A3: SURDS

- Four operations on surds, including rationalising the denominator
- Solving equations involving surds

1. ABCD is a trapezium where AB is parallel to DC.	[5]
The area of the trapezium is $12 + 11\sqrt{3} cm^2$.	
$AB = 8 - \sqrt{48}$ cm and $DC = 12 - \sqrt{12}$ cm.	
Find the perpendicular distance between AB and DC, leaving your answer	
in the form $a + b\sqrt{3}$, where a and b are integers.	
2. A rectangular block has a square base of side $(\sqrt{10} + \sqrt{2})$ cm and a height of h	[5]
cm. The volume of the rectangular block is $(52 + 28\sqrt{5}) cm^3$.	
Without using a calculator, find the height of the rectangular block, in cm.	
Give your answer in the form $(a + b\sqrt{5})$ cm where a and b are integers.	
3. It is given that $\sqrt{p - q\sqrt{5}} = \frac{12}{2}$, where p and q are integers.	[6]
Without using a calculator find the value of n and q	
without using a calculator, find the value of p and q .	
4. Simplify $7\sqrt{2} - 3\sqrt{8} + \sqrt{32}$.	[2]
5. A rectangle has an area of $11 - \sqrt{7} cm^2$. Given that the length is $3 + \sqrt{7} cm$,	[4]
find the breadth of the rectangle and express the breadth in the form $a - b\sqrt{7}$,	
where a and b are integers.	
6. It is given that $2\sqrt{3}(x + 1) = 2 - x$. Find x in the form $a\sqrt{3} - b$,	[4]
where a and b are real numbers.	
7. Show $\frac{(2\sqrt{5}-3)(6+\sqrt{5})}{\sqrt{5}}$ can be written in the form $a + b\sqrt{5}$, where a and b	[4]
$3+\sqrt{5}$	
8. Solve the equation $\frac{x}{3} - \frac{4}{x} = \sqrt{3}$, where $x \neq 0$, giving your answer in its	[4]
simplest surd form.	

9. (a) Without using a calculator, express $(2\sqrt{3} + \sqrt{2})^2$ in the form $a + b\sqrt{6}$, where a and b are integers.	[2]
9. (b) Hence, or otherwise, express $\frac{(2\sqrt{3}+\sqrt{2})^2}{3+\sqrt{6}}$ in the form $p + q\sqrt{6}$, where p and q are rational numbers.	[3]
10. It is given that $\sqrt{3}(x + 3) = x + 17$. Find x in the form $a + b\sqrt{3}$, where where a and b are integers.	[4]
11. Given that $(a - 3\sqrt{5})(2 + \sqrt{5}) = b - 2\sqrt{5}$, find the values of the integers <i>a</i> and <i>b</i> .	[3]
12. Solve $\sqrt{x + 7} - 3\sqrt{2} = 1$, leaving your answer in the form $m + n\sqrt{2}$, where <i>m</i> and <i>n</i> are integers.	[3]
13. Simplify $\sqrt{108} - \frac{12}{\sqrt{3}}$, giving your answer in the form $k\sqrt{3}$, where k is an integer.	[2]
14. Without using a calculator, solve the equation $3x - \sqrt{2} = 2(1 + x\sqrt{2})$.	[5]

1. ABCD is a trapezium where AB is parallel to DC. [5] The area of the trapezium is $12 + 11\sqrt{3} cm^2$. $AB = 8 - \sqrt{48}$ cm and $DC = 12 - \sqrt{12}$ cm. Find the perpendicular distance between AB and DC, leaving your answer in the form $a + b\sqrt{3}$, where a and b are integers. Area of trapezium = $\frac{1}{2}(a + b)h$, where a and b are the length of parallel sides $12 + 11\sqrt{3} = \frac{1}{2}(8 - \sqrt{48} + 12 - \sqrt{12})h$ $24 + 22\sqrt{3} = (20 - \sqrt{4 \times 12} - \sqrt{12})h$ $\bigstar \sqrt{48} = \sqrt{4 \times 12}$ 24 + 22 $\sqrt{3}$ = $(20 - 2\sqrt{12} - \sqrt{12})h \neq \sqrt{2^2 \times 12} = 2\sqrt{12}$ $24 + 22\sqrt{3} = (20 - 3\sqrt{12})h$ $24 + 22\sqrt{3} = (20 - 3\sqrt{4 \times 3})h$ 24 + 22 $\sqrt{3}$ = (20 - 6 $\sqrt{3}$)h \star 3 $\sqrt{2^2 \times 3}$ = 3(2) $\sqrt{3}$ $\frac{24+22\sqrt{3}}{20-6\sqrt{3}} = h$ $h = \frac{24 + 22\sqrt{3}}{20 - 6\sqrt{3}} \times \frac{20 + 6\sqrt{3}}{20 + 6\sqrt{3}}$ $h = \frac{12+11\sqrt{3}}{10-3\sqrt{3}} \times \frac{10+3\sqrt{3}}{10+3\sqrt{3}} \bigstar$ Rationalise the denominator $h = \frac{120 + 36\sqrt{3} + 110\sqrt{3} + 99}{100 - 27}$ $h = \frac{219 + 146\sqrt{3}}{73}$ $h = 3 + 2\sqrt{3}$ $h = 3 + 2\sqrt{3} \text{ cm}$

- 2. A rectangular block has a square base of side $(\sqrt{10} + \sqrt{2})$ cm and a height of h cm. The volume of the rectangular block is $(52 + 28\sqrt{5}) cm^3$. Without using a calculator, find the height of the rectangular block, in cm. Give your answer in the form $(a + b\sqrt{5})$ cm where *a* and *b* are integers. Volume of rectangular block = *lbh* $(52 + 28\sqrt{5}) = (\sqrt{10} + \sqrt{2})^2 h$ $h = \frac{52 + 28\sqrt{5}}{(\sqrt{10} + \sqrt{2})^2}$ $h = \frac{52 + 28\sqrt{5}}{10 + 2\sqrt{20} + 2}$ $h = \frac{52 + 28\sqrt{5}}{12 + 2\sqrt{4\times5}} \bigstar 2\sqrt{20} = 2\sqrt{4 \times 5}$
- $h = \frac{52+28\sqrt{5}}{12+4\sqrt{5}}$ $h = \frac{52+28\sqrt{5}}{12+4\sqrt{5}} \times \frac{12-4\sqrt{5}}{12-4\sqrt{5}} \bigstar \text{ Rationalise the denominator}$ $h = \frac{624-208\sqrt{5}+336\sqrt{5}-112(5)}{144-16(5)}$ $h = \frac{64+128\sqrt{5}}{64}$ $h = 1 + 2\sqrt{5}$ $h = 1 + 2\sqrt{5} \text{ cm}$

3. It is given that $\sqrt{p - q\sqrt{5}} = \frac{12}{3 + \sqrt{5}}$, where p and q are integers.	[6]
Without using a calculator, find the value of p and q .	
$\sqrt{p - q\sqrt{5}} = \frac{12}{3 + \sqrt{5}}$	
$p - q\sqrt{5} = \left(\frac{12}{3+\sqrt{5}}\right)^2$	
$p - q\sqrt{5} = \frac{144}{9 + 2(3)(\sqrt{5}) + (\sqrt{5})^2}$	
$p - q\sqrt{5} = \frac{144}{9+6\sqrt{5}+5}$	
$p - q\sqrt{5} = rac{144}{14+6\sqrt{5}}$	
$p - q\sqrt{5} = \frac{72}{7+3\sqrt{5}}$	
$p - q\sqrt{5} = \frac{72}{7+3\sqrt{5}} \times \frac{7-3\sqrt{5}}{7-3\sqrt{5}} \bigstar$ Rationalise the denominator	
$p - q\sqrt{5} = \frac{504 - 216\sqrt{5}}{49 - 9(5)}$	
$p - q\sqrt{5} = \frac{504 - 216\sqrt{5}}{4}$	
$p - q\sqrt{5} = 126 - 54\sqrt{5}$	
p = 126, q = 54	
4. Simplify $7\sqrt{2} - 3\sqrt{8} + \sqrt{32}$.	[2]
$7\sqrt{2} - 3\sqrt{8} + \sqrt{32}$	
$= 7\sqrt{2} - 3\sqrt{4 \times 2} + \sqrt{2 \times 16}$	
$= 7\sqrt{2} - 6\sqrt{2} + 4\sqrt{2}$	
$= 5\sqrt{2}$	

5. A rectangle has an area of $11 - \sqrt{7} cm^2$. Given that the length is $3 + \sqrt{7} cm$, [4] find the breadth of the rectangle and express the breadth in the form $a - b\sqrt{7}$, where *a* and *b* are integers. Area of rectangle = lb $11 - \sqrt{7} = (3 + \sqrt{7})b$ $\frac{11-\sqrt{7}}{3+\sqrt{7}} = b$ $b = \frac{11 - \sqrt{7}}{3 + \sqrt{7}} \times \frac{3 - \sqrt{7}}{3 - \sqrt{7}} \bigstar$ Rationalise the denominator $b = \frac{33 - 11\sqrt{7} - 3\sqrt{7} + 7}{9 - 7}$ $b = \frac{40 - 14\sqrt{7}}{2}$ $b = 20 - 7\sqrt{7}$ $b = 20 - 7\sqrt{7} \text{ cm}$ 6. It is given that $2\sqrt{3}(x + 1) = 2 - x$. Find x in the form $a\sqrt{3} - b$, [4] where a and b are real numbers. $2\sqrt{3}(x+1) = 2 - x$ $2\sqrt{3}x + 2\sqrt{3} = 2 - x$ $2\sqrt{3}x + x = 2 - 2\sqrt{3}$ $x(2\sqrt{3}+1)=2-2\sqrt{3}$ $x = \frac{2-2\sqrt{3}}{2\sqrt{3}+1}$ $x = \frac{2-2\sqrt{3}}{2\sqrt{3}+1} \times \frac{2\sqrt{3}-1}{2\sqrt{3}-1} \bigstar$ Rationalise the denominator $x = \frac{4\sqrt{3} - 2 - 4(3) + 2\sqrt{3}}{4(3) - 1}$ $x = \frac{6\sqrt{3}-14}{11}$ $x = \frac{6}{11}\sqrt{3} - \frac{14}{11}$

7. Show $\frac{(2\sqrt{5}-3)(6+\sqrt{5})}{3+\sqrt{5}}$ can be written in the form $a + b\sqrt{5}$, where a and b	[4]
are rational numbers.	
$(2\sqrt{5}-3)(6+\sqrt{5})$	
$= \frac{12\sqrt{5} + 2(5) - 18 - 3\sqrt{5}}{5} \times \frac{3 - \sqrt{5}}{5} \star \text{Rationalise the denominator}$	
$3+\sqrt{5}$ $3-\sqrt{5}$ $9\sqrt{5}-8$ $3-\sqrt{5}$	
$= \frac{1}{3+\sqrt{5}} \times \frac{1}{3-\sqrt{5}}$	
$=\frac{27\sqrt{5-9(5)-24+8\sqrt{5}}}{9-5}$	
$=\frac{35\sqrt{5}-69}{4}$	
$=\frac{35\sqrt{5}}{69}$	
4 4	
$=-\frac{0}{4}+\frac{33\sqrt{3}}{4}$	
8. Solve the equation $x = \frac{4}{2} = \sqrt{2}$ where $x \neq 0$ giving your ensure in its	[4]
8. Solve the equation $\frac{1}{3} - \frac{1}{x} = \sqrt{3}$, where $x \neq 0$, giving your answer in its	L.J
simplest surd form.	
2	
$\frac{x^2-12}{3x} = \sqrt{3}$	
$x^2 - 12 = 3\sqrt{3}x$	
$x^2 - 3\sqrt{3}x - 12 = 0$	
$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	
$x = \frac{-(-3\sqrt{3}) \pm \sqrt{(3\sqrt{3})^2 - 4(1)(-12)}}{2(1)}$	
$x = \frac{3\sqrt{3} \pm \sqrt{27 + 48}}{2}$	
$x = \frac{3\sqrt{3} \pm \sqrt{75}}{2}$	
$x = \frac{3\sqrt{3} \pm \sqrt{25 \times 3}}{2}$	
$x = \frac{3\sqrt{3}\pm 5\sqrt{3}}{2}$	
$x = 4\sqrt{3} \text{ ot } x = -\sqrt{3}$	

9. (a) Without using a calculator, express $(2\sqrt{3} + \sqrt{2})^2$ in the form $a + b\sqrt{6}$, [2] where a and b are integers. $\left(2\sqrt{3}+\sqrt{2}\right)^2$ $= 4(3) + 2(2\sqrt{3})(\sqrt{2}) + 2$ $= 14 + 4\sqrt{6}$ 9. (b) Hence, or otherwise, express $\frac{(2\sqrt{3}+\sqrt{2})^2}{3+\sqrt{6}}$ in the form $p + q\sqrt{6}$, [3] where p and q are rational numbers. $\frac{-14+4\sqrt{6}}{3+\sqrt{6}} \times \frac{3-\sqrt{6}}{3-\sqrt{6}} \star$ Rationalise the denominator $=\frac{42-14\sqrt{6}+12\sqrt{6}-4(6)}{9-6}$ $=\frac{18-2\sqrt{6}}{2}$ $= 6 - \frac{2}{3}\sqrt{6}$ 10. It is given that $\sqrt{3}(x + 3) = x + 17$. Find x in the form $a + b\sqrt{3}$, where [4] where *a* and *b* are integers. $\sqrt{3}(x+3) = x+17$ $\sqrt{3}x + 3\sqrt{3} = x + 17$ $\sqrt{3}x - x = 17 - 3\sqrt{3}$ $x(\sqrt{3}-1)=17-3\sqrt{3}$ $x = \frac{17-3\sqrt{3}}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1} \bigstar$ Rationalise the denominator $x = \frac{17\sqrt{3} + 17 - 3(3) - 3\sqrt{3}}{3 - 1}$ $x = \frac{14\sqrt{3}+8}{2}$ $x = 7\sqrt{3} + 4$ $x = 4 + 7\sqrt{3}$

11. Given that $(a - 3\sqrt{5})(2 + \sqrt{5}) = b - 2\sqrt{5}$, find the values of the integers <i>a</i> and <i>b</i> .	[3]
$(a - 3\sqrt{5})(2 + \sqrt{5}) = b - 2\sqrt{5}$ $2a + a\sqrt{5} - 6\sqrt{5} - 3(5) = 2a - 15 + a\sqrt{5} - 6\sqrt{5}$ By comparison, $a\sqrt{5} - 6\sqrt{5} = -2\sqrt{5}$ $a\sqrt{5} = 4\sqrt{5}$ a = 4 b = 2(4) - 15	
b = -7 12. Solve $\sqrt{x + 7} - 3\sqrt{2} = 1$, leaving your answer in the form $m + n\sqrt{2}$,	[3]
where <i>m</i> and <i>n</i> are integers. $\sqrt{x + 7} - 3\sqrt{2} = 1$	
$\sqrt[3]{x + 7} = 3\sqrt{2} = 1$ $\sqrt[3]{x + 7} = 1 + 3\sqrt{2}$ $x + 7 = (1 + 3\sqrt{2})^{2}$	
$ \begin{array}{l} x + 7 = 1 + 2(1)(3\sqrt{2}) + 9(2) \\ x + 7 = 1 + 6\sqrt{2} + 18 \end{array} $	
$x = 19 - 7 + 6\sqrt{2}$	

13. Simplify $\sqrt{108} - \frac{12}{\sqrt{3}}$, giving your answer in the form $k\sqrt{3}$,	[2]
where k is an integer.	
$\sqrt{108} - rac{12}{\sqrt{3}}$	
$=\sqrt{3 \times 36} - \frac{12}{\sqrt{3}}$	
$= 6\sqrt{3} - \frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} \star$ Rationalise the denominator	
$=6\sqrt{3} - \frac{12\sqrt{3}}{3}$	
$=\frac{18\sqrt{3}-12\sqrt{3}}{3}$	
$=\frac{6\sqrt{3}}{3}$	
$= 2\sqrt{3}$	
14. Without using a calculator, solve the equation $3x - \sqrt{2} = 2(1 + x\sqrt{2})$.	[5]
$3x - \sqrt{2} = 2(1 + x\sqrt{2})$	
$3x - \sqrt{2} = 2 + 2\sqrt{2}x$	
$3x - 2\sqrt{2}x = 2 + \sqrt{2}$	
$x(3 - 2\sqrt{2}) = 2 + \sqrt{2}$	
$x = \frac{2+\sqrt{2}}{3-2\sqrt{2}} \times \frac{3+2\sqrt{2}}{3+2\sqrt{2}} \star$ Rationalise the denominator	
$x = \frac{6+4\sqrt{2}+3\sqrt{2}+2(2)}{9-4(2)}$	
$x = 10 + 7\sqrt{2}$	