Name:	Register no:	Class:
	regional man initial	0 .000

NGEE ANN SECONDARY SCHOOL

PRELIMINARY EXAMINATION

SCIENCE 5105/04

Paper 4 Chemistry

2 August 2024

Candidates answer on the Question Paper. Papers 3 and 4: 1 hour 15 minutes

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, register number and class on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer one question.

Write your answers in the spaces provided.

The use of an approved scientific calculator is expected, where appropriate.

In calculations, you should show all the steps in your working, giving your answer at each stage.

You are advised to spend no longer than 30 minutes on Paper 3.

You may proceed to answer Paper 4 as soon as you have completed Paper 3.

A copy of the Periodic Table is printed on page 2.

At the end of the examination hand in your answers to Paper 3 and Paper 4 separately. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use

Section	Marks
Paper 3	/20
Paper 4 –	/22
Section A Paper 4 –	/8
Section B	,,
Total	/50
	1

Check by student:	Date:	
•		

2

The Periodic Table of Elements

Group																	
1	2											13	14	15	16	17	18
H H hydrogen 1									2 He helium 4								
3	4		proton	(atomic) n	umber	'		ı				5	6	7	8	9	10
Li	Be		ato	omic symb	ool							В	С	N	0	F	Ne
lithium	beryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	9		relati	ve atomic ı	mass							11	12	14	16	19	20
11	12											13	14	15	16	17	18
Na	Mg _.											A1	Si	P	S	C1	Ar
sodium 23	magnesium 24	3	4	5	6	7	8	9	10	11	12	aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	23 V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Υ	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
rubidium	strontium	yttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	tin	antimony	tellurium	iodine	xenon
85	88	89	91	93	96	_	101	103	106	108	112	115	119	122	128	127	131
55	56	57–71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	lanthanoids	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T <i>1</i>	Pb	Bi	Po	At	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	iridium	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	137	00 400	178	181	184	186	190	192	195	197	201	204	207	209	-	-	-
87	88	89–103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Fr	Ra	actinoids	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	. F <i>l</i>	Mc	Lv	Ts	Og
francium —	radium —		rutherfordium —	dubnium —	seaborgium _	bohrium —	hassium —	meitnerium —	darmstadtium —	roentgenium	copernicium	nihonium —	flerovium —	moscovium —	livermorium —	tennessine -	oganesson —
_	_				_	_	_	_	_		_						
		57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
lantha	noide	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
iaiiliia	uiolus	lanthanum	cerium	praseodymium		promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
		139	140	141	144	_	150	152	157	159	163	165	167	169	173	175	1
		89	90	91	92	93	94	95	96	97	98	99	100	101	102	103	
actin	oids	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr	
2.34		actinium	thorium 232	protactinium 231	uranium 238	neptunium —	plutonium	americium —	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium —	lawrencium	
		_	232	23 I	230	_	_	_	_	_	_	_	_	_	_	_	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.) The Avogadro constant, $L = 6.02 \times 10^{23} \text{ mol}^{-1}$.

Section A

1.

Answer all questions.

[1]
[1]
[1]
rks]

2.	A student measures accurately a fixed volume of 25.0 cm ³ of a known concentration of
	dilute hydrochloric acid into a glass beaker. She measures the initial temperature of the
	hydrochloric acid. She then adds 30.0 cm ³ of excess potassium hydroxide into the acid
	and stirs. The final temperature of the mixture is recorded.

•	I stirs. The final temperature of the mixture is recorded.	JOIG
(a)	State the type of apparatus or instrument that the student used to measure following quantities:	the
	25.0 cm ³ of dilute hydrochloric acid	
	30.0 cm ³ of potassium hydroxide	
	temperature of the solutions	
(b)	Figure 2.1 shows initial and final temperatures recorded.	[2]
	initial temperature final temperature	
	22	
	Use the information provided in Fig. 2.1 to complete Table 2.1. Indicate whether the temperature change is a positive (+) or negative (–) value. The initial temperature has been recorded in the table.	[2]
	initial temperature / °C 19.0	
	final temperature / °C	
	temperature change / °C	
	(final temperature – initial temperature)	

Table 2.1

Write an ionic equation, including state symbols, for the reaction of dilute hydrochloric acid and aqueous potassium hydroxide.								
[1]								
[Total: 5 marks								

3. Table 3.1 shows the boiling points in Kelvin of five alkenes, A, B, C, D and E.

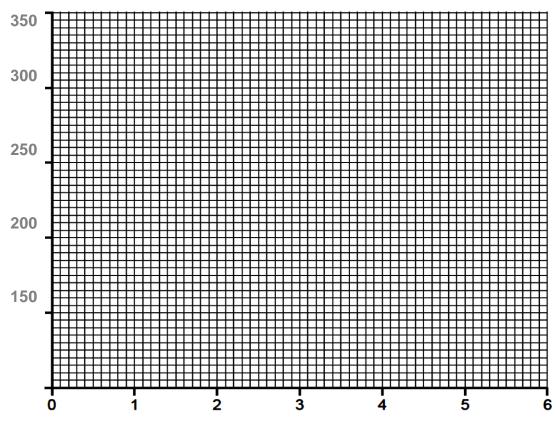

Hydrocarbon	Α	В	С	D	E
Number of carbon atoms per molecule	2	3	4	5	6
Boiling point / K	160		267	303	337

Table 3.1

(a) Plot a graph of boiling point against number of carbon atoms for these alkenes, marking each point with a cross (x).Draw a best-fit line for the points plotted.

[2]

Boiling point / K

Number of carbon stoms

(b) F	From the	graph,	find the	boiling	point of	alkene B .
-------	----------	--------	----------	---------	----------	-------------------

.....[1]

(c) (i) Alkene A was reacted with aqueous bromine. State an observation made during this reaction.

.....[1]

		(ii) Draw the full structural formula of the product obtained when alkene A reacts with bromine. [1]
	(d)	Propene can be produced by cracking long chain alkanes. Pentadecane, $C_{15}H_{32}$, is cracked to produce a hydrocarbon, $\bf R$, and propene respectively. The reaction is shown in the chemical equation below.
		$C_{15}H_{32} \longrightarrow R + 2C_3H_6$
		Write the molecular formula of R .
		[1]
		[Total: 6 marks]
4.	(a)	Describe in terms of arrangement and movement, how chlorine molecules behave differently when chlorine is above its boiling point and when it is below its melting point.
		above boiling point:
		below melting point:
		[2]

(b) A sample of chlorine gas contains two different isotopes of chlorine atoms. Each chlorine atom can become a chloride ion.

Complete the table to describe the composition of the chlorine atom and the chloride ion.

particle		number of					
partiolo	protons	neutrons	electrons				
a chlorine atom, $^{37}_{17}\text{C}l$	17						
a chloride ion, $^{35}_{17}\text{C}l^-$	17						

[1]

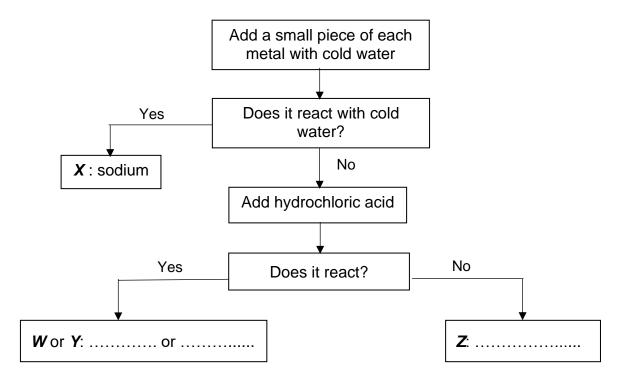
In an e	experiment,	6.5 g of zine	c granules an	d excess dilı	ute hydrochlor	ic acid are	allowed
to reac	ct together	in a beaker	to produce zii	nc chloride s	olution and a	gas.	

(c)	Write a balanced chemical reaction for the reaction between zinc and dilute hydrochloric acid.	
		[1]
(d)	Calculate the number of moles of zinc that has reacted.	

(e) The experiment was repeated using aluminium metal and dilute hydrochloric acid. It was found that 0.05 moles of aluminium chloride, AlCl₃, was produced during the experiment.

Calculate the mass of aluminium chloride, $AlCl_3$, produced. [Relative atomic masses, A_r : Al, 27; Cl, 35.5]

(f)	In another similar experiment, excess zinc granules was used instead of dilute hydrochloric acid. How can the excess zinc granules be removed from the reaction mixture at the end of the reaction?					
	[1]					
	[Total: 8 marks					


Section B

Answer **one** question from this section.

5. (a)	Lithium reacts with sulfur to form lithium sulfide. Draw a 'dot and cross' diagram to show the arrangement of the outer shell electrons for the compound lithium sulfide.
	[2]
(b)	Give one similarity and one difference in physical property between the elements lithium and sulfur.
	Similarity:
	Difference:
	[2]

(c) A chemist was given four metals labelled *W*, *X*, *Y* and *Z*. He had to identify which one was copper, iron, sodium or zinc. To do so, he carried out a series of experiments.

The flow chart below summarises what the chemist did.

(i) Fill in the blanks for W, Y and Z in the chart.

[1]

(ii) Sodium reacts with cold water to produce a solution. A few drops of Universal Indicator were added to the solution. A colour change was observed.

State the colour change observed.

[1]	[1]
-----	-----

Explain your observation of the colour change stated.

(d) Zinc and copper reacts separately in oxygen to produce their respective oxides.

Identify the type of oxide each metal produced.

[1]

metal	type of oxide
zinc	
copper	

[Total: 8 marks]

6. Hydrocarbons can get into the air from the incomplete combustion of fuels such as petrol, kerosene or diesel. Unburnt hydrocarbons in the air is an air pollutant which causes health concerns. The concentration of hydrocarbons in the air in a city from 1984 to 1995 was measured and recorded. The concentration measured is in parts per billion (ppb).

From the data collected, a graph is plotted of concentration/ppb of hydrocarbons against year. The graph is shown in Figure 6.1 below.

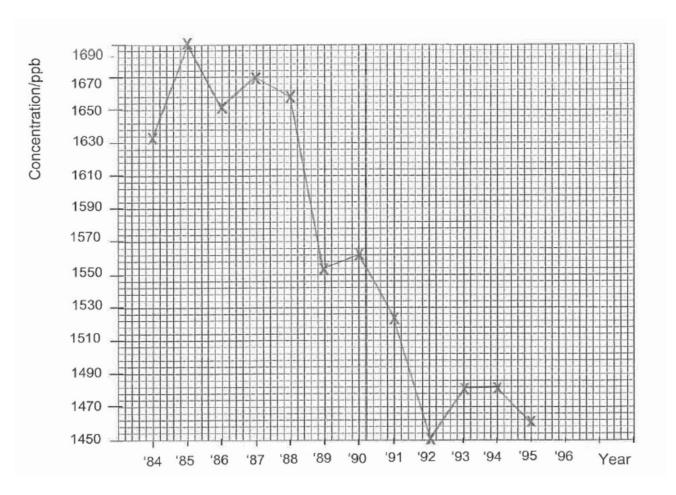
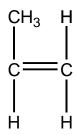



Fig. 6.1

(a)	exhaust gases.
	Based on your graph in Fig. 6.1, deduce the year in which it became compulsory for cars to be fitted with catalytic converters. Explain your answer.
	Io

` '	Inburnt hydrocarbons contain mainly octane, C_8H_{18} . The following reaction occur when unburnt hydrocarbons pass through a catalytic converter.	S
	$2C_8H_{18}(g) + xO_2(g) \longrightarrow yCO_2(g) + 18H_2O(g)$	
(i)	What are the values of x and y ?	
	x y [1]
(ii	Draw a 'dot' and 'cross' diagram of a molecule of carbon dioxide, showing only outer shell electrons.	
(c) (i)	Poly(propene) is an example of a non-biodegradable plastic which leads to a bui up of plastic waste in landfills, and contributes to land pollution.	ld
	However, plastics can now be recycled using a chemical method. Give an example of a chemical method. Briefly describe the method named.	
	[2	<u>']</u>

(ii) Poly(propene) is an addition polymer formed from the propene monomer. The structure of propene is shown below.

Draw the structural formula of two repeating units of poly(propene). Show all bonds in your answer.

[1]

[Total: 8 marks]

BLANK PAGE

2024 4NA Science Chemistry Prelim

Suggested Answers

Paper 3: MCQ [20 marks]

1	2	3	4	5	6	7	8	9	10
В	С	С	A	D	Α	D	С	С	В
11	12	13	14	15	16	17	18	19	20
В	D	Α	В	С	В	D	С	С	Α

Paper 4: Section A: Structured Questions [22marks]

1. (a) reacts with both acid and alkali to form salt and water.

Al₂O₃ [1]

(b) contains a total of eight atoms. K₃PO₄ [1]

(c) reacts with aqueous sodium hydroxide to produce a gas which turns moist red litmus paper blue.

NH4Cl [1]

[Total: 3 marks]

 (a) 25.0 cm³ of dilute hydrochloric acid 30.0 cm³ of potassium hydroxide temperature of the solutions

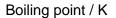
<u>pipette</u>

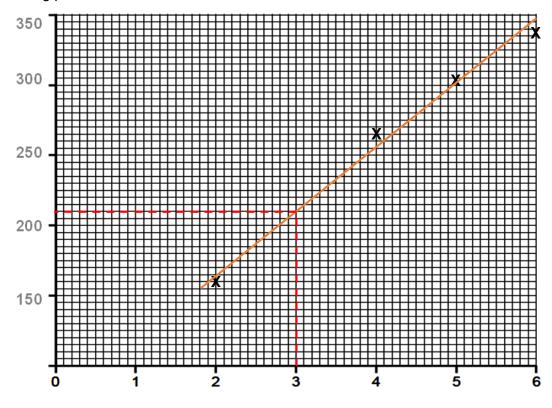
measuring cylinder / burette

thermometer [2]

[3 correct – 2m; 2 correct – 1m; 1 or 0 correct – 0m]

(b)


initial temperature / °C	19.0
final temperature / °C	28.0
temperature change / °C	+9.0
(final temperature – initial temperature)	


[final temperature & temperature change correct with (+) sign – 1m each] [2] [deduct 1m each for reading without 1 dec place and no (+) sign]

(c)
$$H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$$
 [1]

[Total: 5 marks]

3. (a)

Number of carbon stoms

[1m for all points plotted correctly; 1m for best-fit line]

[2] (b) ~ 210 K (± 10K) (based on student's graph) [1]

(c) (i) The reddish-brown colour of aqueous bromine was decolourised/ the aqueous bromine turns from reddish-brown to colourless. [1]

[1]

(d) **R** is C_9H_{20} [1]

[Total: 6 marks]

4. (a) above boiling point: **chlorine molecules are <u>far apart</u> and <u>moving rapidly in all directions/ moving randomly at great speeds</u> [1]**

below melting point: chlorine molecules are closely packed in an orderly manner and vibrate at their fixed positions [1]

(b)

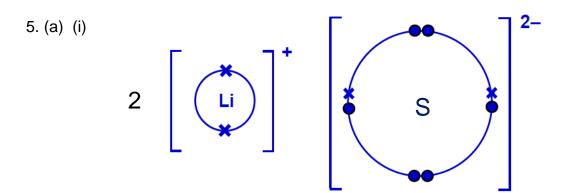
particle		number of				
particio	protons	neutrons	electrons			
a chlorine atom, $^{37}_{17}\text{C}l$	17	20	17			
a chloride ion, $^{35}_{17}\text{C}\emph{l}^-$	17	18	18			

[all correct - 1m]

(c)
$$Zn + 2HCl \rightarrow ZnCl_2 + H_2$$
 [1]

(d) Number of moles of zinc reacted =
$$\frac{6.5}{65}$$
 = $\frac{\textbf{0.100 mol}}{65}$ [1]

(e) Relative formula mass of
$$M_r$$
 of $AlCl_3 = 27.0 + 3(35.5)$
= 133.5 [1]


Mass of AlCl₃ produced = number of moles
$$\times$$
 M_r
= 0.05 \times 133.5 = 6.675
= 6.68 g [1]

(f) The excess zinc granules can be removed by **filtering (or by filtration)** from the reaction mixture. [1]

[Total: 8 marks]

Section B [8 marks]

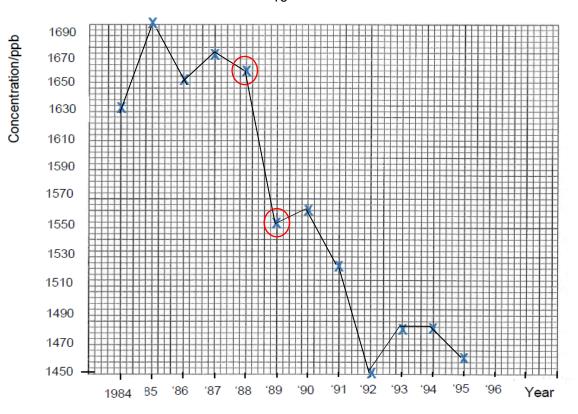
Answer one question from this section.

[1m for correct electronic structure and '+' charge for 2Li⁺ drawn; 1m for correct electronic structure and '2–' charge for S^{2–} drawn.]

(b) **Similarity**: Both elements are solids at room temperature. [1]

<u>Difference</u>: Lithium conducts electricity while sulfur does not conduct electricity. [1]

- (c) (i) **W** or **Y**: **iron or zinc** and **Z**: **copper** [1m for both answers] [1]
 - (ii) Colour changes from **green to blue/purple/violet**. [1]
 - Sodium reacts with water to **produce an alkaline solution**. [1]


(d) metal type of oxide zinc amphoteric copper basic

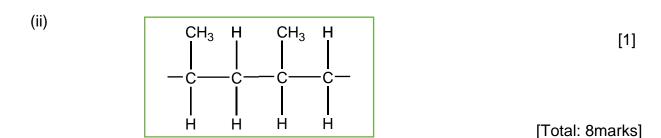
[1m for both answers correct]

[Total: 8 marks]

[2]

7.

(a) Year 1988.


Based on the graph, there was a highest/largest drop of concentration of hydrocarbons from 1988 to 1989, as the catalytic converters converted the hydrocarbons to carbon dioxide and water vapour.

[1]

(b) (i) $x: \underline{25}$ $y: \underline{16}$ [1]

electron of O [1m for correct shared paired of electrons;
 electron of C 1m for correct lone pairs of electrons for O] [2]

(c) (i) Plastic can be recycled using the <u>cracking process</u>. [1]
Plastic waste undergo cracking to form smaller molecules of alkanes and alkenes. This process requires high temperature and presence of catalyst. [1]

