NAME

Catholic Junior College JC1 Promotional Examinations Higher 2

PHYSICS

Paper 1: Multiple Choice Questions

30 September 2022

30 minutes

9749/1

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write your name and tutorial group on this cover page.

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write and shade your name, NRIC / FIN number and HT group on the Answer Sheet (OMR sheet), unless this has been done for you.

There are **fifteen** questions on this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet (OMR sheet).

Read the instructions on the Answer Sheet carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet. The use of an approved scientific calculator is expected, where appropriate.

MARK SCHEME

This document consists of **11** printed pages and **0** blank page.


PHYSICS DATA:

speed of light in free space	С		3.00 x 10 ⁸ m s ⁻¹
permeability of free space	μ_0	=	4π x 10 ⁻⁷ H m ⁻¹
permittivity of free space	\mathcal{E}_0	=	8.85 x 10 ⁻¹² F m ⁻¹
			\approx (1/(36 π)) x 10 ⁻⁹ F m ⁻¹
elementary charge	е	=	1.60 x 10 ⁻¹⁹ C
the Planck constant	h	=	6.63 x 10 ⁻³⁴ J s
unified atomic mass constant	и	=	1.66 x 10 ⁻²⁷ kg
rest mass of electron	m_e	=	9.11 x 10 ⁻³¹ kg
rest mass of proton	m_P	=	1.67 x 10 ⁻²⁷ kg
molar gas constant	R	=	8.31 J K ⁻¹ mol ⁻¹
the Avogadro constant	N_A	=	6.02 x 10 ²³ mol ⁻¹
the Boltzmann constant	k	=	1.38 x 10 ⁻²³ mol ⁻¹
gravitational constant	G	=	6.67 x 10 ⁻¹¹ N m ² kg ⁻²
acceleration of free fall	g	=	9.81 m s ⁻²

PHYSICS FORMULAE:

uniformly accelerated motion s	=	$u t + \frac{1}{2} a t^2$ $u^2 + 2 a s$
v^2	=	$u^2 + 2 a s$
		$p \Delta V$
hydrostatic pressure P	=	ho gh
gravitational potential ϕ	=	Gm
temperature T/K	=	r T / °C + 273.15
pressure of an ideal gas p	=	$\frac{1}{3} \frac{Nm}{V} \langle c^2 \rangle$
mean translational kinetic energy of an ideal gas		$\frac{3}{2}kT$
melecule		2
		$x_0 \sin \omega t$
velocity of particle in s.h.m.		$v_0 \cos \omega t$
	=	$\pm \omega \sqrt{{\boldsymbol{x}_0}^2 - {\boldsymbol{x}}^2}$
electric current I	=	Anvq
resistors in series R	=	$R_1 + R_2 +$
		$1/R_1 + 1/R_2 + \dots$
electric potential V	=	Q
		$4\pi\varepsilon_o r$
alternating current / voltage x	=	$x_0 \sin \omega t$
magnetic flux density due to a long straight wire B	=	$\frac{\mu_o I}{2\pi d}$
		$\frac{2\pi a}{\frac{\mu_o NI}{2r}}$
		$\mu_o nI$
		$x_0 \exp(-\lambda t)$
decay constant λ	=	ln 2
		$t_{\frac{1}{2}}$

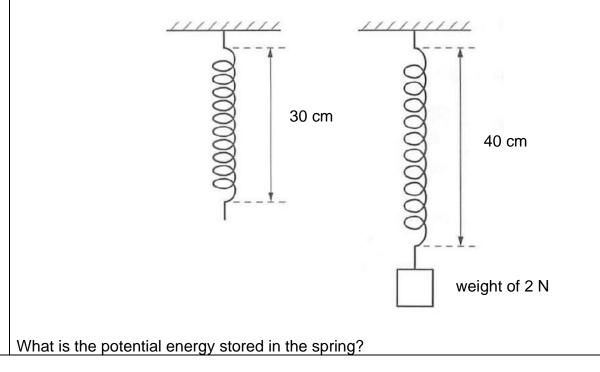
1	The			is measured using ohmmeter specifi				•				
	How	How should the resistance of the resistor be recorded, along with its uncertainty?										
	Α	(47 ± 5) Ω										
	В	(47.1 ± 0.1) Ω										
	С	(47.1 ± 4.7) Ω										
	D	(47.12 ± 5) Ω										
L2	Ans	wer: A										
	The	uppertainty of the	regiot		0/ A	71 ·· E (1 o f)						
	Ine	uncertainty of the	resist	ance = 47.12 × 10	1% = 4.	$71 \approx 5$ (1.s.f)						
	Ther	efore, resistance	= (47	± 5) Ω								
	T	tusius Tusia A su	d Tra	in Denne initially at				train station				
2				in B, are initially at with a uniform acc								
		B leaves the sta m s ⁻² .	tion ir	the same direction	n as Tr	ain A with a unifo	rm ao	cceleration of				
	How	long does Train F	R take	to catch up with Tr	ain Δ?							
	11000						[
	Α	6.9 s	В	180 s	С	210 s	D	410 s				
L2	Ans	wer: D		L		<u> </u>		1				
	Let t	me <i>t</i> be the time a	at whi	ch Train B catches	up wit	h Train A.						
	Dista	ance traveled by T	rain A	$s_{A} = s_{A} = ut + \frac{1}{2}at^{2} =$	$\frac{1}{2}(0.30)$	<i>D)(t+120)</i> ² [t+120	s sind	ce Train A				
		els an additional ti		-	2							
	Dista	ance traveled by T	rain E	$s = s_B = ut + \frac{1}{2}at^2 =$	$=\frac{1}{2}(0.5)$	0)(t) ²						
				nes up, $\frac{1}{2}(0.30)(t+$	-							
		ing for <i>t, t</i> = 410 s		Z		2						

The two blocks stick together after the collision and move off with a common speed.

What is the speed and the direction of motion of the blocks after the collision?

500 g

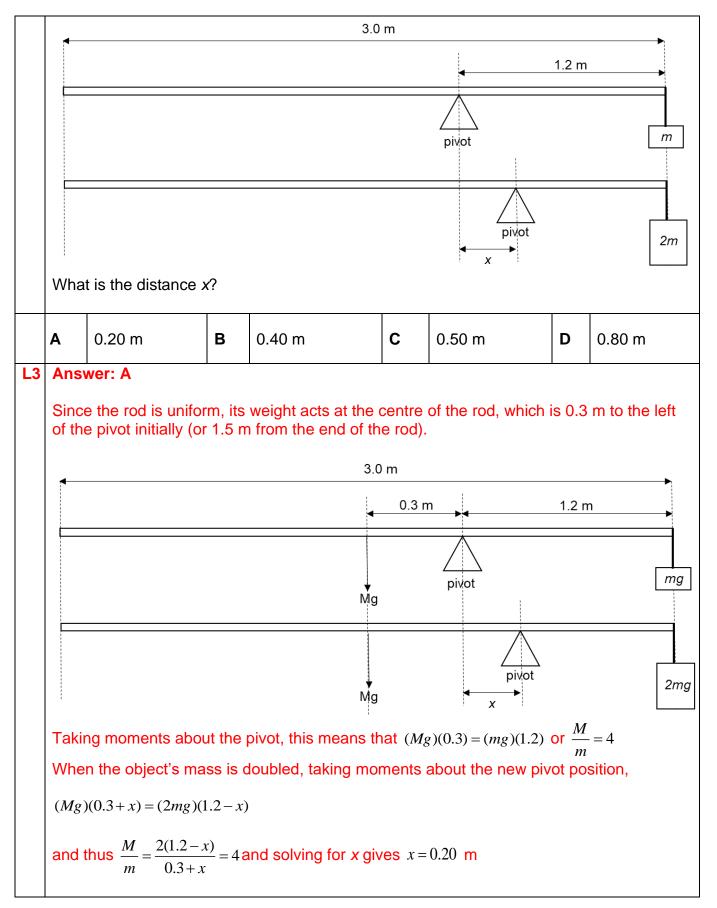
400 g

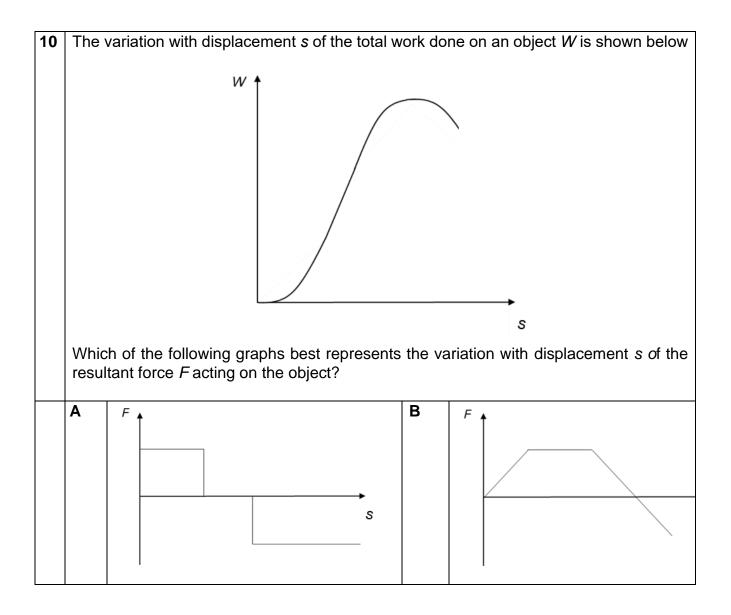

	Α	0.22 m s ⁻¹ to the left							
	В	B 0.22 m s ⁻¹ to the right							
	C 2.4 m s ⁻¹ to the left								
	D 2.4 m s ⁻¹ to the right								
L1	Ansv	ver: A							
	By th	e Conservation of Momentum, and taking right as positive							
	(0.5)(2.0) + (0.4)(-3.0) = (0.5+0.4)v								
	<i>v</i> = -	$v = -0.22 \text{ m s}^{-1}$ (to the left)							

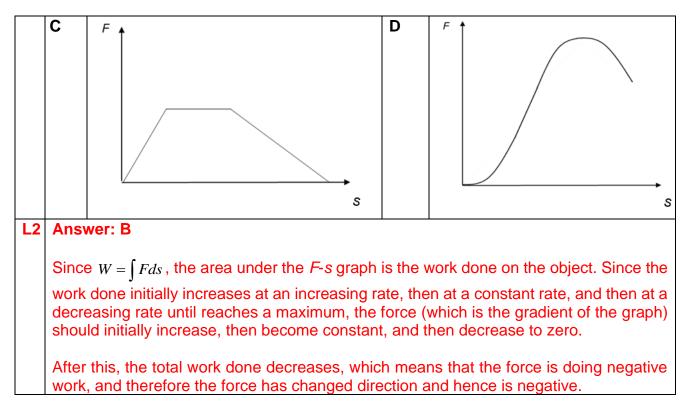
5 A tennis ball of mass 60 g is dropped vertically from a height. It hits the ground with a speed of 21 m s⁻¹ downwards and then bounces upwards with an initial speed of 14 m s⁻¹. The time of contact between the ball and the ground is 0.30 s.

What is the magnitude of the impulse provided by the ground?

	A	0.42 N s	в	2.1 N s	С	7.0 N s	D	2100 N s
L1	Impu	ver: B lse = change of r v _f -v _i) = 0.060 (14						

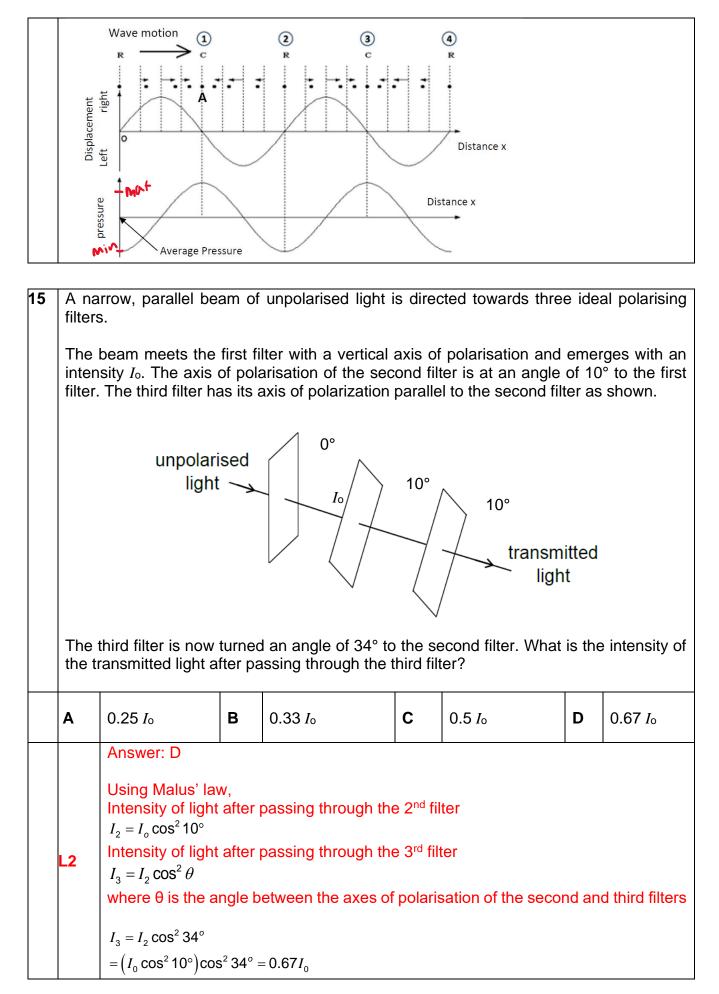

6 The unstretched length of a spring is 30 cm. It is stretched vertically, with one end fixed on a ceiling, to a length of 40 cm by a weight of 2 N attached to the other end as shown. The weight is at rest.


	Α	0.1 J	в	0.2 J	С	0.6 J	D	0.8 J			
L1	.1 Answer: A Hooke's Law: $F = k \times e$										
	Elast	ic Potential Energ	gy = -2	$\frac{1}{2} x k x e^2 = 0.5 x F$	x e = 0).5 x 2 x 0.1 = 0.1	J				


A wooden block of density 700 kg m⁻³ is completely submerged below the surface of water 7 by a weight placed on top of it. The block floats to the surface when the weight is removed. The density of water is 1000 kg m⁻³. upthrust on the wooden block when it is completely submerged ? What is the ratio upthrust on the wooden block when it is floating Α В 0.700 С 1.43 7.00 0.143 D Answer: C Let $\rho_{\rm b}$ = density of wooden block = 700 kg m⁻³ $\rho_{\rm w}$ = density of water = 1000 kg m⁻³ V = volume of wooden block g = gravitational acceleration Upthrust on the wooden block when it is **floating** = weight of the wooden block L2 $= \rho_{\rm b} V g$ [Principle of floatation] Upthrust on the wooden block when it is completely submerged = weight of water displaced by the wooden block = $\rho_{\rm w}$ V g upthrust on the wooden block when it is **completely submerged** = $\frac{\rho_w \vee g}{\rho_b \vee g} = \frac{\rho_w}{\rho_b} = \frac{1000}{700} =$ Ratio of 1.43

8 An object of mass m is hung at one end of a 3.0 m long uniform rod of mass M and placed on a pivot. For the system to be in equilibrium, the pivot has to be placed 1.2 m from the end where the object is hung. When the object's mass is doubled to 2m, the pivot has to be moved a distance x to the right of its original position for the system to remain in equilibrium as shown.

9	A car with a power output of 100 kW is travelling with a constant speed of 30 m s ⁻¹ along a straight road. The frictional force on the car is proportional to the square of its speed. What constant speed will it be travelling at if its power output is 200 kW?									
	A 37.8 m s ⁻¹ B 42.4 m s ⁻¹ C 51.6 m s ⁻¹ D 60.0 m s^{-1}									
L3	Powe Whe This Powe Henc Ther Henc	n car is moving w means force exe	vith co rted b ar eng al to 200 /		force o = frictio	on the car is zero. onal force on the c		k ∨ ²		



11	motio Wha	An object of mass <i>m</i> is attached to a rigid rod and spun in a uniform vertical circular motion with radius <i>r</i> and a linear velocity of <i>v</i> . What is the variation of the magnitude of the centripetal acceleration of the object over one revolution?								
	A zero B 2g C $\frac{v^2}{-}$ D $2\frac{v^2}{-}$									
L2										
				de, because $a_c = \frac{1}{2}$,				

12	Wh	ich quantity is not necessarily the same for satellites in geostationary orbits around										
		the Earth?										
	Α	angular velocity										
	В	centripetal acceleration										
	С	kinetic energy										
	D	orbital period										
L2	An	swer: C										
	Geostationary = period of 1 day = same angular velocity Same angular velocity = same orbital period Centripetal acceleration = same Kinetic energy depends on mass so it may not be the same.											

13	certa simp	A mass on a frictionless table is attached to a fixed horizontal spring and displaced a certain horizontal distance from its equilibrium position. When released, it oscillates in a simple harmonic motion with an angular frequency of 3.14 rad s ⁻¹ .								
	Al WI	nat times after its release does the object pass through the equilibrium position?								
	Α	A 0.25 s, 0.75 s, 1.25 s								
	В	B 0.25 s, 1.25 s, 2.25 s								
	C 0.50 s, 1.00 s, 1.50 s									
	D	D 0.50 s, 1.50 s, 2.50 s								
L1	Ansv	ver: D								
	Since the object is released from the amplitude position, the equation for its displacement is $x = x_0 \cos(3.14t)$.									
	For t	he equilibrium position, solving for $x = 0$, $3.14t = \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2}$ or $t = 0.50, 1.50, 2.50$ s								

14		A sound wave has a frequency of 2500 Hz and a speed of 1500 m s ^{-1} . What is the shortest distance from a point of maximum pressure in the wave to a point of									
		minimum pressure?									
	Α	A 0.15 m B 0.30 m C 0.60 m D 1.20 m									
L2	Distapres $\lambda = -\frac{1}{2}$	wer: B ance between a c sure) is half a war $\frac{speed}{freq} = \frac{1500}{2500} =$ $\frac{0.6}{2} = 0.3 \text{ m}$	velenç	gth long.	f max pres	ssure) and raref	action	(point of min			

-- END OF PAPER 1 --