

CHIJ ST JOSEPH'S CONVENT PRELIMINARY EXAMINATIONS

NA

SCIENCE (CHEMISTRY)

Paper 4 Chemistry

5105/04 5107/04

Secondary 4 Normal (Academic)

Thursday, 27 July 2023 Paper 3 and 4: 1 hour and 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your index number, class and name on all the work you hand in. Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working Do not use staples, paper clips highlighters, glue or correction fluid.

Paper 4:

Answer **all** questions in Section A and any **two** questions in Section B. The use of an approved scientific calculator is expected, where appropriate. In calculation, you should show all the steps in your working, giving your answer at each stage.

You are advised to spend no longer than 30 minutes on Paper 3. You may proceed to answer Paper 4 as soon as you have completed Paper 3. A copy of the Periodic Table is printed on page 14.

At the end of the examination hand in your answers to Paper 3 and Paper 4 separately. The number of marks is given in brackets [] at the end of each question or part question.

FOR EXAM	NER'S USE
Paper 3	/ 20
Paper 4	/ 30
TOTAL	/ 50

This document consists of **14** printed pages.

Section A (14 marks)

Answer **all** questions in the spaces provided.

- 1 Substances may be described as containing
 - **A** a pure element,
 - **B** a pure compound,
 - **c** a mixture of elements,
 - **D** a mixture of compounds.

Complete the table by writing the letter corresponding to the most appropriate description for each of the substances listed.

The first one has been completed for you.

substance	description
carbon dioxide	В
water	
bitumen	
steel	

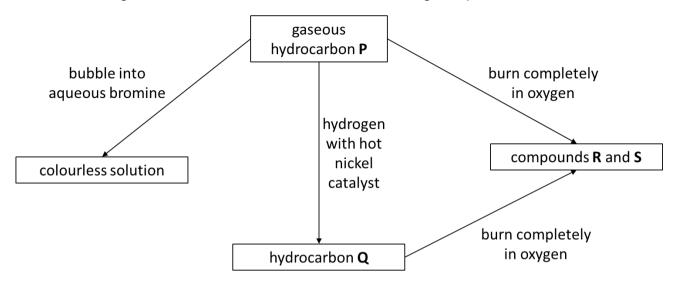
[2]

[Total: 2]

2		nesium chloride can be used as a mineral supplement to prevent and to low amounts of magnesium in the blood.	
	(a)	State the formula of magnesium chloride.	
			[1]
	(b)	Describe, in terms of electrons, how a chlorine atom becomes a chloride ion.	
			[1]
	(c)	Magnesium chloride has a high melting point. Explain this using the structure and bonding found in magnesium chloride.	
			[2]
		[Tota	l: 4]

- **3** Some gases found in air pollute the environment.
 - (a) Complete the table to show one major source of the atmospheric pollutant in the table.

Table 3.1


	atı	mospheric pollutant	source	
		carbon dioxide	combustion of fossil fuels	
		sulfur dioxide		[1]
(b)	Sulfu	ır dioxide dissolves in	raindrops to produce 'acid rain'.	
	(i)	•	ion to show the conversion of the sulfur into a compound that causes acid rain.	
				[1]
	(ii)	The Eiffel Tower is m State the effect that a	nade of iron. acid rain would have on the Eiffel Tower.	
				[1]
(c)	atmo	<u> </u>	e 3.1 has been wrongly classified as an me the gas and explain why it is not an	

.....

[Total: 4]

[1]

4 The diagram below shows some reactions involving compounds P, Q, R and S.

(a)	Ву	looking	at	the	reaction	with	aqueous	bromine,	state	which	
	hon	nologous	se	ries h	nydrocarb	on P k	pelongs to.				
											[1

(b) (i) Hydrocarbon **Q** has 2 carbon atoms.

Draw the full structural formula of hydrocarbon **Q**.

	(ii)	Hence, predict the observation when hydrocarbon \mathbf{Q} is added to aqueous bromine.	
			[1]
(c)	Iden	tify compounds R and S .	
			[1]
		[Tota	al: 4]

[1]

Section B (16 marks)

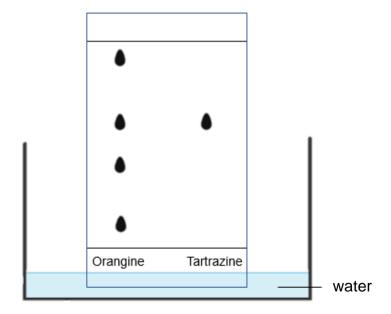
Answer any **two** questions from this section in the spaces provided.

5 (a) Tartrazine, C₁₆H₉N₄Na₃O₉S₂, is an orange colouring that can be added to food and drinks.

Orangine is an orange squash, which is often used to make orange flavoured drinks.

A label from a bottle of Orangine is shown.

ORANGINE


Rich in Vitamin C Contains no tartrazine

Dilute by mixing 1 part of squash with 4 parts water

Orangine is tested for tartrazine by a food inspector. The following procedure is used.

- A more concentrated solution of Orangine is made.
- A pencil line is drawn on a piece of filter paper.
- A drop of the concentrated Orangine and a drop of tartrazine solution are placed at different points on the pencil line.
- The filter paper is placed in a beaker of water and left for one hour.

The results of the test are as shown:

(i)	State whether Orangine is a mixture of compounds or is a single compound. Give a reason for your answer.	
		[1]
(ii)	Name the procedure used by the food inspector to test the Orangine.	
(iii)	What would happen if the water in the beaker was higher than the pencil line?	[1]
(iv)	Is the label from the bottle of Orangine accurate? Explain your answer.	[1]
		[1]
(v)	How much Orangine drink is made when 75 cm ³ of Orangine squash is diluted with water? Use the information from the label.	
	volume = cm ³	[1]
(vi)	Calculate the relative molecular mass of Tartrazine, $C_{16}H_9N_4Na_3O_9S_2$. [relative atomic masses, Ar: C, 12; H, 1; N, 14; Na, 23; O, 16; S, 32]	
	relative molecular mass =	[1]

(b)	Tartrazine has a melting point of 300 °C.
	Describe the arrangement and movement of the particles of tartrazine at 30 $^{\circ}\text{C}.$
	Arrangement:
	Movement:
	[2]
	[Total: 8]

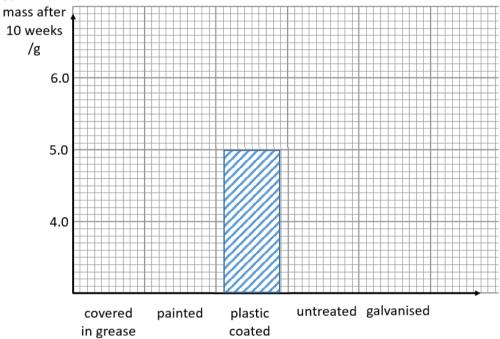
6	The	farme	wants to grow peas in a field. er tested the soil and finds it has a pH of 6.0. uire soil that is slightly alkaline.	
	(a)	(i)	Is the soil in the field suitable for peas to grow? Explain.	
				[1]
		(ii)	The farmer added some calcium hydroxide to make the soil suitable for growing peas.	
			Explain, in terms of the chemistry involved, the effect calcium hydroxide has on the soil.	
				[4]
				[1]
			m sulfate, (NH ₄) ₂ SO ₄ , is a common fertiliser that can also be soil to improve crop yield.	
			ing, 0.5 g of ammonium sulfate reacts with excess aqueous droxide to produce a salt, water, and ammonia gas.	
	(b)	(i)	Construct a balanced chemical equation for the above reaction.	
				[2]
		(ii)	Calculate the relative molecular mass of ammonium sulfate, (NH ₄) ₂ SO ₄ .	
			[relative atomic masses, A _r : N, 14; H, 1; S, 32; O, 16]	
			relative molecular mass =	[1]
		(iii)	Calculate the number of moles in 0.5 g of ammonium sulfate.	
			number of moles = mol	[1]

(c) Aqueous sodium hydroxide also reacts with aqueous nitric acid to form

salt R and water.
The salt solution formed was found to be contaminated with some sand particles.
Describe how you could obtain a pure, dry sample of ${\bf R}$ from the mixture.
[2]
[Total: 8]

- Metals have many uses in everyday life, such as being used to make vehicles and buildings.
 - (a) The table below shows some common metals and their electronic structures.

element	symbol	electronic structure		
lithium	Li	2. 1		
magnesium	Mg	2. 8. 2		
calcium	Ca	2. 8. 8. 2		


	•	eferring to the Periodic Table, deduce a relationship between the cronic structure of an element and the period that it is found.	
			[1]
(b)	An e	experiment was conducted by placing lithium into a beaker of r. A gas Y was one of the products from the reaction.	
	(i)	Name gas Y produced and describe a positive test to identify the gas.	
		name	
		positive test	
			[2]
	(ii)	A few drops of universal indicator is placed into the beaker. Describe the colour change that occurs.	
			[1]

(b) An experiment was set up to investigate the rusting of iron. Five identical nails, each weighing 5 g, were used. Each nail was treated differently. The nails were left outside in the air for ten weeks, and then reweighed.

The results are shown in the table.

nail	treatment	mass at start / g	mass after ten weeks / g
Р	covered in grease	5.0	5.2
Q	painted	5.0	5.3
R	plastic coated	5.0	5.0
S	untreated	5.0	6.3
Т	galvanised	5.0	5.1

(i) Complete the bar chart to show the results

(ii) Explain why the masses of nails **R** and **S** were different after ten weeks.

.....

.....

[1]

[1]

(iii) Calculate the number of moles in 5.0 g of iron.

	number of moles = mol	[1]
(iv)	Iron is in high demand because it is used to make different structures and vehicles.	
	Why is it important that iron is recycled?	
		[1]
	[То	tal: 8]
	End of Paper	

The Periodic Table of Elements

	0	2	유	helium 4	10	Ne	neon 20	18	Ā	argon	36	궃	krypton 84	54	×e	xenon	98	몬	radon				
	IIA				6	ட	fluorine 19	17	ľ	chlorine	35	Ä	bromine 80	53	П	iodine 127	85	At	astatine _				
	IN				8	0	oxygen 16	16	S	sulfur	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ъ	mninolod	116	^	livermorium	ı
•	Λ				7	Z	nitrogen 14	15	۵	phosphorus	33	As	arsenic 75	51	Sp	antimony 122	83	<u>.</u>	bismuth 209				
	ΛΙ				9	ပ	carbon 12	14	Si	silicon	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	<i>Fl</i>	flerovium	ı
	III				2	Δ	boron 11	13	Ą	aluminium	31	Ga	gallium 70	49	I	indium 115	81	<i>/</i> L	thallium 204				
											30	Zn	zinc 65	48	ප	cadmium 112	80	Hg	mercury 201	112	ပ်	copernicium	ı
											29	Cn	copper 64	47	Ag	silver 108	62	Αn	gold 197	111	Rg	roentgenium	I
Sroup											28	Z	nickel 59	46	Pd	palladium 106	78	풉	platinum 195	110	Ds	darmstadtium	ı
Gre					,						27	රි	cobalt 59	45	몬	rhodium 103	77	'n	iridium 192	109	¥	meitnerium	ı
		-	I	hydrogen 1							26	Fe	iron 56	44	R	ruthenium 101	9/	SO	osmium 190	108	H	hassium	ı
											25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	В	bohrium	ı
					er	loq	mass				24	ပ်	chromium 52	45	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium	ı
				Key	atomic number	mic sym	name relative atomic mass				23	>	vanadium 51	41	g	niobium 93	73	Та	tantalum 181	105	O O		
					a	atc	relat				22	j=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿏	rutherfordium	ı
											21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids		
	Ш				4	Be	beryllium 9	12	Mg	magnesium	20	Ca	calcium 40	38	S	strontium 88	26	Ba	barium 137	88	Ra	radium	ı
	_				3	<u>'</u>	lithium 7	- 1	Na	sodium	19	¥	potassium 39	37	В	rubidium 85	22	S	caesium 133	87	ь	francium	I

71	utetium	175	103	ئ	wrencium	ı
70 4×						
69 Tm					_	1
68 П					_	ı
67 H	holmium	165	66	Es	einsteinium	ı
99	dysprosium	163	86	ర	californium	ı
65 Th	terbium	159	26	æ	berkelium	ı
4 7 7	gadolinium	157	96	S	curium	1
63 F1	europium	152	92	Am	americium	1
62 Cm	samarium	150	94	Pu	plutonium	1
61 Dm	promethium	1	93	ď	neptunium	1
09	neodymium	144	92	⊃	uranium	238
59 0	praseodymium	141	91	Ра	protactinium	231
58 O	cerium	140	06	드	thorium	232
25 1	lanthanum	139	68	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)