

Upper Secondary Chemistry

Chemical Energetics

ENTHALPY CHANGE

The transfer of thermal energy during a reaction is called enthalpy change (ΔH), of the reaction.

$$\Delta H = \sum B.E._{broken} - \sum B.E._{formed}$$

EXOTHERMIC REACTIONS

An exothermic reaction transfers thermal energy to its surroundings, leading to an increase in the temperature of the surroundings.

ENDOTHERMIC REACTIONS

An endothermic reaction the surroundings.

transfers thermal energy from the surroundings, leading to a decrease in the temperature of

EXOTHERMIC ENDOTHERMIC ΛH NEGATIVE **POSITIVE** THERMAL ENERGY **RELEASED** ABSORBED **ENERGY OF PRODUCTS** LOWER HIGHER **TEMPERATURE OF INCREASES DECREASES SURROUNDINGS** DIAGRAMS Progress of reaction Progress of reaction

ACTIVATION ENERGY

The activation energy E_a , is the minimum energy that colliding particles must have in order to react.

QUESTION: Find the enthalpy change of $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$ and draw the reaction pathway diagram.

$$B.E.(C-H) = 410kJmol^{-1}$$

$$B.E.(O = O) = 496kJmol^{-1}$$

$$B.E.(C = O) = 805kJmol^{-1}$$

$$B.E.(O-H) = 460kJmol^{-1}$$

ANSWER:

$$\Delta H = \sum B.E._{broken} - \sum B.E._{formed}$$
= 410 × 4 + 2 × 496 - 805 × 2 - 460 × 4
= -818 kJmol⁻¹

Alcohols, Carboxylic Acids, & Esters

	ALCOHOL	CARBOXYLIC ACIDS	
GENERAL FORMULA	C _n H _{2n} OH	C _n H _{2n+1} CO ₂ H	
SUFFIX	-OL	-OIC ACID	
FUNCTIONAL GROUP	-он	-CO₂H	
TYPE OF REACTION	OXIDATION, CONDENSATION	REDUCTION, CONDENSATION	

ECTED	MADE FROM		STRUCTURE
ESTER	ALCOHOL	CARBOXYLIC ACID	SIRUCTURE
ETHYL ETHANOATE	ETHANOL	ETHANOIC ACID	H-C-C H H H H H H
PROPYL METHANOATE	PROPAN-1-OL	METHANOIC ACID	H-C H H H H H H H H H H H H H H H H H H
METHYL BUTANOATE	METHANOL	BUTANOIC ACID	H

OXIDATION OF ALCOHOL

ethanol + oxygen --- ethanoic acid + water

$$CH_3CH_2OH(l) + 2[O] \longrightarrow CH_3COOH(aq) + H_2O(l)$$

ESTERIFICATION

ethanoic + ethanol
$$\leftarrow$$
 ethyl + water acid + ethanoate

$$CH_{3}COOH(I) + C_{2}H_{5}OH(I) \xrightarrow{conc} CH_{3}COOC_{2}H_{5}(aq) + H_{2}O(I)$$