2018 PRELIMINARY EXAMINATION

International Baccalaureate 2

Chemistry Higher level Paper 2

1. (a) (i) Weighted average mass of its isotopes when compared to $\frac{1}{12}$ the mass of a $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ atom.

(ii)
$$A_r = \frac{69(65)+71(35)}{100} = 69.7$$
 [1]

(b) (i)
$$1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10}$$
 [1]

- (ii) Negative [1]
 - Decrease in number of gaseous particles, less disordered [1]
- (iii) $\Delta G = \Delta H T\Delta S$ Since $\Delta H < 0$ and $\Delta S < 0$, For a reaction to be spontaneous, $\Delta G < 0$. Hence, $|\Delta H| > |T\Delta S|$ [1]
 - Reaction is only spontaneous at low temperatures. [1]
- (iv) $nGa = \frac{10.0}{69.72} = 0.1434 \text{ mol}$ [1] $nN_2 = \frac{1}{2} (0.1434) = 0.07172 \text{ mol}$ $vol N_2 = 0.07172(22.7) = \frac{1.63 \text{ dm}^3}{1.63 \text{ mol}}$ [1]
 - Absolute uncertainty = $\frac{0.2}{69.72} (\frac{1}{2})(22.7) = 0.04 \text{ dm}^3 \text{ (1sf)}$ [1]
- (c) (i) $nNaOH = \frac{14.00}{1000} (0.100) = 0.0014 \text{ mol}$ [1]
 - (ii) nHCl reacted with NaOH = 0.0014 mol total nHCl = $\frac{200}{1000}$ (0.300) = 0.06 mol [1] nHCl in excess = 0.06 0.0014 = 0.0586 mol [1]
 - (iii) $nGa_2O_3 = 0.0586 \left(\frac{1}{6}\right) = 0.009767 \text{ mol}$ [1] $mGa_2O_3 = 0.009767 \left(69.72 \times 2 + 16.00 \times 3\right) = \frac{1.83 \text{ g}}{}$

2. (a) $Na_2O + H_2O \rightarrow 2NaOH$ [1] NaOH releases OH ions. pH = 13 $P_4O_6 + 6H_2O \rightarrow 4H_3PO_3$ [1] H_3PO_3 releases H^+ ions. **pH** \approx **2/3/4** [Award 1 mark only if both pH are stated correctly.] [1] Both have giant ionic structure / ionic lattice structure, with strong ionic [1] (b) (i) bonds. Charge of Mg²⁺ > Na⁺ and radius of Mg²⁺ < Na⁺ [1] **MgO** has stronger ionic bonds, more energy needed to overcome. [1] (ii) SiO₂ has giant covalent structure, and strong Si-O covalent bonds. [1] P₄O₆ has simple covalent/molecular structure, and weak van der Waals' [1] forces / intermolecular forces. Covalent bonds are **stronger** than van der Waals' forces, more energy [1] required to overcome. [Award full 3 marks only if comparison of the strength of the bonds to be overcome is stated.] Lewis structure I (c) (i) Lewis structure II [4] [Award 1 mark each for each correct Lewis structure.] [Award 1 mark each for correct formal charges indicated on both S AND O atoms on each structure.] Lewis structure I. All atoms have a formal charge of 0. [1] (ii) Recap: More stable: (i) structure with greater no. of 0 FC; (ii) negative FC on electronegative atom e.g. F, O, N (iii) sp³ (SiO₂ is like diamond) [1] (d) (i) Energy change when 1 mol of MgO (s) is formed from its elements Mg (s) [1] and O₂ (g) under standard conditions. [Accept general definition.]

(ii) A : enthalpy change of atomization of Mg [1]

(iii)
$$\Delta H = -(-602) + (702) + (2186) + (248) + (150)$$
 [1]
= +3888 kJ mol⁻¹ [1]

[Award 1 mark for final answer only if sign is shown.]

(iv) $2^{\text{nd}} \text{ IE} = 2186 - 738 = +1448 \text{ kJ mol}^{-1}$ [1] After an electron is removed, the **remaining electrons experience greater** [1]

nuclear attraction / more strongly attracted,

More energy required to remove the 2nd electron.

(ii) Rate =
$$k[HI]^2$$
 [1]

(iii)
$$0.41 = k (1.67)^2$$

 $k = 0.147$ [1]

Units of $k = \text{mol}^{-1} \text{ dm}^3 \text{ s}^{-1}$ [1]

Reaction progress

[Axis must be clearly and correctly labelled. Energy of reactants lower than products. E_a of forward reaction labelled.]

[Award 1 mark for correct value and sign of ΔH .]

(v) Catalyst provides an alternative pathway of **lower activation energy**. [1]

More particles have energy ≥ activation energy [1]

Frequency of effective collisions increases [1]

[Do not accept frequency of collisions. Accept number of effective collisions per unit time.]

(b) (i)
$$K_c = \frac{[H_2][I_2]}{[HI]^2}$$
 [1]

(ii) [HI] initial = $\frac{0.10}{2}$ = 0.05 mol dm⁻³

[HI] equilibrium = $\frac{0.564}{2}$ = 0.0282 mol dm⁻³

	HI	H_2	I_2	
Initial	0.05	0	0	
Change	-0.0218	+0.0109	+0.0109	
Eqm	0.0282	0.0109	0.0109	[1]

$$K_c = \frac{(0.0109)(0.0109)}{(0.0282)^2} = 0.149$$
 No units [1]

[1]

(iii) No effect on / No shifting of position of equilibrium [1]

Equal number of gaseous particles on both sides of the equation. [1]

4. (a) (i) Electrophilic addition [1]

[Two step mechanism. Step 1 is the slow step. Equation must be balanced. Correct direction of arrows to indicate movement of electrons (double headed arrow)

Lone pair of electrons on Γ must be shown.]

(iii) Addition polymerization [1]

[Correct chiral carbon and 3D diagram. Correctly drawn mirror images.]

- (iii) Both $S_N 1$ and $S_N 2$ occurs. [1] $S_N 2$ gives $\approx 100\%$ of inversion of configuration, while $S_N 1$ gives $\approx 50\%$ of [1] each configuration.
- (iv) C-I bond is weaker than C-Br bond. [1] [Students can quote bond length or bond energy to explain.]
- (v) Concentrated HNO₃, concentrated H₂SO₄, 30 °C ES [1] K₂Cr₂O₇, H₂SO₄ (aq), heat / acidified K₂Cr₂O₇ (aq), heat oxidation [1]
- (c) (i) Chemical shift / ppm **Splitting** Integration factor [2] 1.2 **Doublet** 3 2.0 1 Singlet 2.7 Doublet 2 1 3.8 Multiplet 7.2 5 Singlet

[Award full marks for all correct answers. Award 1 mark for at least 2 correct answers.]

H_b has <u>two different neighbouring</u> environment. [1]

H_a splits the signal of H_b into a triplet [1]

 H_c splits the signal of H_b into a <u>quartet</u>. They overlap into multiplet. *[OWTTE]*

(d) One similarity:

One difference:

(2-iodopropyl)benzene shows a peak at $490-620~\rm{cm^{-1}}$ (C-I) absent in [1] 1-phenylpropan-2-ol /

1-phenylpropan-2-ol shows a peak at 3200 - 3600 cm⁻¹ (O-H), absent in (2-iodopropyl)benzene

5. (a) (i)
$$K_a = \frac{[C_5H_7CO_2^-][H^+]}{[C_5H_7CO_2H]}$$
 [1]

(ii)
$$\frac{x^2}{0.22} = 7.4 \times 10^{-4}$$

 $x = 0.0128 \text{ mol dm}^{-3}$
 $pH = 1.89$ [1]

(iii) A solution that resists changes in pH when **small amounts** of acid or base is [1]

[Accept H⁺ or OH⁻ is added.]

(iv) When H⁺ is added, $C_5H_7O_4CO_2^- + H^+ \rightarrow C_5H_7O_4CO_2H$ [1] When OH⁻ is added, $C_5H_7O_4CO_2H + OH^- \rightarrow C_5H_7O_4CO_2^- + H_2O_1^-$

[1]

(v) pH = pK_a for a solution at maximum buffer capacity
pH =
$$-\log_{10} (7.4 \times 10^{-4}) = 3.13$$
 [1]

- $H_2O \rightleftharpoons H^+ + OH^- \Delta H > 0 / endothermic$ (b) [1] Increasing temperature **shifts position of equilibrium to the right** to favour [1] the forward endothermic reaction, [H+] increases, pH decreases
- **6.** (a) (i) Anode: $H_2O(l) \rightarrow \frac{1}{2}O_2(g) + 2OH^-(aq) + 2e^-$ [1] Cathode: Cu^{2+} (aq) + $2e^{-}$ \rightarrow Cu (s) [1]
 - [2] (ii) Effervescence occurs at the anode / Pink copper deposited at the cathode / Solution becomes paler blue. [Accept any two observations]
 - (iii) Current / Time [1]
 - [1] (iv) Cl₂ (g) $\frac{1}{2} \text{ Cl}_2 \text{ (g)} + e^- \implies \text{Cl}^- \text{ (aq)} + 1.36 \text{ V}$ $\frac{1}{2}$ O₂ (g) + 2H⁺ (aq) + 2e⁻ \implies H₂O (l) +1.23 V Increasing [Cl⁻], (eqm shift left to decrease [Cl⁻]) E < 1.36 V, falls below 1.23 [1] V [1] Cl⁻ is more likely to be oxidized
 - (v) Cu²⁺ has partially filled 3d orbitals [3] 5 degenerate 3d orbitals split into two sets of orbitals with different energy An electron is excited from lower energy d orbital to higher energy d

orbital,

Absorbing energy / light from the visible light spectrum. Colour observed is complementary to the colour absorbed.

[4 required points. Deduct 1 mark for each missing point.]

(b) (i) Maintain charge neutrality / Allows movement of ions between half-cells to [1] complete the circuit

(ii)
$$E = (+0.34) - (-0.45) = +0.79 \text{ V}$$
 [1]

(iii) From Fe electrode to Cu electrode [1]