
	${}^{3}C_{1} {}^{9}C_{4} {}^{3}C_{2} {}^{5}C_{4} = 5670$ possible teams	without <i>A</i> is counted twice in Cases 1 and 2.
	Number of possible teams without $A = {}^{3}C_{1} {}^{8}C_{4} {}^{3}C_{2} {}^{5}C_{4} = 3150$	
	Total: $6300 + 5670 - 3150 = 8820$	

No.	Suggested Solution	Remarks for Student
(i)	Let X be the number of 6's out of 10 rolls of the fair die.	
	$X \sim B\left(10, \frac{1}{6}\right)$	
	$P(X=3) \approx 0.155$	
(ii)	Let Y be the number of 6's out of 60 rolls of the fair die.	

(iii)	$Y \sim B\left(60, \frac{1}{6}\right)$ Since $n = 60$ is large, and $np = 10 > 5$ and $n(1-p) = 50 > 5$, $Y \sim N\left(10, \frac{25}{3}\right)$ approximately. $P(5 \le Y \le 8) = P(4.5 \le Y \le 8.5)$ by continuity correction ≈ 0.273 Let <i>W</i> be the number of 6's out of 60 rolls of the biased die.	Be sure to check the conditions and state the approximate distribution used.
(iii)	W ~ B $\left(60, \frac{1}{15}\right)$ Since $n = 60$ is large, and $p = \frac{1}{15}$ is small such that np = 4 < 5, $W \sim Po(4)$ approximately. P $\left(5 \le W \le 8\right) = P\left(W \le 8\right) - P\left(Y \le 4\right)$ ≈ 0.350	Be sure to check the conditions and state the approximate distribution used.

No.	Suggested Solution	Remarks for Student
(a)(i)	y	
	AUSPICIUM MELLOPISAEM	
(ii)	y	
	1 • • •	
	•	
	• x	
	10	
(b)(i)	Product moment correlation coefficient between <i>m</i> and <i>P</i> = 0.9470 (4dm)	
	Product moment correlation coefficient between $\ln m$ and P	
	=-0.9749 (4dp)	

(ii)	-0.9749 is nearer to -1 compared to -0.9470 .	
(11)	The scatter diagram of P on m also suggest a non-linear	
	relationship between the 2 variables.	
	Thus $P = c \ln m + d$ is the better model.	
	$P = 195693.5593 - 33659.72805 \ln m$	
	$P = 196000 - 33700 \ln m \ (3 \text{ s.f.})$	
(iii)	From GC, estimated price is \$64015.93 ≈ \$64000 (3 s.f.)	

No.	Suggested Solution	Remarks for Student
(i)	Null hypothesis, $H_0: \mu = 4.3$	
(-)	Alternative hypothesis, $H_1: \mu < 4.3$	
	μ is the population mean number of minutes the bus is late.	
(ii)	Perform a one-tailed test at 10% significance level. Under H ₀ , $\overline{X} = 4.3$ ((1))	
	$I = \frac{1}{S/\sqrt{n}} \sim t(n-1),$	
	From sample, $n = 10$, with $\overline{x} = \overline{t}$ and	
	$s = \sqrt{\frac{10}{9}k^2} = \sqrt{\frac{10}{9}(3.2)}$	
	Given that null hypothesis is not rejected,	
	p-value > 0.1, that is,	
	$ P\left(T < \frac{\overline{t} - 4.3}{\sqrt{\frac{10}{9}(3.2)}}\right) > 0.1 $ $ P\left(T < \frac{3(\overline{t} - 4.3)}{\sqrt{10}}\right) > 0.1 $	
	$\sqrt{3.2}$	
	$\frac{3(\bar{t}-4.3)}{\sqrt{3.2}} > -1.38303$	
	$\overline{t} > 3.4753 \approx 3.48$	
	\therefore Set of values of \overline{t} is (3.48, ∞).	
(iii)	Perform a one-tailed test at 10% significance level. Under H ₀ ,	
	$T = \frac{\overline{X} - 4.3}{S / \sqrt{n}} \sim t(n-1),$	
	From sample, $n = 10$, with $\overline{x} = 4.0$ and $s = \sqrt{\frac{10}{9}k^2}$	

Given that null hypothesis is rejected,	
p-value < 0.1, that is,	
$P\left(T < \frac{4.0 - 4.3}{\sqrt{\frac{10}{9}(k^2)}}\right) < 0.1$	
$P\left(T < \frac{-0.9}{k}\right) < 0.1$	
$\frac{-0.9}{k} < -1.38303$	
k < 0.65075	
$0 < k^2 < 0.42347$, that is, $0 < k^2 < 0.423$	
\therefore Set of values of k^2 is (0,0.423).	
204240	

No.	Suggested Solution	Remarks for Student
(i)(a)	Required probability = $\left(\frac{1}{10}\right)\left(\frac{2}{10}\right)\left(\frac{1}{10}\right) = \frac{1}{500}$	
(b)	Required probability = $1 - \left(\frac{9}{10}\right) \left(\frac{8}{10}\right) \left(\frac{9}{10}\right) = \frac{44}{125}$	
(c)	$P(x \times +) + P(x + x) + P(+ \times x)$	
	$= \left(\frac{3}{10}\right) \left(\frac{1}{10}\right) \left(\frac{2}{10}\right) + \left(\frac{3}{10}\right) \left(\frac{3}{10}\right) \left(\frac{4}{10}\right) + \left(\frac{4}{10}\right) \left(\frac{1}{10}\right) \left(\frac{4}{10}\right)$	
	$=\frac{29}{500}$	
(ii)	P(the other two symbols are + and o exactly one is \star)	
	$- \qquad P(+o\star, +\star o, o+\star, o\star +, \star +o, \star o+)$	
	P(at least one \star)-P($\star \star \star$)-P(exactly 2 \star are displayed)	
	$\left(\frac{4}{10}\right)\left(\frac{4}{10}\right)\left(\frac{1}{10}\right) + \left(\frac{4}{10}\right)\left(\frac{2}{10}\right)\left(\frac{3}{10}\right) + \left(\frac{2}{10}\right)\left(\frac{3}{10}\right)\left(\frac{1}{10}\right)$	
	$= \frac{+\left(\frac{2}{10}\right)\left(\frac{2}{10}\right)\left(\frac{2}{10}\right) + \left(\frac{1}{10}\right)\left(\frac{3}{10}\right)\left(\frac{3}{10}\right) + \left(\frac{1}{10}\right)\left(\frac{4}{10}\right)\left(\frac{2}{10}\right)}{-1}$	
	$\frac{44}{125} - \frac{1}{500} - \left(\frac{1}{10}\right) \left(\frac{2}{10}\right) \left(\frac{9}{10}\right) - \left(\frac{1}{10}\right) \left(\frac{8}{10}\right) \left(\frac{1}{10}\right) - \left(\frac{9}{10}\right) \left(\frac{2}{10}\right) \left(\frac{1}{10}\right)$	

$$=\frac{\frac{1}{1000}(16+24+6+8+9+8)}{\frac{1}{1000}(352-2-18-8-18)}=\frac{71}{306}$$

No.	Suggested Solution	Remarks for Student
	Let X be the number of originals sold per week. $X \sim Po(2)$	
	Let <i>Y</i> be the number of prints sold per week. $Y \sim Po(11)$	
(i)(a)	$P(Y > 8) = 1 - P(Y \le 8) \approx 0.768$	
(b)	$X + Y \sim \operatorname{Po}(13)$	
	$P(X+Y<15) = P(X+Y\le14) \approx 0.675$	
(ii)	Let <i>W</i> be the number of originals sold in <i>n</i> weeks. $W \sim Po(2n)$	
	P(W < 3) < 0.01	
	P(W = 0) + P(W = 1) + P(W = 2) < 0.01	
	$e^{-2n} + 2ne^{-2n} + \frac{e^{-2n}(2n)^2}{2} < 0.01$	
	$e^{-2n}(1+2n+2n^2) < 0.01$ (1)	Use GC smartly. Though you are
	$n = e^{-2n}(1+2n+2n^2)$	supposed to use (1), you can key in
	4 0.01375 >0.01	P(W < 3) < 0.01
	5 0.00277 < 0.01	instead of (1) which is more prone to
	\therefore least <i>n</i> is 5.	typos.
(iii)	Let <i>V</i> be the number of prints sold in 52 weeks. $V \sim Po(572)$	
	Since $572 > 10$, $V \sim N(572, 572)$ approximately	
	P(V > 550) = P(V > 550.5) by continuity correction	
	≈ 0.816	
(iv)	Regarding Poisson distribution:	
	Number of paintings sold each week is unlikely to remain constant uniformly, as there are peak and lull periods for art/painting exhibition.	

Regarding independence:	
Sales between originals and prints are unlikely to be independent. For example, a person organizing an art event may buy an original for display, and at the same time will need a number of prints for advertising purpose.	

