2024 TJC Preliminary Exam H2 Mathematics Paper 2 (Suggested solutions)

Section A: Pure Mathematics [40 marks]

1 A curve *C* has equation
$$y = \frac{3-x}{x-1}$$

- (a) Sketch *C*, stating the equations of the asymptotes.
- (b) Find the exact volume of the solid generated when the region bounded by *C*, the *x*-axis and the line x = 9 is rotated through 2π radians about the *x*-axis. Leave your answer in the form $\pi(a+b\ln 2)$, where *a* and *b* are constants to be determined.

[2]

		[5]
	[Solutions]	Remarks
1(a)	y = -1	$y = \frac{3-x}{x-1} = -1 + \frac{2}{x-1}$ Use dashed lines for asymptotes. When sketching additional lines to solve other parts of the problem, it is recommended that a side sketch be redrawn to avoid damaging the solution.
1(b)	Required volume	An additional diagram
	$= \pi \int_{3}^{9} \left(\frac{3-x}{x-1}\right)^{2} dx$ $= \pi \int_{3}^{9} \left(-1 + \frac{2}{x-1}\right)^{2} dx$ $= \pi \int_{3}^{9} 1 - \frac{4}{x-1} + \frac{4}{(x-1)^{2}} dx$ $= \pi \left[x - 4\ln x - 1 - 4(x-1)^{-1}\right]_{3}^{9}$ $= \pi \left[\left(9 - 4\ln 9 - 1 - 4(9 - 1)^{-1}\right) - \left(3 - 4\ln 2 - 4(2)^{-1}\right)\right]$ $= \pi \left(\frac{15}{2} - 4\ln(2^{3}) + 4\ln 2\right)$ $= \pi \left(\frac{15}{2} - 8\ln 2\right)$	drawn by the side is useful in helping identify the solid of revolution. It is more efficient to perform a long division first then squaring. Squaring first will result in a more complicated algebraic fraction that would still have to be dealt with by long division (or further splitting), which would increase the complexity
		of the working.

- (a) Find the series expansion of $\frac{(8+x)^{\frac{1}{3}}}{\cos 2x}$ in ascending powers of x up to and including 2 the term in x^2 . [5] [2]
 - (b) Find the range of validity of x for the expansion to be valid.

	[Solutions]	Remarks
(a)	$(0,,)^{\frac{1}{2}} = 8^{\frac{1}{3}} \left(1 + \frac{x}{x}\right)^{\frac{1}{3}}$	• Do not differentiate and use
	$\frac{(8+x)^3}{(8+x)^3} = \frac{(8)^3}{(8+x)^3}$	Maclaurin's theorem.
	$\cos 2x \qquad \cos 2x$	• Use binomial expansion/standard
	$2\left(1+1(x)+\frac{1}{3}(-\frac{2}{3})(x)^{2}+1\right)$	series in MF26:
	$=\frac{2\left(1+\frac{1}{3}\left(\frac{1}{8}\right)+\frac{1}{2!}\left(\frac{1}{8}\right)+\cdots\right)}{2!}$	$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots, x < 1$
	$1 - \frac{\left(2x\right)^2}{2} + \cdots$	$\cos x = 1 - \frac{1}{2}x^2 + \dots, \text{ all } x$
	$= 2\left(1 + \frac{x}{24} - \frac{x^2}{576} + \cdots\right)\left(1 - 2x^2 + \cdots\right)^{-1}$	• Expand until x^2 term. Do not waste time expanding more than what is
	$2(1 + x + x^2 + x^2)$ (1 + 2 2 + -)	required.
	$= 2\left(1 + \frac{1}{24} - \frac{1}{576} + \cdots\right)\left(1 + 2x^{2} + \cdots\right)$	• Rewrite $\frac{1}{(1-2x^2)}$ as $(1-2x^2)^{-1}$
	$= 2\left(1 + \frac{x}{24} + 2x^2 - \frac{x^2}{576} + \cdots\right)$	so that we can further expand it
	-2 $+1$ $+1151$ $+2$ $+1251$ $+2$ $+1151$ $+2$ $+1151$ $+2$ $+1151$ $+2$ $+1151$ $+1151$ $+2$ $+1151$ $+115$	using binomial expansion again
	$=2+\frac{12}{12}x+\frac{12}{288}x+\cdots$	
(b)	For $(1-2x^2)^{-1}$: $ 2x^2 < 1$	Note that there are two main
	$ x < \frac{1}{\sqrt{2}}$	binomial expansions, $\left(1+\frac{x}{8}\right)^{\frac{1}{3}}$ and
	1 1	$(1-2x^2)^{-1}$. We need to find the
	$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$	validity range for each expansion
		and then find the range of values
	For $\left(1-\frac{x}{8}\right)^{\overline{3}}$: $\left \frac{x}{8}\right < 1 \Rightarrow -8 < x < 8$	which satisfy both validity range by taking intersection.
	Taking intersection, the range of validity is	
	$-\frac{1}{\sqrt{2}} < x < \frac{1}{\sqrt{2}}$	

- A sequence $\{a_n\}$ is defined by $a_0 = 2$ and $a_n = a_{n-1} \frac{2}{3} \left(\frac{1}{3}\right)^{n-2}$ where $n \ge 1$. 3
 - (a) By considering $\sum_{n=1}^{N} (a_n a_{n-1})$, find an expression for a_N . [4] [1]
 - Hence explain whether the sequence is convergent. **(b)**

	[Solutions]	Remarks
3(a)	$2(1)^{n-2}$	- This is an equation. So when we take
	$a_n - a_{n-1} = -\frac{1}{3} \left(\frac{1}{3} \right)$ where $n \ge 1$	sum, we take sum ON BOTH SIDES
	$N \qquad (2) N (1)^{n-2}$	of the equation.
	$\sum_{n=1}^{\infty} (a_n - a_{n-1}) = \left(-\frac{2}{2} \sum_{n=1}^{\infty} \left(\frac{1}{2} \right) \right)$	
	$\overline{n=1}$ $(3)\overline{n=1}(3)$	- For summation, if you cannot observe
	LHS = $\sum_{n=1}^{N} (a_n - a_{n-1})$	what sum is that, it is always good to
	n=1	write out few terms to see.
	$= a_1 - a_0$	
	$+ a_2 - a_1$	- LHS: observe is sum of DIFFRENCE
	$+a_{3}-a_{2}$	of 2 SIMILAR TERMS, so use
	:	MOD.
	+n	- In MOD presentation, it is a MUST to
		show the cancellation pattern.
	$+ a_{N-1} - a_{N-2}$	-
	$+a_N-a_{N-1}$	- Pay attention to the SUBSCRIPT use.
	$=a_{N}-a_{0}$	
	$=a_{N}-2$	- RHS: Can write out a few terms to see
		as well to observe is sum of GP to
	() () n=?	FINITE term.
	$RHS = \left(-\frac{2}{2}\right) \sum_{n=1}^{N} \left(\frac{1}{2}\right)^{n-2}$	
	$\left(3\right)_{n=1}^{2}\left(3\right)$	- Sum of GP, learn to count the number
	$\begin{pmatrix} (2)(1^{-1}, 1^0, 1^1,, 1^{N-2}) \end{pmatrix}$	of terms correctly. For summation
	$ = \left(-\frac{-3}{3} \right) \left(\frac{-3}{3} + \frac{-3}{3} + \frac{-3}{3} + \dots + \frac{-3}{3} \right) $	number of terms can be obtained by
		"upper – lower limit + 1" if you did
	$\left(\begin{array}{c} \frac{1}{2} \end{array}\right) = \left[1 - \left(\begin{array}{c} \frac{1}{2} \end{array}\right)^{n}\right]$	not remove any of the terms. Pay
	$= \left(-\frac{2}{3}\right) \left(\frac{3}{2}\right) \left[-\frac{3}{3}\right]$	attention to the use of capital letter
	$(3) 1-\frac{1}{2}$	vs small letter again.
	3	and the second se
	$-3 \left 1 - \left(1 \right)^{N} \right $	- Simplify all answers.
	$=-3$ $\left 1-\left(\frac{1}{3}\right)\right $	1
	$ (1)^{N}$	
	Thus $a_N - 2 = 3\left(\frac{1}{3}\right) - 3$	
	$(1)^N$	
	$\Rightarrow a_N = 3\left(\frac{1}{3}\right) -1$	

3(b)	As $N \to \infty$, $\left(\frac{1}{3}\right)^N \to 0$.	- Check the concept of converge and watch necessary presentation.
	Hence $a_N \rightarrow -1$, a finite value.	- Note the difference of SEQUENCE
	Thus the sequence is converges to -1 .	converge vs SERIES converge.

- 4 The line l_1 passes through the point A with coordinates (1,0,4) and is perpendicular to the plane π_1 with equation 2x y + 4z = -3.
 - (a) Find the coordinates of the point *B* where l_1 meets π_1 . [4]
 - (b) Verify that the point C with coordinates (5,9,-1) lies on π_1 . [1]
 - (c) Find a vector equation of the line l_2 which is a reflection of the line AC in π_1 .
 - (d) Find a vector equation, in scalar product form, of the plane π_2 which contains l_1 and l_2 . [3]

[3]

	[Solutions]	Remarks
4 (a)	<i>B</i> is the foot of perpendicular from <i>A</i> to π_1 .	Take note the
	<i>B</i> lies on l_1 :	the direction of
	(1) (2)	l_1 is indirectly
	$\overrightarrow{OB} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \lambda \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ for some $\lambda \in \mathbb{R}$ $A(1,0,4)$	given in the
		normal to π_1 .
	$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$	Notations:
	B lies on π_1 : $\overrightarrow{OB} \cdot -1 = -3$	Remember to
		mention that
		$\lambda \in \mathbb{R}$, and
	Thus $\begin{vmatrix} 1 \\ 0 \end{vmatrix} + 2 \begin{vmatrix} 2 \\ 1 \end{vmatrix} + 2 = 3$	write " $\underline{r} =$ "
	$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 $	when writing
		vector
	$\Rightarrow (2+16) + \lambda(4+1+16) = -3$	equations.
	$\Rightarrow \qquad 21\lambda = -21 \qquad \Rightarrow \lambda = -1$	Pay attention to
	(1) (2) (-1)	details:
	Thus $\overrightarrow{OB} = \begin{vmatrix} 0 \\ -1 \end{vmatrix} = \begin{vmatrix} 1 \\ 1 \end{vmatrix}$ i.e. coordinates of <i>B</i> are (-1,1,0)	Coordinates
	$\left(4\right)\left(4\right)\left(0\right)$	are required.
4(b)	$\begin{pmatrix} 2 \end{pmatrix} \begin{pmatrix} 5 \end{pmatrix} \begin{pmatrix} 2 \end{pmatrix}$	Do not just
	$\left \overrightarrow{OC} \cdot \right - 1 = \left 9 \right \cdot \left -1 \right = 10 - 9 - 4 = -3$	write the
	$ \left[\left(4 \right) \left(-1 \right) \left(4 \right) \right] $	calculation;
	Thus C lies on π . (Verified)	include some
		statements.

5 (a) The complex number z = x + iy is represented by the point P(x, y) in an Argand diagram and satisfies the equation

$$zz^* = (2+3i)z^* + (2-3i)z + 12$$
.

(i) Show that *P* is a point on a circle, and state the centre and radius of the circle.

[3]

(ii) The point Q represents the complex number -4-5i. Find the smallest possible length PQ. [2]

(**b**) (**i**) Show that
$$\frac{1+\cos\theta+i\sin\theta}{1-\cos\theta-i\sin\theta}=i\cot\frac{\theta}{2}$$
. [3]

(ii) It is given that $z = e^{i\theta}$. Find the set of integer values of *n* such that $\left(\frac{1+z}{1-z}\right)^n$ is always real. [2]

	[Solutions]	Remarks
5(a)(i)	Subst $z = x + yi$ into	
	$zz^* = (2+3i)z^* + (2-3i)z + 12$	This is a " Show " qn.
	(x+iy)(x-iy) = (2+3i)(x-iy) + (2-3i)(x+iy) + 12	Need to give the equation of a circle:
	$x^{2} + y^{2} = 2x - 2yi + 3xi + 3y + 2x + 2yi - 3xi + 3y + 12$	$(x - k)^2 + (x - k)^2 - r^2$
	=4x+6y+12	$\frac{(x-n)+(y-k)-r}{1}$
	$x^2 - 4x + y^2 - 6y = 12$	Use completing squares
	$(x-2)^{2} + (y-3)^{2} = 12 + 4 + 9 = 25 = 5^{2}$	
	Thus P lies on a circle with centre (2, 3) and radius 5.	
5(a)(ii)	Im 🛉	
	Let <i>C</i> be the centre of the circle. Use Pythagoras Theorem, $CQ = \sqrt{(2-(-4))^2 + (3-(-5))^2} = \sqrt{6^2 + 8^2} = 10$ Shortest length $PQ = CQ$ - radius of circle $= 10-5=5$	Sketch a diagram to help you see the position of <i>P</i> for length <i>PQ</i> to be shortest. <i>P</i> and <i>Q</i> are points! <i>Poor presentation:</i> $Q \neq -4 -5i$ × point \neq complex no. $ Q \neq \sqrt{4^2 + 5^2}$ × Should be length <i>OQ</i>

5(b)(i)
$$\frac{\operatorname{Proof I}}{1 - \cos \theta - i\sin \theta} = \frac{1 + \left(2\cos^2 \frac{\theta}{2} - 1\right) + i\left(2\sin \frac{\theta}{2}\cos \frac{\theta}{2}\right)}{1 - \left(1 - 2\sin^2 \frac{\theta}{2}\right) - i\left(2\sin \frac{\theta}{2}\cos \frac{\theta}{2}\right)} = \frac{1}{2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{1}{2\cos \frac{\theta}{2}\left(\sin \frac{\theta}{2} - i\cos \frac{\theta}{2}\right)}{2\sin \frac{\theta}{2}\left(\sin \frac{\theta}{2} - i\cos \frac{\theta}{2}\right)} = \frac{2\cos \frac{\theta}{2}\left(\sin \frac{\theta}{2} - i\cos \frac{\theta}{2}\right)}{2\sin \frac{\theta}{2}\left(\sin \frac{\theta}{2} - i\cos \frac{\theta}{2}\right)} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}\cos \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \frac{\theta}{2}} = \frac{\cos \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin \theta - 2\sin \theta} = \frac{\cos^2 \theta - 1 - 2\sin^2 \frac{\theta}{2}}{\sin^2 \theta - 1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta + 1 - \cos^2 \theta}} = \frac{\cos^2 \theta - 1 - 2\sin^2 \theta}{(1 - \cos^2 \theta - 1 - \sin^2 \theta)} = \frac{\cos^2 \theta - 1 - 2\sin^2 \theta}{(1 - \cos^2 \theta - 1 - \cos^2 \theta) + 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - 2\cos^2 \theta - 1 - \cos^2 \theta + 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - 2\cos^2 \theta - 1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - 2\cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1 - \cos^2 \theta} = \frac{\sin^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2 \theta - 1} = \frac{\cos^2 \theta - 1}{1 - \cos^2$$

Section B: Probability and Statistics [60 marks]

- 6 (a) The 11 letters of the word REFRESHMENT are arranged in a row.
 - (i) Find the number of different arrangements that can be made. [2]
 - (ii) Find the number of different arrangements that can be made such that all the E's are together and all the R's are together but the E's and the R's are not together.
 - (b) A 4-letter codeword is formed using the letters in the word REFRESHMENT. Find the number of different codewords that can be formed. [4]

	[Solutions]	Remarks
6(a) (i)	Required no. of arrangements = $\frac{11!}{2!3!}$ = 3 326 400	REFSHMNT RE E
6(a) (ii)	M1: Slot in method F S H M N T RR EEE	For objects not together means to separate. Use slotting in method
	Required no. of arrangements = $6! \times {}^{7}C_{2} \times 2! = 30240$ M2: complement method	
	$EEE RR $ $8!-7!\times2!=30240$ $EEE RR$	Extra careful use of complement. Note the use of complement must have the no restriction with Es and Rs grouped respectively into unit first! It is not (i) answer.
	 8! : Group Es as one unit, Rs as one unit. Total = 6 others + Es unit + Rs unit = 8 units arrange them. 7!: Group Es as one unit, Rs as one unit. Group the Es unit and Rs unit together. Total = 6 others + (E unit and R unit together)unit = 7 units arrange them 2! : Arrange the Es unit and the Rs unit 	

7 Two boys, Joseph and Elliot, play a game by each tossing a coin. Joseph tosses a 20-cent coin and Elliot tosses a 50-cent coin. The probability that the 20-cent coin and the 50-cent

coin shows a head are $\frac{3}{5}$ and *p* respectively.

If both coins show heads, Joseph gets to keep Elliot's coin.

If both coins show tails, Joseph gives his coin to Elliot.

If one coin shows a head and the other coin shows a tail, both get to keep their own coins. Let *W*, in cents, be the amount of money Joseph wins in a game.

(a) Find, in terms of p, the probability distribution of W and E(W). [4]

[1]

- (b) Find the value of p for the game to be fair.
- (c) Suppose Elliot's coin is fair i.e. $p = \frac{1}{2}$ and the boys played 40 games. Find the probability that Joseph wins an average of more than 15 cents per game. [3]

	[Solutions]				Remarks
7(a)	[201401012]	Read the question			
	outcome	HH	HT or TH	TT	carefully: W
	W	50	0	-20	represents Joseph's
	P(W = w)	$\frac{3}{-p}$	$\frac{3}{2}(1-p) + \frac{2}{2}p$	$\frac{2}{-}(1-p)$	winnings, so his initial 20-cent coin should
		5'	$5^{(1)} 5^{(1)}$	5 1	not be included in the
			$=\frac{3}{5}-\frac{1}{5}p$		value of W.
	$E(W) = 50 \times \left($	$\left(\frac{3}{5}p\right) - 20$	$\times \left(\frac{2}{5}(1-p)\right)$		
	= 38 p -	-8			
7(b)	For the game t	o be fair	$\mathbf{E}(W) = 0$		Important
. (~)	r or the guine t	Understanding			
		A "fair game" is one			
		in which the expected			
					winnings is 0.
					It is not one where
					P(J wins) = P(E wins)
7 (c)	Given n = 1	The question asks			
	Given $p = \frac{1}{2}$,	about Joseph's			
	Using GC, Va	average winnings.			
		This is a big hint for			
	$\overline{W} = \frac{W}{W}$	$V_1 + W_2 + W_1$	$V_3 + + W_{40}$		the application of
		CLT. Remember to			
	Since $n = 40$ is	justify the use of CLT,			
	$\overline{W} \sim N\left(11, \frac{709}{1000}\right)$ approximately				and that CLT does not
	L (´ 4	0/11	-		let the original r.v. (i.e.
	Required prob	ability = 1	$P(\overline{W} > 15) = 0.171$	(3 s.f.)	W) become normal. It
					only applies to W.

8 A trainee nurse Angeline is investigating how the head circumferences of young children vary with age. The age, *A* months, and the head circumference, *H* cm, of a random sample of 8 young children are given in the table.

Α	2	5	7	11	13	16	20	24
Н	34.5	38.5	41	43	47	45	46.3	46.5

(a) The value of the product moment correlation coefficient between H and A is 0.880, correct to 3 decimal places, and a scatter diagram for the data is shown below.

- (i) Explain whether a linear model is a good model for the relationship between *H* and *A*. [1]
- (ii) Identify one of the data that Angeline may have recorded wrongly and justify your answer. [1]

(b) For the rest of this question, you should not include the wrongly recorded data. Based on the scatter diagram in (a), Angeline thinks that a model with equation $H = a + b \ln A$ is an appropriate model.

- (i) Sketch a scatter diagram for *H* against ln *A*. [1]
- (ii) Use your calculator to find the equation of the least square regression line of *H* on ln *A* and the value of the corresponding product moment correlation coefficient.
- (iii) Use your equation to estimate the head circumference of a 13-month-old child.Give two reasons why you would expect this estimate to be reliable. [3]

	[Solutions]						
8 (a)	Although $r_{A,H} = 0.880$ is relatively close to 1, the scatter diagram shows the						
(i)	general trend that H increases at a decreasing rate rather than a constant rate. Hence a linear model is not appropriate.						
	 Comments: <i>r</i>-value of 0.88 is not low and is not indicating weak linear. Scatter diagram is always a much accurate way than <i>r</i>-value to see the suitability of a linear model. Question has given all data and is not asking to explain in context. So students need to learn to analyse questions when to use which. To explain WHY LINEAR cannot, hence the need to explain what about LINEAR model ie "constant rate" that cause it to be not suitable. MUST do 						
8 (a)	(13, 47) as it does not follow the increase at a decreasing rate trend set by the rest						
(ii)	of the data. Or (13, 47) as it is FAR away from the increase at a decreasing rate graph formed by the rest of the data.						
	 <u>Comments:</u> Important concept (***) DATA points can be above or below the trend set by the rest of the data. Use of keywords "rest of the data", "follow", "far away", "trend/graph" <u>CANNOT</u> use instantaneous point i.e. relative position of points to argue why point is outlier. (see ***) <u>MUST</u> argue is about the point with respect to the trend/ graph. Must state the trend as one could pick another point eg <i>A</i> =2 to say that it does not follow the linear trend set by the rest of the points! 						
8(b) (i)	H 46.5 x x x x x x x x						

8(b)	From GC, regression line of <i>H</i> on ln <i>A</i> is
(ii)	$H = 5.0349 \ln A + 30.899$
	$H = 5.03 \ln A + 30.9 \qquad (3 \text{ s.f.})$
	and $r = 0.997$ (3 s.f.)
8(b)	When $A = 13$, $H = 5.0349 \ln 13 + 30.899$
(iii)	= 43.8 (3 s.f.)
	Thus the head circumference of a 13-month-old child is 43.8 cm.
	It is a reliable estimate as $A = 13$ is within the data range [2, 24] and $r = 0.997$ being
	close to 1 indicates a strong linear correlation between ln A and H.
	Reliability must remember 2 'R's
	1) Range. In particular is the range of sub in value and NOT range of estimate
	obtained.
	2) R-value. Pay attention to all the keywords needed.
	-Be clear in your answer, DO NOT USE 'it' as too ambiguous to know what you are referring to.
	- Final answer is non- exact, please remember to give 3 s.f.

9 In this question, you should state the parameters of any normal distributions you use.

In golf, a player's driving distance refers to the distance a ball travels when it is hit from the tee using a golf club known as a driver.

Records from past competitions show the following statistics.

- The proportion of male players with driving distance greater than 261 metres is equal to the proportion of male players with driving distance less than 170 metres.
- The proportion of male players with driving distance greater than 261 metres is equal to the proportion of female players with driving distance greater than 181 metres.
- The mean driving distance of a female player is 147.5 metres.

It may be assumed that the driving distances of male and female players follow normal distributions. The standard deviations of the driving distances of male and female players are denoted by σ_m and σ_f respectively.

- (a) State the mean driving distance of a male player. [1]
- (b) Show that $\sigma_m = k\sigma_f$, where k is a constant to be determined. [2]

It is given that $\sigma_m = 24.14$ and $\sigma_f = 17.77$.

- (c) Find the probability that the driving distance of a randomly chosen male player is more than 1.5 times the driving distance of a randomly chosen female player. [3]
- (d) Find the probability that the difference in driving distances of two randomly chosen female players is less than 15 metres. [3]

	[Solutions]	Remarks
9(a)	Let M and F denote the driving distances (in metres) of a male	
	and a female player respectively.	
	$M \sim N(\mu_m, \sigma_m^2)$ and $F \sim N(147.5, \sigma_f^2)$.	
	Given: $P(M > 261) = P(M < 170)$ Then, by symmetry, $\mu_m = \frac{170 + 261}{2} = 215.5$ Thus the mean driving distance of a male player is 215.5 metres.	Note that $ \frac{\mu_m = E(M)}{(\text{population mean})} $
9(b)	Given: $P(M > 261) = P(F > 181)$	
	$P\left(Z > \frac{261 - 215.5}{\sigma_m}\right) = P\left(Z > \frac{181 - 147.5}{\sigma_f}\right)$	Need to show standardisation
	$\frac{45.5}{33.5} = \frac{33.5}{33.5}$	
	$\sigma_{_m}$ $\sigma_{_f}$	
	$\frac{\sigma_m}{\sigma_m} = \frac{45.5}{\sigma_m}$	
	σ_f 33.5	
	$\sigma_m = \frac{91}{67}\sigma_f \text{or} 1.36\sigma_f (3 \text{ s.f.})$	

9(c) Given:
$$M \sim N(215.5, 24.14^2)$$
 and $F \sim N(147.5, 17.77^2)$
 $E\left(M - \frac{3}{2}F\right) = 215.5 - \frac{3}{2}(147.5) = -5.75$
 $Var\left(M - \frac{3}{2}F\right) = 24.14^2 + \left(\frac{3}{2}\right)^2(17.77)^2 = 1293.228625 \text{ (exact)}$
Hence $M - \frac{3}{2}F \sim N(-5.75, 1293.228625)$
Required probability
 $= P\left(M > \frac{3}{2}F\right) = P\left(M - \frac{3}{2}F > 0\right) = 0.436 \text{ (3 s.f.)}$
9(d) $E(F_1 - F_2) = E(F) - E(F) = 0$
 $Var(F_1 - F_2) = 2Var(F) = 2(17.77)^2 = 631.5458 \text{ (exact)}$
Hence $F_1 - F_2 \sim N(0, 631.5458)$
Required probability
 $= P(|F_1 - F_2| < 15) = P(-15 < F_1 - F_2 < 15)$
 $= 0.449 \text{ (3 s.f.)}$
 $P(|X| < a) = P(-a < X < a)$
 $P(|X| > a) = 1 - P(-a \le X \le a)$

10 A ministry spokesman reported that students spend an average of 6.5 hours per week on co-curricular activities (CCA) in school. Mr Gru believes that the average time spend on CCA per week in his school is less than this average. To test his belief, he tasks his student Kevin to take a random sample of 50 students in his school. The times, *x* hours, spent on CCA per week are summarised below.

$$\sum x = 306.68$$
 $\sum x^2 = 1916.22$

- (a) State what it means for a sample to be random in this context.
- (b) Calculate unbiased estimates of the population mean and variance of the times spent on CCA per week. [2]
- (c) Carry out a test and determine whether the *p*-value provides strong evidence to support Mr Gru's belief. [4]
- (d) Kevin suggests to Mr Gru that it is necessary to assume that the times spent on CCA per week is normally distributed in order to carry out the test. Explain whether this assumption is necessary.
- (e) Student Bob takes another random sample of 50 students and finds that the mean and standard deviation of their times spent on CCA per week are m hours and 0.9 hours respectively. The result of a test at the 1% significance level is that the average time spent on CCA per week by students in his school differs from the average time reported by the ministry spokesman. Find the range of values of m.

I	51	
I	21	

[1]

	[Solutions]	Remarks
10(a)	A random sample is obtained when the students are selected independently and every student in the school has an equal probability of being selected.	To indicate random sample, need to state 2 factors: 1. equal chance/probability of being chosen 2. selection is independent Note that it is the selection that is independent and not the time spend on CCA is independent. Do not write probability of a student chosen is independent of another student chosen.
10(b)	X denotes the time spent (in hours) by a student in Mr Gru's school on CCA per week. Unbiased estimate of population mean, $\overline{x} = \frac{306.68}{50} = 6.1336$ (exact) Unbiased estimate of population variance, $s^2 = \frac{1}{49} \left[1916.22 - \frac{306.68^2}{50} \right] \approx 0.71771 = 0.718$ (3 s.f.)	DO NOT ROUND OFF <u>EXACT DECIMALS</u> TO 3 s.f.

spent on CCA by students in Mr. Gru's school	
spent on CCA by students in Mi Oru's school.	
$H_0: \mu = 6.5$	
$H_1: \mu < 6.5$ Under $H_0, \mu = 6.5$	
Under H_0 , since $n = 50$ is large, $\overline{X} \sim N(6.1336, \frac{0.71}{2})$	771) x
$\overline{X} \sim N\left(6.5, \frac{0.71771}{50}\right) \text{ approximately by Central} \qquad X \sim N\left(0.1350, \frac{0.7150}{50}\right)$)
Limit Theorem.	(0 1) X
Test statistic, $Z = \frac{X - 6.5}{\sqrt{\frac{0.71771}{50}}} \sim N(0,1) \text{ approx}$	(0,1)
Using GC, p-value = 0.00111	^{an mp}
Since <i>p</i> -value of 0.00111 is very small, this Inpt:Data State	
indicates that H_0 will only be rejected if level of $\begin{bmatrix} \mu & 0 & 0 \\ \sigma & 0 & 8471776673166 \\ \sigma & 0 & 1336 \end{bmatrix}$	5
significance is at least 0.111% which is very $n:50$	
small. This means that there is very strong Color: RED Calculate	
A nonver the support for Steller.	
Decide if <i>p</i> -value ob	tained
provides strong evid	lence to
support H ₁ . The sma	aller the <i>p</i> -
evidence!	lic
10(d) It is not necessary as the sample size of 50 is large State clearly and exp	plicitly
and thus by Central Limit Theorem, the sample what exactly is norm	nany
man of the times spont on CCA per week distributed under CL	LT!
mean of the times spent on CCA per week , distributed under CL i.e. \overline{X} would follow a normal distribution Common wrong and	LT! swers:
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess	LT! swers: sary as the
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is	LT! swers: sary as the is large and
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is thus by CLT it is distributed	LT! swers: sary as the is large and is normally
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is thus by CLT it is distributed.2. It is not necess	LT! swers: sary as the is large and is normally sary as the
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is thus by CLT it is distributed. 2. It is not necess sample size of 50 is	LT! swers: sary as the is large and is normally sary as the is large and
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is thus by CLT it is distributed.2. It is not necess sample size of 50 is thus by CLT, the normally distributed	LT! swers: sary as the is large and is normally sary as the is large and is large and is large is l.
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 is thus by CLT it is distributed.2. It is not necess sample size of 50 is thus by CLT, the normally distributed 3. It is not necess	LT! swers: sary as the is large and is normally sary as the is large and the time is l. sary as the
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 it thus by CLT it it distributed.2. It is not necess sample size of 50 it thus by CLT, the normally distributed 3. It is not necess sample size of 50 it thus by CLT, the normally distributed	LT! swers: sary as the is large and is normally sary as the is large and ne time is l. sary as the is large and
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 if thus by CLT it if distributed.2. It is not necess sample size of 50 if thus by CLT, the normally distributed3. It is not necess sample size of 50 if thus by CLT, the normally distributed	LT! swers: sary as the is large and is normally sary as the is large and the time is l. sary as the is large and the time is l.
mean of the times spent on CCA per week, i.e. \overline{X} would follow a normal distribution approximately.distributed under CL Common wrong ans 1. It is not necess sample size of 50 i thus by CLT it i distributed.2. It is not necess sample size of 50 i thus by CLT, th normally distributed3. It is not necess sample size of 50 i thus by CLT, th normally distributed	LT! swers: sary as the is large and is normally sary as the is large and ne time is l. sary as the is large and ne time is l.

- 11 On average, Alex sleeps less than 6 hours on 75% of nights. The probability that he wakes up late on a school day is 0.625. On days where he wakes up late for school, there is a 96% chance that he has slept less than 6 hours the night before.
 - (a) Find the probability that he wakes up late when he has slept less than 6 hours the night before. [3]
 - (b) Determine, with justification, whether the event that he wakes up late for school is independent of the event that he has slept less than 6 hours. [1]

A school week has 5 school days. The number of days he wakes up late for school in a school week is denoted by X.

(c) State, in context, 2 assumptions needed for *X* to be well-modelled by a binomial distribution. [2]

Assume now that *X* can be modelled by a binomial distribution.

(d) Find the probability that, in a randomly chosen week, Alex wakes up late for school on at most 3 days. [1]

A school term has 10 weeks.

- (e) Find the probability that Alex wakes up late for school on at most 3 days in a week for more than 4 weeks in a randomly chosen school term. State the distribution that you use. [3]
- (f) Find the probability that Alex wakes up late for school on 32 days in a randomly chosen school term. State the distribution that you use. [2]
- (g) Find the probability that Alex wakes up late for school on at most 3 days in a week for 4 weeks and wakes up late for school on 4 days in a week for the other weeks in a randomly chosen school term. [2]

	[Solutions]	Remarks
11(a)	Let S be the event that Alex sleeps less than 6 hours.	A logical question to ask
	Let L be the event that Alex wakes up late for school.	yourself when trying to
	Given: $P(S) = 0.75$, $P(L) = 0.625$	determine whether the
	and $P(S L) = 0.96 \implies \frac{P(L \cap S)}{P(L)} = 0.96$	given scenario is a
		P(A B) scenario or
	$\Rightarrow P(L \cap S) = 0.96(0.625) = 0.6$	$P(A \cap B)$ scenario is
	Required probability	whether A and B are
	$P(L \cap S) = 0.6$	occurring simultaneously
	$ =P(L S) = \frac{C}{P(S)} = \frac{100}{0.75} = 0.8$	or A is occurring under
	$\Gamma(S) = 0.75$	the constraint that <i>B</i> has
		already occurred.
		Need to remember the
		conditional probability
		"formula" correctly.

11(h)	\mathbf{n} $\mathbf{p}(\mathbf{q} \mathbf{I})$ 0 0 \mathbf{c} 0 7 $\mathbf{p}(\mathbf{q})$	More than often
11(0)	Since $P(S L) = 0.90 \neq 0.75 = P(S)$,	determination of
	S and L are not independent events.	indexendexes between
		two events is a
		mathematical question on
		whether either of the
		conditions
		P(A B) = P(A) or
		$P(A \cap B) = P(A) \times P(B)$
		has been satisfied.
11(c)	The 2 assumptions are	Always answer using the
	(1) Whether Alex wakes up late on a school day is	context of the questions.
	independent of whether he wakes up late on	Do not generically
	other days.	specify the terms "trial"
	(2) The probability that Alex wakes up late is the	or "outcome", without
	same constant for <u>all school days</u> .	mention of the scenario.
		Fixed no. of trials and
		two outcomes only are
		often already implied in
		the question. Hence they
		are usually not
		assumptions.
		When phrasing the
		assumption on the
		independence of events, it
		is recommended to have
		the structure "whether
		instance of event A
		happens is independent of
		the occurrences of other
		instances of event A i.e.
		repeat the event when
		comparing. This will
		avoid misphrasing.
11(d)	Given: X be the number of days Alex wakes up late	Always give an
	for school in a school week of 5 days.	intermediate value that is
	$X \sim B(5, 0.625)$	2 more significant figures
		than the requirement in
	Required probability = $P(X \le 3) = 0.61853$ (5 s.f.)	case a subsequent part requires the carry-over of
	= 0.619 (3 s.f.)	the more accurate value.

11(e)	Let <i>Y</i> be the number of weeks (in a school term of 10 weeks) where he wakes up late for school on at most 3 days in a week. $Y \sim B(10, 0.61853)$ Required probability = P(<i>Y</i> > 4) = 1 - P(<i>Y</i> ≤ 4) = 0.863 (3 s.f.)	When defining the distribution, always use the more accurate value (with more significant figures) if a previous value is required.
11(f)	Let <i>W</i> be the number of days (in a school term of $10 \times 5 = 50$ days) where he wakes up late for school.	
	$W \sim B(50, 0.625)$ Required probability = P(W = 32) = 0.114 (3 s.f.)	
11(g)	$X \sim B(5, 0.625)$ Required probability = $\frac{10!}{4! \ 6!} [P(X \le 3)]^4 [P(X = 4)]^6$ = 0.0169 (3 s.f.)	Consider the following: You have 10 weeks. 4 of them needs Alex to wake up late for at most 3 times a week. 6 of them requires Alex to wake up 4 times a week. How many combinations of