On	Solutions
<u>(a)</u>	$A = \{2, 4, 6\}$
1(u)	$B = \{3, 6\}$
	$C = \{1, 2\}$
	B and C are mutually exclusive since $B \cap C = \emptyset$
(b)	A and B are independent and A and C are independent
	$\frac{\text{Method 1}}{P(4)} = \frac{3}{2} = 1$
	$P(A) = \frac{-1}{6} = \frac{-1}{2}$ $P(B) = \frac{2}{1}$
	$P(B) = \frac{1}{6} = \frac{1}{3}$ $P(C) = \frac{2}{3} = \frac{1}{3}$
	$F(C) = \frac{1}{6} = \frac{1}{3}$ $A \cap B = \{6\}$
	$A \cap C = \{1\}$
	$P(A \cap B) = \frac{1}{6}$
	$P(A \cap C) = \frac{1}{6}$
	$P(A) \times P(B) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6} = P(A \cap B)$
	$P(A) \times P(C) = - \times - = - = P(A \cap C)$ Hence A and B are independent and A and C are independent events
	Method 2
	For set <i>B</i> only "6" is even, hence $P(A B) = \frac{1}{2}$
	$P(A) = \frac{3}{6} = \frac{1}{2}$
	Hence $P(A B)=P(A)$. $\therefore A$ and B are independent.
	For set C only "2" is even, hence $P(A C) = \frac{1}{2}$
	$P(A) = \frac{3}{6} = \frac{1}{2}$
	Hence $P(A C)=P(A)$. $\therefore A$ and C are independent.

2024 H1 Maths JC2 LCP1 Solutions

2(a)	
	P(faulty mug)= $0.35 \times 0.03 + 0.65 \times 0.06 = \frac{99}{2000} = 0.0495$
b(i)	P(exactly one mug faulty)
	$=0.0495 \times (1 - 0.0495) \times 2 = 0.0941$ (to 3 sig fig)
b(ii)	Method 1
	P(exactly one faulty, given that both made by A)
	291 0.0702
	$= 0.03 \times (1 - 0.03) \times 2 = \frac{1}{5000} = 0.0582$
	Method 2
	P(exactly one faulty, given that both made by A)
	P(exactly one mug is faulty \cap both made by A)
	P(both made by A)
	$0.35 \times 0.03 \times 0.35 \times (1 - 0.03) \times 2$
	$= 0.03 \times (1 - 0.03) \times 2 = \frac{291}{5000} = 0.0582$

$P(L T) = \frac{P(L \cap T)}{P(T)} = \frac{\frac{6}{25}}{\frac{2}{3}} = \frac{9}{25}$
$P(L \cup T) = P(L) + P(T) - P(L \cap T) = \frac{2}{5} + \frac{2}{3} - \frac{6}{25} = \frac{62}{75}$
$P(L \cap T') = P((L \cup T)') = 1 - P(L \cup T)$
$=1 - \frac{62}{75} = \frac{13}{75} = 0.173 \text{ (to 3 sf)}$
Method 1
$[\mathbf{P}(L) - \mathbf{P}(L \cap T)] + [\mathbf{P}(T) - \mathbf{P}(L \cap T)]$
$= \left(\frac{2}{5} - \frac{6}{25}\right) + \left(\frac{2}{3} - \frac{6}{25}\right) = \frac{44}{75} = 0.587 \text{ (to 3 sf)}$
Method 2
$P(L \cup T) - P(L \cap T) = \frac{62}{75} - \frac{6}{25} = \frac{44}{75} = 0.587$

4(a)	Consider the 2 Biology books as 1 unit
	Number of different arrangements = $9 \times 2! = 725760$
(b)	Method 1
	Consider the 3 Chemistry books as 1 unit
	Number of different arrangements such that the Chemistry books are together =
	8×3!
	Probability that the Chemistry books are not all next to one another =
	$1 - \frac{8 \times 3!}{1 - 14} - 0.933$ (to 3 sig fig)
	$10! 10! 15^{-0.055(00536 Hg)}$
	Method 2
	P(Chemistry books are not all next to one another)
	= P(all separated) + P(2 together, 1 separated)
	$r(11 \text{ Charrietars has been accounted }) = 71 \cdot \frac{8}{2}$
	n(all Chemistry books are separated) = $7! \times P_3$
	n(1 Chemistry book is separated from 2 Chemistry books which are together)
	$= 7! \times^{8} \mathbf{P}_{2} \times {}^{3}C_{2} \times 2!$
	Probability that the Chemistry books are not all next to one another =
	$7 \times {}^{8}P_{2} + 7 \times {}^{8}P_{2} \times {}^{3}C_{2} \times 2!$
	$\frac{3}{10!}$
	14
	$=\frac{11}{15}=0.933$ (to 3 sig fig)
(c)	Number of possible selections – Number of selections whereby none of the
	Chemistry is included = ${}^{10}C_4 - {}^7C_4 = 175$
(d)	Probability that at most one Chemistry book is selected
	$^{7}C_{4} + ^{7}C_{2} \times ^{3}C_{1} 2$
	$=\frac{-10}{10} = \frac{10}{3}$