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Oscillations (Topic 10) 
Content 

1. Mathematical Pre-requisite 
2. Free Oscillation and Simple Harmonic Motion 
3. Energy in Simple Harmonic Motion 
4. Damped Oscillation 
5. Forced Oscillation and Resonance 
 

Learning Outcomes 

Candidates should be able to: 

(a) describe simple examples of free oscillations. 

(b) investigate the motion of an oscillator using experimental and graphical methods. 

(c) Show an understanding of and use the terms amplitude, period, frequency, angular frequency and phase 
difference and express the period in terms both frequency and angular frequency. 

(d) recall and use the equation a = −2x as the defining equation of simple harmonic motion. 

(e) recognise and use x = x0 sin t as a solution to the equation a = −2x. 

(f) recognise and use the equations v = v0 cos t and 2 2

0( )v x x=  −  

(g) describe, with graphical illustrations, the changes in displacement, velocity and acceleration during 
simple harmonic motion. 

(h) describe the interchange between kinetic and potential energy during simple harmonic motion. 

(i) describe practical examples of damped oscillations with particular reference to the effects of the degree 
of damping and the importance of critical damping in applications such as a car suspension system. 

(j) describe practical examples of forced oscillations and resonance. 

(k) describe graphically how the amplitude of a forced oscillation changes with frequency near to the natural 
frequency of the system, and understand qualitatively the factors which determine the frequency 
response and sharpness of the resonance. 

(l) show an appreciation that there are some circumstances in which resonance is useful and other 
circumstances in which resonance should be avoided. 

 

Important Note: For this topic your calculator needs to be in radian mode. Otherwise there will be calculation 
errors. 
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1. Mathematical Pre-requisite 

In this chapter, you will use the sine (sinusoidal) graph frequently and hence, you need to know how 
to sketch the sine graph given an equation of the form 𝑥 = 𝑥0 sin 𝜃 as shown in Fig. 1A below: 

 

 

 

 

 

 

Notice that the sine graph repeats itself after every 2 radians or 360 degrees.  The repeated pattern 
is shown in dotted line in Fig. 1a above. 

Also, the displacement (𝑥), of an object executing simple harmonic motion (for example, a pendulum) 
can be represented by an equation of the form: 𝑥 = 𝑥0 sin(𝜔𝑡).  The term (𝜔𝑡) has units of radians 
(i.e. it is dimensionless).  The graph of 𝑥 against 𝑡 is shown in Fig. 1B below: 

 

 

 

 

 

 

Notice that the graph in Fig. 1b repeats itself after every 𝑇 seconds where 𝑇 represents the period of 
oscillation. We can use this fact to convert 𝜃  in radian to 𝑡  in second, or vice versa, using direct 
proportion as follows: 

  2𝜋 → 𝑇 

  𝜃 → 𝑡 

By proportion:  
𝜃

2𝜋
=

𝑡

𝑇
  hence, 𝜃 = (

2𝜋

𝑇
) 𝑡 = 𝜔𝑡 where 𝜔 =

2𝜋

𝑇
 

Replacing 𝜃 with (𝜔𝑡) in the equation 𝑥 = 𝑥0 sin 𝜃, we get 𝑥 = 𝑥0 sin(𝜔𝑡) 
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The equation 𝑥 = 𝑥0 sin(𝜃 − ) = 𝑥0 sin(𝜔𝑡 − )  represents a translation (or shifting) of the sine 
graph along the positive 𝜃 (or positive 𝑡) direction by  radians as shown in Fig. 1c below: 

 

 

 

 

 

 

 

Hence if  = 90, then you will end up with a negative cosine function: 

𝑥 = 𝑥0 sin (𝜃 −
𝜋

2
) = 𝑥0 [sin 𝜃 cos (

𝜋

2
) − cos 𝜃 sin (

𝜋

2
)] = −𝑥0 cos 𝜃  

since sin (
𝜋

2
) = 1 and cos (

𝜋

2
) = 0 

You also need to know the following relations: 

𝑑

𝑑𝑡
[sin(𝜔𝑡)] = 𝜔 cos(𝜔𝑡)   i.e. differentiating a sine function gives a positive cosine function 

𝑑

𝑑𝑡
[cos(𝜔𝑡)] = −𝜔 sin(𝜔𝑡)  i.e. differentiating a cosine function gives a negative sine function 
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 

𝑥 = 𝑥0 sin(𝜃 − ) 
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2. Free Oscillation and Simple Harmonic Motion 

An object is said to be undergoing free oscillations when the only external force acting on it is the 
restoring force. 

A restoring force is a resultant force that acts in opposite direction to the displacement of the object 
from an equilibrium position (where the resultant force is zero).   

Simple harmonic motion is the simplest type of free oscillation. 

2.1 Examples of oscillations 

 

 

Other examples : https://www.youtube.com/watch?v=VKtEzKcg6_s 

 

 

https://www.youtube.com/watch?v=VKtEzKcg6_s
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2.2 The Meaning of Some Terms used in SHM 

- Period (𝑻): The period 𝑻 is the time taken for one complete oscillation. 

- Frequency (𝒇):  The number of oscillations per unit time is called frequency, 𝑓.  Frequency 

is equal to the inverse of the period, 𝑓 =
1

𝑇
.       The SI units of frequency is Hz (hertz) where 1 

Hz = 1 cycle (or oscillation) per second. 

- Angular frequency (𝝎): Angular frequency,  is defined as the product of the frequency 

and 2.  𝜔 = 2𝜋𝑓 =
2𝜋

𝑇
. Units of angular frequency is rad s-1.   

- Equilibrium position:    The position at which no net force acts on the oscillating object is called 
the equilibrium position. 

- Displacement (𝒙):  Displacement is the distance the object has moved from its equilibrium 
position in a stated direction. It is a vector quantity and it measured with respect from the 
equilibrium position. 

- Amplitude (𝒙𝐨):  Amplitude is the magnitude of the maximum displacement from equilibrium 
position. It is a scalar quantity. 

For example, the displacement, 𝑥 of an object in simple harmonic motion can be represented 

by the equation:  𝑥 = 𝑥o sin(𝜔𝑡 + ) = 5 sin (𝜔𝑡 +
𝜋

2
) 

The amplitude is 𝑥o = 5 units 

 -   Phase: The term (𝜔𝑡 ± ) is called the phase.  The phase denotes the state of oscillation at a 
particular time 𝑡 and it has units of radian.  In general, the state of motion/oscillation at time 𝑡 
means the displacement, velocity and acceleration of the object at time 𝑡.  

The term ± inside the bracket represents the initial phase of the oscillating object which is the 
state of oscillation at 𝑡 = 0.  The initial phase (ie the value of ±) depends on the object's 
position at 𝑡 = 0 and whether it is moving up or moving down at that instant. 

-    Phase difference: The term phase difference is used to compare the difference in the state of 
oscillation between two oscillators or the difference in the state of oscillation at two instances 
in time for one oscillator. Phase difference is a measure of how much one oscillation is out of 
step with another.  Phase difference is expressed in units of radian. 

If the two oscillations are exactly in step with one another they are said to be in phase with one 
another or the phase difference is zero radian (or integer multiples of 2𝜋 radian).  

If two oscillators are always moving in opposite directions, then they are said to be in antiphase 
or the phase difference is 𝜋, 3𝜋, 5𝜋, 7𝜋, or any odd integer multiples of 𝜋 radian or a phase 
difference of half a cycle, 1.5 cycles, 2.5 cycles, 3.5 cycles, etc.  
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2.3 Simple Harmonic Motion (SHM) 

Definition 

The motion of an object is simple harmonic if its acceleration is directly proportional to its displacement 
from its equilibrium position and its acceleration is always opposite in direction to its displacement. 

Note:   

To show that the motion of an object is simple harmonic, we have to use Newton's 2nd law to show 
that 𝑎 ∝ −𝑥  where 𝑎  is the acceleration and 𝑥  is the displacement of the object from equilibrium 
position.  The proportionality constant is 𝜔2. 

Example 2.1 

The figure below shows a mass 𝑚 attached to an ideal spring of spring constant 𝑘.  When the mass is 
at rest, the extension of the spring is 𝑥𝑒𝑞. 

 

 

 

 

 

 

The mass is then pulled downwards by a small displacement 𝑥 where 𝑥 ≪ 𝑥𝑒𝑞 and released.   

(a) Show that the subsequent motion of the mass is simple harmonic. 

When mass is at equilibrium position: 𝑘𝑥𝑒𝑞 = 𝑚𝑔 ------------ (1) 

When mass is displaced downwards from equilibrium position, from Newton's 2nd law: 

−𝑇′ + 𝑚𝑔 = 𝑚𝑎    𝑇′ points in opposite direction to (𝑥𝑒𝑞 + 𝑥) hence the −ve sign 

−𝑘(𝑥𝑒𝑞 + 𝑥) + 𝑚𝑔 = 𝑚𝑎   

−𝑘𝑥𝑒𝑞 − 𝑘𝑥 + 𝑚𝑔 = 𝑚𝑎 

−𝑘𝑥 = 𝑚𝑎  since from (1), 𝑘𝑥𝑒𝑞 = 𝑚𝑔 

𝑎 = −
𝑘

𝑚
𝑥 ------------ (2)  

𝑥𝑒𝑞 

𝑥 

𝑇 = 𝑘𝑥𝑒𝑞   

𝑚𝑔  

𝑇′ = 𝑘(𝑥𝑒𝑞 + 𝑥)   

𝑚𝑔  
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Since 𝑘  and 𝑚  are constants, equation (2) shows that the acceleration, 𝑎  of 𝑚  is directly 
proportional to displacement 𝑥 from equilibrium position and is directed in the opposite direction 
to displacement 𝑥 due to the negative sign.  Hence the motion of 𝑚 is simple harmonic.  

(b) Determine an expression for the period and frequency of oscillation. 

Comparing equation (2) with the defining equation for s.h.m. ie. 𝑎 = −𝜔2𝑥, 

we have:  𝜔2 =
𝑘

𝑚
   𝜔 = √

𝑘

𝑚
=

2𝜋

𝑇
 

Period of oscillation, 𝑇 = 2𝜋√
𝑚

𝑘
 

Frequency of oscillation, 𝑓 =
1

𝑇
=

1

2𝜋
√

𝑘

𝑚
 

(c) If the mass is released at the lowest position at 𝑡 = 0.  State an equation to describe the variation 
with time 𝑡 of the displacement 𝑥 of the mass. 

Imagine the motion of the mass after it is released:
  

Taking displacement above the equilibrium position 
as positive: 

𝑥 = −𝑥0 cos(𝜔𝑡) = −𝑥0 cos (𝑡√
𝑘

𝑚
)  

 
 

 

 

 

 

 

 

 

 

 

𝑥 

0 𝑡 

𝑥0 

−𝑥0 
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Example 2.2 (For illustration only. No need to memorise) 

Show that the motion of a simple pendulum of length 𝑙 is simple harmonic if the displacement is small 
and hence derive an expression for the period 𝑇 of the pendulum in terms of 𝑙 and any other constants. 

If  is sufficiently small, the arc 𝑠 can be approximated to a horizontal line 
of displacement 𝑠 .  The restoring force is 𝑚𝑔 sin 𝜃 ≈ −𝑚𝑔𝜃  for small 
angular displacement 𝜃.  Note that the negative sign is needed because the 
direction of the restoring force is opposite to the angular displacement 𝜃. 

Hence, from Newton's 2nd law: 

−𝑚𝑔𝜃 = 𝑚𝑎  where 𝜃 in radians ≈
𝑠

𝑙
 

−𝑚𝑔
𝑠

𝑙
= 𝑚𝑎  

𝑎 = − (
𝑔

𝑙
) 𝑠   ------------ (1) 

Equation (1) shows that the acceleration of the bob is directly proportional to its displacement since 𝑔 
and 𝑙 are constants and 𝑎 is directed in the opposite direction to 𝑠 from the negative sign.  Hence the 
motion of the bob is simple harmonic. 

To find the period, we have to compare equation (1) with the defining equation for s.h.m., 𝑎 = −𝜔2𝑥, 
to get: 

𝜔2 =
𝑔

𝑙
    𝜔 = √

𝑔

𝑙
=

2𝜋

𝑇
  Period, 𝑇 = 2𝜋√

𝑙

𝑔
 

2.4 Equations of Motion in SHM 

Just like in Kinematics (rectilinear motion), there is a set of equations of motion in s.h.m. where you 
can use to solve for the displacement, velocity and acceleration in terms of time.  The equations are 
shown below in comparison with rectilinear motion. 

Simple Harmonic Motion Rectilinear Motion 

𝑎 = −𝜔2𝑥 𝑎 = constant 

𝑥 = 𝑥0 sin(𝜔𝑡 − ) 𝑠 = 𝑢𝑡 +
1

2
𝑎𝑡2 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝜔𝑥0 cos(𝜔𝑡 − )   𝑣 = 𝑢 + 𝑎𝑡 

𝑣 = ±𝜔√𝑥0
2 − 𝑥2  𝑣2 = 𝑢2 + 2𝑎𝑠 

Note that 𝑥0  is the amplitude, 𝜔𝑥0  the maximum magnitude of velocity and 𝜔2𝑥0  the maximum 
magnitude of acceleration. 

𝑠 

𝑚𝑔 

𝑇 

𝜃 

𝑚𝑔 sin 𝜃 
𝑚𝑔 cos 𝜃 

𝑙 
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Example 2.3 

The displacement x (in metres) of an oscillating object in simple harmonic motion is given by 
 

𝑥 = 2.0 𝑠𝑖𝑛4.0 𝑡 
 
(a) State the amplitude of the oscillations 

𝑥0 = 2.0 𝑚  

 

(b) State the angular frequency of the oscillations 

𝜔 = 4.0 𝑟𝑎𝑑 𝑠−1  

 

(c) Calculate the magnitude of the maximum acceleration of the object. 

𝑎0 = 𝜔2𝑥0 = 4.02 × 2.0 = 32 𝑚𝑠−2  

 

(d) Derive an expression for the velocity of the object in terms of the time t 

𝑣 =
𝑑𝑥

𝑑𝑡
= 2.0 × 4.0 cos 4.0  𝑡  

= 8.0 cos 4.0 𝑡 (in m s-1) 

 

(e) Calculate the maximum velocity of the object and the first time it occurs after t = 0 s. 

8.0 𝑚 𝑠−1  

At t = 0 s, the object is at the equilibrium position. The velocity is maximum at the equilibrium position. The 

maximum velocity will occur the next time the object is at the equilibrium position which is half a period. 

 

𝜔 =
2𝜋

𝑇
  

𝑇 =
2𝜋

4.0
=

𝜋

2
  

The first time the object is at maximum velocity after t = 0 s is 
𝜋

4
= 0.79 𝑠 

 

(f) Calculate the displacement at which the velocity of the object is half its maximum value. 

𝑣 = ±𝜔√𝑥0
2 − 𝑥2  

4.0 = ±4.0√2.02 − 𝑥2  

𝑥 = ±1.7 𝑚  

 

(g) Derive an expression for the acceleration of the object in terms of the time t 

𝑎 =
𝑑𝑣

𝑑𝑡
= 8.0 × 4.0(−𝑠𝑖𝑛4.0 𝑡) = −32.0 sin 4.0 𝑡  

(Observe that the maximum acceleration is consistent with the value calculated in (c).) 
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2.5 Graphing the equations of motion. 

You also need to know how to sketch the graphs for each equation of motion. 

Equation Graph 

𝑎 = −𝜔2𝑥 

 

 

 

 

 

 

𝑥 = 𝑥0 sin(𝜔𝑡) 

 

 

 

 

 

 

𝑣 =
𝑑𝑥

𝑑𝑡
= 𝜔𝑥0 cos(𝜔𝑡)   

 

 

 

 

 

 

𝑣 = ±𝜔√𝑥0
2 − 𝑥2  

 

 

 

 

 

 

 

Explain the physical significance of the " ± " sign in the formula 𝑣 = ±𝜔√𝑥0
2 − 𝑥2  

At any displacement 𝑥, the oscillator can be moving up or down (to or fro), hence the ±𝑣. 
 

 

𝑎 

𝑥 0 

𝑥0 

−𝑥0 

𝜔2𝑥0 

−𝜔2𝑥0 

𝑥 

𝑡  

𝑥0 

−𝑥0 

0 
  

 𝑇    

𝑣 

𝑡  

𝜔𝑥0 

−𝜔𝑥0 

0 
 

 

𝑇    

𝑣 

𝑥 0 𝑥0 −𝑥0 

𝜔𝑥0 

−𝜔𝑥0 
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Let’s study the relationship between acceleration, velocity and displacement by looking at the 
equations and graphs above. 

Let’s assume the oscillations start at equilibrium position at t = 0 s and the velocity is in the positive 
direction, i.e.  𝑥 = 𝑥0 sin(𝜔𝑡) and 𝑣 = 𝜔𝑥0 cos(𝜔𝑡) 

At t = 0 s, the displacement is 0, i.e. equilibrium position. The velocity however is maximum at 𝜔𝑥0 in 
the positive direction. The acceleration at equilibrium position is of course 0. Look at the table below 
to understand how acceleration, velocity and displacement changes. 
 

Displacement  
 
𝑥 = 𝑥0 sin(𝜔𝑡)  

0 
𝑥0 

Positive 
amplitude 

0 
−𝑥0 

Negative 
amplitude 

Velocity 
 
𝑣 = 𝜔𝑥0 cos(𝜔𝑡) 

𝜔𝑥0 
Maximum in 

positive direction 

0 
Minimum 

𝜔𝑥0 
Maximum in 

negative direction 
0 

Acceleration 
 
𝑎 = −𝜔2𝑥  

0 
−𝜔2𝑥0 

Maximum in 
negative direction 

0 
𝜔2𝑥0 

Maximum in 
positive direction 

 
The displacement, velocity and acceleration changes in this fashion through every cycle. 
 
2.6  Relation between uniform circular motion and simple harmonic motion 

 

 

 

 

 

 

 

Fig 2.6a shows a mass 𝑚 moving in uniform circular motion with constant speed 𝑣 = 𝑟𝜔.  The radius 

of the circular path is 𝑟.  The angular speed is 𝜔 =
2𝜋

𝑇
 where 𝑇 is the period (time taken to travel one 

complete circle). 

Fig 2.6b shows the shadow of 𝑚 projected along a screen.  The shadow moves along the screen in 

simple harmonic motion with amplitude 𝑥0 = 𝑟  and angular frequency 𝜔 =
2𝜋

𝑇
.  The speed of the 

shadow varies between 0 (at the amplitude positions) and a maximum of 𝑣 = 𝑟𝜔 = 𝜔𝑥0  at the 
equilibrium position. 

Shadow of 𝑚 

Equilibrium Position of shadow 

𝑚 

Fig 2.6a 

𝑟 

Screen 

Fig 2.6b 

Li
gh

t 
R

ay
s 

𝑥0 

𝑥0 

𝑣 
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Example 2.4 
 

 

 

 

 

 

 

The graph above shows the displacement – time graph of an object oscillating in simple harmonic 
motion. 

(a) State the amplitude of the oscillations. 

0.70 m 

 

(b) Calculate the angular frequency of the oscillations. 

𝑇 = 0.60 𝑠  

𝜔 =
2𝜋

𝑇
= 10.5 𝑟𝑎𝑑 𝑠−1  

 

(c) Calculate the maximum velocity of the oscillations and circle the points on the graph at which the maximum 

velocity occurs. 

𝑣0 = 𝜔𝑥0 = 10.5 × 0.70 = 7.3 𝑚 𝑠−1 (at the equilibrium positions) 

 

(d) Calculate the maximum acceleration and state the time at which the acceleration is maximum. 

𝑎0 = 𝜔2𝑥0 = 10.52 × 0.70 = 77 𝑚 𝑠−2  

At the amplitude positions, t = 0, 0.3, 0.6, 0.9, 1.2 s 

 

 

 

 

 

 

 

x/m 

0.5 

- 0.5 
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Example 2.5 

 

The graphs above show the displacement-time graphs of two objects oscillating in simple harmonic 
motion with the same angular frequency. The amplitudes of the oscillations are different. 

Determine the phase difference between the objects’ oscillations. 

The two oscillations are one quarter of a cycle out of phase. 

Phase difference =
2𝜋

4
=

𝜋

2
 (More details on phase difference will be taught in Waves) 

 

3. Energy in Simple Harmonic Motion 

Consider the following equation of motion for a mass, 𝑚 in s.h.m.:  𝑣 = ±𝜔√𝑥0
2 − 𝑥2 

The kinetic energy of the mass is:  
1

2
𝑚𝑣2 =

1

2
𝑚 [±𝜔√𝑥0

2 − 𝑥2]
2

=
1

2
𝑚𝜔2𝑥0

2 −
1

2
𝑚𝜔2𝑥2 

Rearranging the terms: 
1

2
𝑚𝑣2 +

1

2
𝑚𝜔2𝑥2 =

1

2
𝑚𝜔2𝑥0

2 

From the above equation, we can deduce the following: 

(1) Total energy of oscillation:    𝐸𝑇 =
1

2
𝑚𝜔2𝑥0

2  

(Consider that at the equilibrium position, velocity is maximum and potential energy is set to zero. 
Hence the at this point, the kinetic energy is equal to the total energy) 

(2) Total potential energy of oscillation: 𝐸𝑝 =
1

2
𝑚𝜔2𝑥2 

(This can be observed from 
1

2
𝑚𝜔2𝑥0

2 −
1

2
𝑚𝑣2 =

1

2
𝑚𝜔2𝑥2  which is the total energy minus the 

kinetic energy which must give the potential energy) 

(3) Kinetic energy of the mass:   𝐸𝑘 =
1

2
𝑚𝑣2 = 𝐸𝑇 − 𝐸𝑝 

A 

B 
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Example 3.1 

Consider a spring-mass system of mass 𝑚  and spring constant 𝑘 , oscillating vertically in simple 
harmonic motion with amplitude 𝑥0 as shown below. 

At 𝑡 = 0, the mass is at the equilibrium position and moving upwards. 

(a) State an equation for the displacement 𝑥 of the mass as a function of 
time 𝑡 and sketch the graph of 𝑥 against 𝑡 for two periods. 

𝑥 = 𝑥0 sin(𝜔𝑡)   

 

 

(b) Sketch the following energy graphs and state the equation relating the dependent variable to the 
independent variable shown on the graphs. 

Kinetic energy, 𝐸𝑘  as a function of 
displacement, 𝑥 

Kinetic energy, 𝐸𝑘  as a function of time, 𝑡 for 2 cycles. 

 
 
 
 
 
 
 

 

𝐸𝑘 =
1

2
𝑚𝜔2𝑥0

2 −
1

2
𝑚𝜔2𝑥2  𝐸𝑘 =

1

2
𝑚𝜔2𝑥0

2 cos2(𝜔𝑡)  

 
Potential energy, 𝐸𝑝 as a function of 

displacement, 𝑥 

Potential energy, 𝐸𝑝 as a function of time, 𝑡 for 2 cycles. 

 
 
 
 
 
 
 

 

𝐸𝑝 =
1

2
𝑚𝜔2𝑥2  𝐸𝑝 =

1

2
𝑚𝜔2𝑥0

2 sin2(𝜔𝑡)   

 

 

 

 

 

𝑥 

𝑡  

𝑥0 

−𝑥0 

0 
  

 2𝑇    

𝑇    

Equilibrium Position 

𝑥0 

𝑥0 

𝐸𝑘 

𝑥 0 𝑥0 −𝑥0 

1

2
𝑚𝜔2𝑥0

2  

𝐸𝑝 

𝑥 0 𝑥0 −𝑥0 

1

2
𝑚𝜔2𝑥0

2  
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Note that when you add the graphs of potential energy and kinetic energy, you will get the total energy which 
is constant. 

 

Example 3.2 

Consider the same spring-mass system mentioned in the previous 
example.  

Suppose that, at 𝑥 = +𝑥0, the extension of the spring is zero.   

(a) State an equation relating the forces acting on mass, 𝑚 at the 
equilibrium position.  Express your answer in terms of the 
spring constant 𝑘, 𝑥0, 𝑚 and the free fall acceleration, 𝑔. 

𝑚𝑔 = 𝑘𝑥0  

 

 

(b) Hence, show that the elastic potential energy stored in the spring when the mass is at the 
equilibrium position is given by 

Elastic potential energy =
1

2
𝑚𝑔𝑥0 

At the equilibrium position, the extension of the spring is 𝑥 = 𝑥0. 
 

The elastic potential energy =
1

2
𝑘𝑥2 =

1

2
𝑘𝑥0

2 =
1

2
(𝑘𝑥0)𝑥0 =

1

2
(𝑚𝑔)𝑥0 since 𝑚𝑔 = 𝑘𝑥0   (shown)  

Equilibrium Position 

𝑥0 

𝑥0 
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 (c) Complete the table below.   Express your answer in terms of 𝑚𝑔𝑥0 where applicable. 

 

(d) Using your answers to (c), sketch, in the figure below, the variation with displacement 𝑥,  

(i) the kinetic energy 𝐸𝑘,  

(ii) the gravitational potential energy 

(iii)  the elastic potential energy 

(iv) the total energy 

 

 

(e) The total energy of oscillation is 𝐸𝑇 =
1

2
𝑚𝜔2𝑥0

2 where the angular frequency of oscillation, 𝜔 =

√
𝑘

𝑚
.  Using your answer in (a), express 𝐸𝑇 in terms of 𝑚, 𝑔 and 𝑥0. 

From 𝜔 = √
𝑘

𝑚
, we have 𝑚𝜔2 = 𝑘 hence 𝐸𝑇 =

1

2
𝑚𝜔2𝑥0

2 =
1

2
𝑘𝑥0

2 =
1

2
(𝑘𝑥0)𝑥0 =

1

2
𝑚𝑔𝑥0 

(f) Comment on your expression for 𝐸𝑇 obtained in (e) in relation to your answers in (c). 

𝐸𝑇 is the total energy of oscillation and this is not the same as the total energy 𝐸𝑡𝑜𝑡𝑎𝑙  in (c).  The 

kinetic energy changes from 0 to 
1

2
𝑚𝑔𝑥0.  Likewise, the total potential energy (g.p.e + e.p.e) also 

changes from 0 to 
1

2
𝑚𝑔𝑥0.  Hence 𝐸𝑇  is just the total energy associated with the oscillation =

1

2
𝑚𝑔𝑥0. 

 

 
Mass at the highest 
point of oscillation 

Mass at the 
equilibrium position 

Mass at the lowest 
point of oscillation 

Kinetic energy 0 
1

2
𝑚𝑔𝑥0 0 

Gravitational potential energy 2𝑚𝑔𝑥0 𝑚𝑔𝑥0 0 

Elastic potential energy 0 
1

2
𝑚𝑔𝑥0 2𝑚𝑔𝑥0 

Total energy 2𝑚𝑔𝑥0 2𝑚𝑔𝑥0 2𝑚𝑔𝑥0 

Energy 

Displacement 
−𝑥0 𝑥0 

0 

Etotal 

k.e. 

𝑚𝑔𝑥0  

1

2
𝑚𝑔𝑥0  
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4. Damped Oscillations 

For simple harmonic motion, the amplitude of oscillation remains constant.  But in reality, most 
oscillations will show a decrease in amplitude over time due to energy loss.  An oscillation that shows 
a decrease in amplitude over time due to resistive forces acting on the oscillator is called a damped 
oscillation. 

The amount of damping depends on how much resistive force is acting on the oscillator and it 
determines how fast the amplitude decreases over time.  There are 3 categories of damping as follows: 

4.1 Light Damping 

It shows definite oscillation, but the amplitude of oscillation decays exponentially with time. The period 
is slightly greater than it would be if there was no damping.  

 

 

 

 

 

 

 

 

 

There are different degrees of light damping affecting how quickly the amplitude decreases with time.   

4.2 Critical Damping 

It shows no real oscillation as such; the time taken for the displacement to become effectively zero is 
a minimum.  

In critical damping, the resistance is just sufficient to prevent oscillation, yet not so great that the 
oscillator does not return to the zero position after being displaced.  

The system returns to its equilibrium position in the shortest time possible without oscillating at all. 

 

 

Displacement, 𝑥 

Time, 𝑡 

Amplitude, 𝑥0  decreases 
exponentially with time as 
shown by the dotted line. 
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4.3 Heavy Damping 

Just as in critical damping, there is no oscillation when the oscillator is heavily damped.  The 
displacement of the oscillator decreases exponentially with time and the time it takes to return to the 
equilibrium position is longer than in critical damping.  

The figure below compares the 3 different categories of damping. 

 

 

 

 

 

 

 

 

 

 

 

Examples of Damping   

1. The balance wheel of a watch will cease to oscillate unless some energy can be supplied to it from 
the watch spring. The effect of frictional forces is to reduce the total mechanical energy of 
oscillating system. 

2. The internal forces of a spring can be dissipative, and prevent the spring from being perfectly elastic. 

3. Critical damping is an important feature in moving coil meters which are used to measure current 
and voltage. When the reading changes, it is no use if the pointer oscillates for a while before 
settling down to the new reading. You need to make the new reading quickly in case it changes 
again. If the coil is critically damped, the pointer moves to its new reading in the shortest possible 
time without oscillating. 

 

Critical Damping 

Heavy Damping 

Light Damping 
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4. The critical damping in car suspension system: 

The suspension system of a car is the link between the 
wheels and axles of a car and the body and the 
passengers, and consists of a spring which is damped by 
a shock absorber. If a car's shock absorbers are badly 
worn then the car becomes too bouncy and this is 
uncomfortable. A good suspension is one in which the 
damping is slightly under critical damping as this results 
in a comfortable ride and also leaves the car ready to 
respond to further bumps in the road quickly.  

The following figure shows that by the time the car has reached A, the shock absorbing system is ready 
for another bump.  

 

The spring of a car's suspension is critically damped so that when a car goes over a bump the 
passengers in the car quickly and smoothly regain equilibrium. This results in a more comfortable ride.   

Video on different types of damping: https://www.youtube.com/watch?v=sP1DzhT8Vzo 

You don’t have to be concerned with the constants that characterise the different types of damping, 
only the types of damping. Different terms are used, so use the terms in these notes. For reference: 

Light damping – underdamped 

Critical damping – critical damping (returns to equilibrium the fastest) 

Heavy damping - overdamped 

  

 

 

https://www.youtube.com/watch?v=sP1DzhT8Vzo
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5. Forced Oscillations and Resonance 

5.1 Forced Oscillation 

Imagine pushing a child on a swing. If each push is timed suitably, the child swings higher and higher. 
The pushes are a simple example of a periodic force, an external force applied at regular intervals. The 
periodic force provides a means of supplying energy to the system. 

If the body is made to vibrate by a periodic force which has not the same frequency as the natural 
frequency of the body, it will keep in step with the force and its vibrations are called forced oscillations.  

Examples of forced oscillations include: 

- engine vibrations making bus windows oscillate, 

- the spinning drum causing vibrations in a washing machine. 

The figure below shows a way of forced oscillations in the laboratory using the trolley-and-spring 
oscillator driven by a motor. 

Under steady conditions the amplitude of the forced oscillation is fixed for a fixed driving frequency.  

The amplitude of oscillation depends on  

(1) how close the frequency of the driving force is to the natural frequency of the oscillator.  

(2) the extent to which the oscillator is damped. 

Note: Whatever its natural frequency, the forced oscillation takes on the frequency of the driving force. 
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5.2 Frequency response.  

The frequency response graph in the figure below shows how the amplitude of the oscillator at steady 
state varies with the frequency of the driving force.  The family of curves shown are for different 
degrees of damping.  The natural frequency of the undamped oscillator is denoted by 𝑓0. 

 

 

 

 

 

 

 

 

 

 

The oscillator will vibrate with maximum amplitude when the frequency of the driving force matches 
the natural frequency of the oscillator (this effect is called resonance).  Recall that damping causes the 
period of oscillation to increase (frequency to decrease), hence the frequencies at which the peaks 
occur decreases with increase damping. 

The total energy of an oscillator (𝐸𝑇 =
1

2
𝑚𝜔2𝑥0

2)  depends on the amplitude of oscillation.  The 

variation of the amplitude of oscillation with the frequency of the driving force also implies that for an 
oscillating system, the amount of energy transferred from the driving force to the oscillator depends 
on how close is the frequency of the driving force to the natural frequency of the oscillator.  Maximum 
energy transfer occurs only when the frequency of driving force is equal to the natural frequency of 
the oscillator.  This concept is important in the transmission and reception of electromagnetic waves. 

From the figure above, we can see that damping has two effects on the forced oscillations:  

(1) It decreases the maximum amplitude of the oscillator at resonance. 

(2) It reduces the sharpness of resonance (ie the peaks becomes broader as damping increases)  

Video on resonance: https://www.youtube.com/watch?v=ATRzwhk7UvY 

 

Heavy 
damping 

Light damping 

 

Zero 
damping 

Driver 
frequency 

Amplitude 
of driver 
oscillation 

Amplitude 
of driven 
oscillation 

 

f0 

https://www.youtube.com/watch?v=ATRzwhk7UvY
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5.3 Barton's Pendulums 

Barton's pendulums, shown in the figure below can be used to illustrate forced/coupled oscillations 
and resonance. 

Suspend a number of pendulums A, C, E of different lengths having light bobs from a thread. Suspend 
another simple pendulum X with a heavy bob having a length equal to that of a bob C from the same 
thread.  

 

 

 

 

 

 

 

 

 

When X oscillates the impulse will disturb the pendulums A, C and E. They will oscillate.  C will show 
the largest amplitude because C resonates with X. 

 

5.4 Other Examples of Resonance 

1. A microwave oven makes use of resonance. The microwaves are produced with a frequency which 
is the same as a natural frequency of vibration of water molecules.  When some food, which always 
contains some water molecules, is placed in the oven, the water molecules resonate, absorbing energy 
from the microwaves and heats up. The microwaves do not heat up the containers in which the food 
is placed because the natural frequencies of vibration of the molecules in the plastic and glass 
containers are nowhere close to the frequency of the microwave used in the microwave oven.  

2. An opera singer hitting a top note may shatter a wineglass if the frequency emitted by the singer 
matches one of the frequencies of the stationary wave set up along the rim of the glass.  

 

E 

C X 
A 

Heavy driver 

pendulum 

Driver frequency too high: small amplitude 

Driver frequency equals natural frequency: 
resonance 

Driver frequency too 

low: small amplitude 
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3. The picture on the right shows the collapse, in 1940, of the Tacoma 
Narrows Bridge in Washington State. One of the reasons it collapsed is due to 
resonant vibrations. The driving force in this case was the wind, and the collapse 
occurred because the frequency at which vortices were generated as the wind 
blew through the bridge matched a major natural frequency of the bridge 
structure. There are more physics and engineering issue regarding the collapse, 
you can read and watch the video here: 

https://practical.engineering/blog/2019/3/9/why-the-tacoma-narrows-bridge-collapsed 

4. The transmission and reception of TV and radio programmes is due to electrical resonance. 

5. All musical instruments produce distinctive sound due to mechanical resonance.  

Example 5.1 

 

Answer: B 
 
With less damping, the amplitude must be higher for all frequencies except when frequency is zero, 
the amplitude is unchanged. The resonant or natural frequency will also be higher. 
 

https://practical.engineering/blog/2019/3/9/why-the-tacoma-narrows-bridge-collapsed

