Name:		()	Class:	
-------	--	---	---	--------	--

ASSUMPTION ENGLISH SCHOOL **PRELIMINARY EXAMINATION 2023**

SCIENCE (CHEMISTRY) 5105 / 04 5107 / 04

ASSUMPTION ENGLISH SCHOOL ASSUMPTION ENGLISH SCHOOL

LEVEL: Sec 4 Normal (Academic) DATE 3 August 2023

CLASSES: Sec 4/4, 4/5 and 4/6 SBB **DURATION:** 1 hour 15 minutes

(Papers 3 & 4)

NIL Additional Materials provided:

INSTRUCTIONS TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your NAME, INDEX NUMBER and CLASS at the top of this page.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions in Section A and any two questions in Section B.

In calculations, you should show all the steps in your working, giving your answer at each stage.

You are advised to spend no longer than 30 minutes on Paper 3.

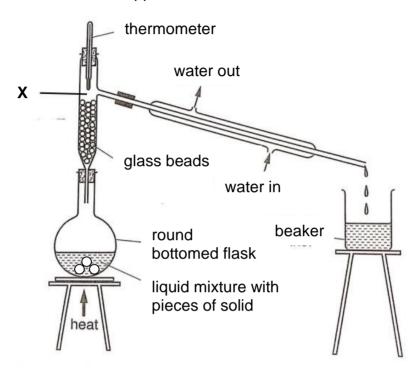
You may proceed to answer Paper 4 as soon as you have completed Paper 3.

A copy of the Periodic Table is printed on the last page of Paper 4.

At the end of the examination, hand in your OAS paper and Question Papers separately.

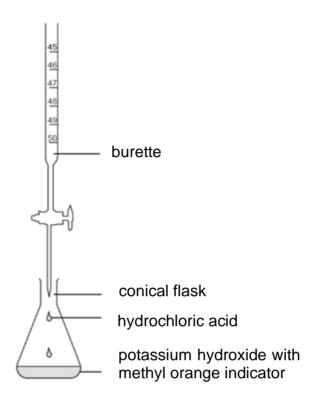
The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use				
Paper 3	20			
Section A	14			
Section B	16			
Total	50			

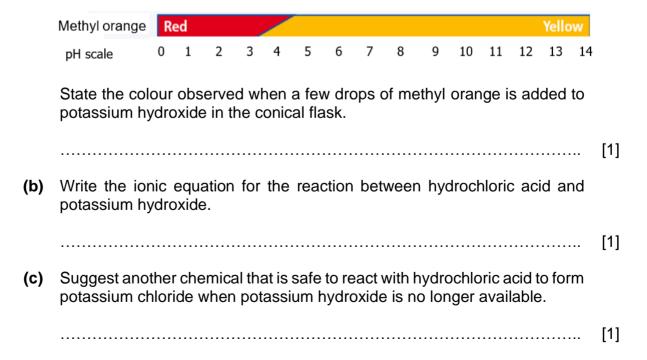

This question paper consists of 11 printed pages including this page.

Section A [14 marks]

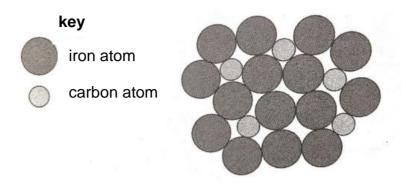
Answer all the questions in the spaces provided.


A mixture of two miscible substances, methanol and propanol, are to be separated. The boiling points of methanol and propanol are 64 °C and 98 °C respectively.

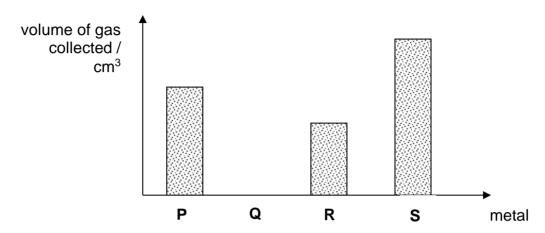
The mixture is heated in the apparatus shown below.



(a)	State the use of pieces of solids added to the liquid mixture during the separation.	
		[1]
(b)	Which of the two substances will be collected in the beaker first? Explain your answer.	
		[1]
(c)	Describe the arrangement and movement of particles at point X .	
	arrangement	
	movement	
		[2]


2 In a titration experiment, potassium chloride is made by reacting hydrochloric acid with potassium hydroxide solution.

(a) An indicator is a substance which changes colour depending on whether the solution being tested is acidic or alkaline. The diagram below shows the colour of methyl orange at different pH.


3 The diagram represents a type of mixture that can be made from iron. This type of mixture is often used in making bridges.

(a)	Give a name to this type of mixture.	
		[1]
(b)	Using your understanding of the diagram above, explain why this type of mixture is used in making bridges.	
		[2]
(c)	This mixture is used to make food containers and it is usually coated with a thin layer of tin to prevent rusting.	
	Name the element and the compound which react together with iron to form rust.	
	element	
	compound	[1]

4 Equal amounts of four different powdered metals, **P**, **Q**, **R** and **S**, were added separately to equal volumes of dilute nitric acid.

The graph shows the volume of hydrogen gas collected at the end of five minutes.

(a)	Describe a test	vou can	perform to	test f	for hvdroaen	aas
-----	-----------------	---------	------------	--------	--------------	-----

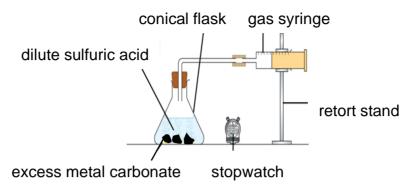
test		
observation	[1]	

(b) Based on the information, complete the table to match metals P, Q, R or S to their possible identities.

metal	P, Q, R or S
magnesium	
zinc	
iron	
copper	

[2]

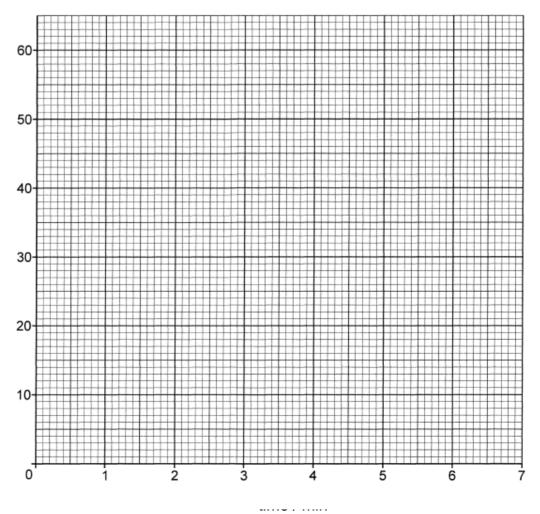
Section B [16 marks]


Answer any **two** questions from this section in the spaces provided.

5 The table gives information about sodium, chlorine and hydrogen atoms.

	sodium atom	chlorine atom	hydrogen atom
number of protons	11	17	
number of electrons		17	
arrangement of electrons	2.8.1		1

(a)	Complete the table.	[2]
(b)	State the location of the protons and the electrons in a chlorine atom.	
	proton	
	electron	[1]
(c)	Sodium chloride solid can be made by burning sodium metal in chlorine gas.	
	Write a balanced chemical equation, including state symbols, for this reaction.	
		[2]
(d)	Explain why sodium chloride must be dissolved in water first before it can conduct electricity.	
		[1]
(e)	Hydrogen chloride gas, HCl, is made by reacting hydrogen with chlorine.	
	Draw a 'dot and cross' diagram of a HCl molecule. Your diagram should show only the outer shell electrons.	


6 Excess metal carbonate, **X**CO₃, was added to 100 cm³ of dilute sulfuric acid as shown in the diagram.

The volume of gas **Y** produced at room conditions was measured every minute. The results are shown in the table:

time / min	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0
volume of gas Y / cm ³	0.0	20.0	33.0		52.0	58.0	60.0	60.0

(a) (i) Plot a graph of volume of gas Y against time, marking each point with a cross (x). Draw a curve of best fit, taking into account all your plotted points.

g

5105/5107/04/4NA/PRELIM/23

[Turn over

[2]

	(ii)	From your graph determine the total volume of gas Y collected after 3 minutes.	
		volume of gas Y collected =cm ³	[1]
	(iii)	Describe a test to identify the gas produced.	
		test	
		observation	[1]
(b)	0.75 ו	mol of the metal carbonate has a mass of 87 g.	
	(i)	Calculate the relative molecular mass of the metal carbonate, XCO _{3.}	
		relative molecular mass of X CO ₃ =	[4]
	<i>(</i> 11)		[1]
	(ii)	Using your answer in (a)(i) , identify metal X , with the help of the Periodic Table. Show your working. (relative atomic mass, A _r : C, 12; O, 16).	
		metal X is	[1]
(c)		the reaction is complete, a mixture of metal sulfate solution and as metal carbonate is obtained in the conical flask.	
	Desc mixtu	ribe how you would obtain pure crystals of the metal sulfate from the re.	
			[2]

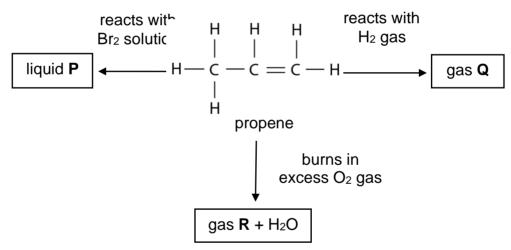
7 (a) A hydrocarbon C_8H_{20} is heated strongly at high temperature and in the presence of a catalyst.

The equation for one of the reactions occurring is shown.

$$C_8H_{20} \rightarrow C_3H_6 + X + CH_4$$

(i) Name the process represented by this reaction.

.....[1]


(ii) State the chemical formula for compound X.

.....[1]

(iii) Suggest a separation technique to obtain propane, C₃H₆ from the mixture of 3 products.

.....[1]

(b) The flowchart shows a series of chemical reactions that propene can undergo.

(i) Describe the change you would observe when propene reacts with Br₂ solution to form liquid **P**.

.....[1]

(ii) Name the type of reaction when propene reacts with H₂ gas.

......[1]

(iii)	Draw the structure for gas Q .	
/i. A	Write a halanced shaminal equation when are and huma in average	[1]
(iv)	Write a balanced chemical equation when propene burns in excess oxygen gas.	
	76 6	
		[2]
	End of Paper 4 –	

<u>ب</u>

The Periodic Table of Elements

Group																	
	II										III	IV	V	VI	VII	0	
Key							1 H hydrogen 1										2 He helium 4
3	4		proton (atomic) number				•				5	6	7	8	9	10	
Li	Be		atomic symbol								В	С	N	0	F	Ne	
lithium 7	beryllium 9		relative atomic mass								boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20	
11	12	relative atomic mass									13	14	15	16	17	18	
Na	Mg											A1	Si	P	S	Ċι	Ar
	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
23	24											27	28	31	32	35.5	40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39 V	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb rubidium	Sr strontium	Y yttrium	Zr	Nb niobium	Mo molybdenum	Tc technetium	Ru ruthenium	Rh	Pd palladium	Ag silver	Cd cadmium	In indium	Sn	Sb antimony	Te tellurium	I iodine	Xe xenon
85	88	89	91	93	96	-	101	103	106	108	112	115	119	122	128	127	131
55	56	57 – 71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	l w	Re	Os	Ir	Pt	Au	Hg	Τl	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137		178	181	184	186	190	192	195	197	201	204	207	209	-	_	-
87	88	89 – 103	104	105	106	107	108	109	110	111	112		114		116		
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		F/		Lv		
francium	radium		Rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium		roentgenium	copernicium		flerovium		livermorium		
lanthanoids			57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
			lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium —	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175
	actinoids			90	91	92	93	94	95	96	97	98	99	100	101	102	103
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
			actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
			-	232	231	238	-	_	_	-	-	-	-	-	_	-	_

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).