Qn	Solutions
1	For $-x^2 + (k+1)x + \left(\frac{k}{2} - \frac{n}{2}\right) < 0$,
	Discriminant < 0 and $a = -1 < 0$
	$b^2 - 4ac < 0$ and $a = -1 < 0$
	$\left(k+1\right)^2 - 4\left(-1\right)\left(\frac{k}{2} - \frac{n}{2}\right) < 0$
	$k^2 + 2k + 1 + 2k - 2n < 0$
	$k^2 + 4k + 1 - 2n < 0$
	Let $k^2 + 4k + 1 - 2n = 0$, then
	$k = \frac{-4 \pm \sqrt{4^2 - 4(1 - 2n)}}{2}$
	$=-2\pm\sqrt{4-1+2n}$
	$= -2 \pm \sqrt{3 + 2n}$
	$-2 - \sqrt{3+2n}$ $-2 + \sqrt{3+2n}$
	Therefore $-2 - \sqrt{3+2n} < k < -2 + \sqrt{3+2n}$.

Qn	Solutions
2	Let x , y and z be the cost of a jigsaw puzzle, a spinning top and a Rubik's cube respectively.
	4x + 2y + 5z = 264.5
	$3x = 4z \Longrightarrow 3x - 4z = 0$
	$x + 4y = 2z + 49 \Rightarrow x + 4y - 2z = 49$
	Using GC, $x = 30$, $y = 16$, $z = 22.5$
	The cost of a spinning top is \$16.00

Qn	Solutions
3(a)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{2}{\sqrt{1-x^3}} \right) = \frac{\mathrm{d}}{\mathrm{d}x} 2 \left(1 - x^3 \right)^{-\frac{1}{2}}$
	$=2\left(-\frac{1}{2}\right)\left(1-x^{3}\right)^{-\frac{3}{2}}\left(-3x^{2}\right)$
	$=3x^{2}\left(1-x^{3}\right)^{-\frac{3}{2}}$
(b)	$\ln\left(\frac{4x}{1-ex^2}\right) = \ln 4x - \ln\left(1-ex^2\right)$
	$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\ln 4x - \ln\Big(1 - \mathrm{e}x^2\Big)\Big)$
	$= \frac{4}{4x} + \frac{2ex}{1 - ex^2}$
	$=\frac{1}{x} + \frac{2ex}{1 - ex^2}$
(c)	$\int_{1}^{3} \frac{1}{x} + \frac{1}{x^{2}} - e^{6-2x} dx$
	$= \int_{1}^{3} \frac{1}{x} + x^{-2} - e^{6-2x} dx$
	$= \left[\ln x - \frac{1}{x} + \frac{1}{2}e^{6-2x}\right]_{1}^{3}$
	$= \left(\ln 3 - \frac{1}{3} + \frac{1}{2}e^{0}\right) - \left(\ln 1 - 1 + \frac{1}{2}e^{4}\right)$
	$= \frac{7}{6} + \ln 3 - \frac{1}{2}e^4$

Qn	Solutions
4(a)	$y = \ln(3x + 7)$ $(0, \ln 7)$ $x = -\frac{7}{3}$
(b)	$y = \ln(3x + 7)$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{3x+7}$
	At $x = \frac{7}{2}$,
	$\frac{dy}{dx} = \frac{3}{3(\frac{7}{2}) + 7} = \frac{6}{35}, \ y = \ln\left(3(\frac{7}{2}) + 7\right) = \ln\left(\frac{35}{2}\right)$
	Equation of tangent to the curve:
	$y - \ln\left(\frac{35}{2}\right) = \frac{6}{35}\left(x - \frac{7}{2}\right)$
	$35y - 35\ln\left(\frac{35}{2}\right) = 6x - 21$
	$35y - 6x = 35\ln\left(\frac{35}{2}\right) - 21$
(c)	Numerical value of area under curve
	$=\int_{-1}^{1}\ln\left(3x+7\right)\mathrm{d}x$
	= 3.8269 (4 .d.p)

Qn	Solutions
5(a)	Let P m be the perimeter of the amusement park and B m be the width of the square.
(i)	
	$2B^2 = 4x^2$
	$B = \sqrt{2}x$
	$P = 4\sqrt{2}x + 4x + 2y = 10$
	$y = 5 - 2\sqrt{2}x - 2x$
	$A = 2xy - \left(\sqrt{2}x\right)^2$
	$=2x(5-2\sqrt{2}x-2x)-2x^2$
	$=10x-4\sqrt{2}x^2-6x^2$
	$=10x-\left(4\sqrt{2}+6\right)x^2$
5(a)ii	$\frac{dA}{dx} = 10 - 8\sqrt{2}x - 12x = 0$
	$x = \frac{10}{8\sqrt{2} + 12} = \frac{5}{4\sqrt{2} + 6}$
	6V2 +12
	(5)-
	$ \left \begin{array}{c c} x & \left \left(\frac{5}{4\sqrt{2} + 6} \right)^{-} & \frac{5}{4\sqrt{2} + 6} & \left \left(\frac{5}{4\sqrt{2} + 6} \right)^{+} & \right \end{array} \right $
	$\begin{vmatrix} 4\sqrt{2}+6 \\ = 0.4288 \end{vmatrix} \begin{vmatrix} 4\sqrt{2}+6 \\ = 0.4290 \end{vmatrix} = 0.4290$
	Sign
	$\left \begin{array}{c c} \text{of} \\ \text{d} \text{d} \end{array} \right 0.0030818 \left \begin{array}{c c} 0 & -0.001581 \end{array} \right $
	$\left \begin{array}{c c} \frac{dA}{dx} & 0.0030818 & 0 & -0.001381 \end{array} \right $
	slope
	Therefore $x = \frac{5}{4\sqrt{2} + 6}$ gives maximum area.
	$4\sqrt{2}+6$
5b(i)	When $t = 1$, $C = 1.5$
50(1)	11 HeII ι − 1, C − 1.J

	$1.5 = 3 - 3e^{-k}$
	$3e^{-k} = 1.5$
	$1.5 = 3 - 3e^{-k}$ $3e^{-k} = 1.5$ $e^{-k} = \frac{1}{2}$ $-k = \ln \frac{1}{2}$ $k = -\ln \frac{1}{2} = \ln 2$
	$-k = \ln \frac{1}{2}$
	$k = -\ln\frac{1}{2} = \ln 2$
(;;)	G 2 2 -ln2t
(ii)	$C = 3 - 3e^{-\ln 2t}$
	$\frac{dC}{dt} = 0.25993 = 0.260 \text{ (3 s.f)}$
(iii)	$C = 3 - 3e^{-\ln 2t}$
	$t \to \infty, C \to 3$
	The maintenance cost approaches \$3000 in a long run.
(iv)	$\int_0^5 3 - 3e^{-\ln 2t} dt = 10.8$
	The total maintenance cost over the 5 months is \$10800

Qn	Solutions
6(a)	Case 1:4 girls, 2 boys
	No. of ways = ${}^{8}C_{4} \times {}^{12}C_{2} = 4620$
	Case 2:5 girls, 1 boy
	No. of ways = ${}^{8}C_{5} \times {}^{12}C_{1} = 672$
	Case 3:6 girls
	No. of ways = ${}^{8}C_{6} = 28$
	Total no. of ways = $4620 + 672 + 28 = 5320$
(b)	Total no. of ways $= 3 \times 3 \times 2 = 72$

Qn	Solutions
7 (a)	
	$P(A \cap B) = P(A) - P(A \cap B')$
	=0.65-0.4=0.25

(b)	$P(A B') = \frac{P(A \cap B')}{P(B')} = \frac{8}{9}$ $\frac{0.4}{P(B')} = \frac{8}{9} \Rightarrow P(B') = 0.45$ $P(B) = 0.55$
(c)	$P(A' \cap B') = 1 - [P(A \cap B') + P(B)]$ $= 1 - 0.95 = 0.05$ $P(A \cap B) = 0.25 \neq P(A) \times P(B) = 0.65 \times 0.55 = 0.3575$
	Events A and B are not independent.

Qn	Solutions
8(a)	
	0.02 damaged
	0.25 \nearrow A
	0.98 otherwise
	0.75 B 0.04 damaged
	0.96
	otherwise
8(b)	P(a LED light is damaged)
	$= 0.25 \times 0.02 + 0.75 \times 0.04 = 0.035$
8 (c)	P(From B is damaged)
	_ P(From B and is damaged)
	P(is damaged)
	$=\frac{0.75\times0.04}{0.035}=0.857$
	$=\frac{0.035}{0.035}=0.857$
	Required Probabilty = $(0.035)^2(1-0.035)\times 3 = 0.00355$

Qn	Solutions
9(a)	Let <i>X</i> be the random variable denoting the number of electrical components that are
	faulty out of a box of 20.
	$X \sim B\left(20, \frac{p}{100}\right)$
	Since $P(X = 2) = 0.2$,
	$\binom{20}{2} \left(\frac{p}{100}\right)^2 \left(1 - \frac{p}{100}\right)^{18} = 0.2$
	$190\left(\frac{p}{100}\right)^2 \left(1 - \frac{p}{100}\right)^{18} = 0.2$
	Using GC, since $p < 10$,
	$\frac{p}{100} = 0.052929 \text{(to 5 s.f.)}$
	p = 5.29 (to 3 s.f.)
9(b)	Given $p = 5$, $X \sim B(20, 0.05)$.
	$P(X \le 3) = 0.984$ (to 3 s.f.)
9(c)	$P(X > 3) = 1 - P(X \le 3)$
	= 0.015902 (to 5 s.f.)
	Let Y be the random variable denoting the number of rejected boxes out of 5. $Y \sim B(5,0.015902)$
	$P(Y<2) = P(Y\leq 1)$
	= 0.998 (to 3 s.f.)
9(d)	$E(X) = 20 \times 0.05 = 1$
	$Var(X) = 20 \times 0.05 \times 0.95 = 0.95$
	Y + Y + + Y
	Let $\bar{X} = \frac{X_1 + X_2 + + X_{40}}{40}$,
	since $n = 40$ is large, by Central Limit Theorem,
	$\bar{X} \sim N\left(1, \frac{0.95}{40}\right)$ approximately.
	$P(\bar{X} \ge 1) = 0.500 \text{ (to 3 s.f.)}$

Qn	
11(a)	Let <i>X</i> be the mass of a randomly chosen tyre (in kilograms)
	Unbiased estimate of population mean,
	$\bar{x} = \frac{-128}{1} + 15 = 12.44$
	$x = \frac{12.44}{50}$
	Unbiased estimate of population variance,

	$s^{2} = \frac{1}{49} \left[335.1 - \frac{\left(-128\right)^{2}}{50} \right] = \frac{53}{350} = 0.151 \text{ (3sf)}$
(b)	$H_0: \mu = 12.6$
	$H_1: \mu < 12.6$
	Test at 5% significance level
	Under H_0 , since $n = 50$ is large, by Central Limit Theorem,
	$\overline{X} \sim N\left(12.6, \frac{53}{50 \times 350}\right)$ approximately, where $s^2 = \frac{53}{350}$ is a good estimate of σ^2
	NORMAL FLOAT AUTO REAL RADIAN MP
	Z-Test Inpt:Data Stats μ0:12.6 σ:0.3891382420536
	x:11.44 n:50
	µ:≠µ0 <\p 0 >µ0
	Color: BLUE Calculate Draw
	NORMAL FLOAT AUTO REAL RADIAN MP
	Z-Test
	µ<12.6 z=-2.907375137
	P=0.0018224462 x=12.44
	n=50
	Using GC, the test statistics $\bar{x} = 11.44$ gives $z_{calc} = -2.9074$ and p -value =
	$0.0018224 \approx 0.00182 \text{ (3 sf)} \leq 0.05.$
	Since p – value = 0.0018224 \leq 0.05, we reject H_0 and conclude there is sufficient
	evidence, at 5% level of significance, that the mean mass of tyres is less than 12.6
	kg. Hence, the claim of the group of customers is not valid at 5% level of significance.
(c)	Let <i>Y</i> be the mass of a randomly chosen tyre (in kilograms) from the new
	shipment.
	$H_0: \mu = 12.6$
	$H_1: \mu \neq 12.6$
	Test at 5% significance level
	Under H_0 , since $n = 75$ is large, by Central Limit Theorem,
	$\overline{Y} \sim N\left(12.6, \frac{0.5}{75}\right)$, approximately.
	Since there is sufficient evidence that the population mean mass of tyres from this
ĺ	shipment differs from 12.6 kg, we reject H

shipment differs from 12.6 kg, we reject H_0 .

$$\frac{k-12.6}{\sqrt{\frac{0.5}{75}}} \le -1.95996 \qquad \frac{k-12.6}{\sqrt{\frac{0.5}{75}}} \ge 1.95996$$

$$k-12.6 \le -0.160030 \quad \text{or } k-12.6 \ge 0.160030$$

$$k \le 12.44 \ (2 \text{ d.p}) \qquad k \ge 12.76 \ (2 \text{ d.p})$$

Qn	Solutions
12(a)	$L \sim N(16,3^2)$
	P(L>17) = 0.36944 (to 5 s.f.)
	Required probability = $\left[P(L > 17) \right]^3$
	= 0.0504 (to 3 s.f.)
(b)	p is more than the answer in part (i). The cases found in (i) are subsets of the cases found in (ii).
(c)	$M \sim N(15, 1.5^2)$
	Let $A = M_1 + M_2 + M_3 - 2L$
	E(A) = 3(15) - 2(16) = 13
	$Var(A) = 3(1.5^2) + 2^2(3^2) = 42.75$
	$A \sim N(13,42.75)$
	$P(M_1 + M_2 + M_3 > 2L)$
	$= P(M_1 + M_2 + M_3 - 2L > 0)$
	=P(A>0)
	= 0.977 (to 3 s.f.)
(d)	Let $T = 1.05(L_1 + L_2 + L_3) + 1.1(M_1 + M_2)$
	$E(T) = 1.05(3 \times 16) + 1.1(2 \times 15) = 83.4$
	$Var(T) = 1.05^{2}(3 \times 3^{2}) + 1.1^{2}(2 \times 1.5^{2}) = 35.2125$
	$T \sim N(83.4, 35.2125)$
	P(T < 83) = 0.473 (to 3 s.f.)