H2 2017 Preliminary Exam Paper 1 Question Answer all questions [100 marks].

-		
1	Without using a calculator, solve the inequality	
	$\frac{3x^2 + 7x + 1}{x + 3} < 2x - 1.$	[4]
2	The function p is defined by $p: x \mapsto \frac{1-x^2}{1+x^2}, x \in \mapsto$.	
	(i) Find algebraically the range of p, showing your working clearly.	[3]
	(ii) Show that $p(x) = p(-x)$ for all $x \in \mapsto$	[1]
	It is given that $q(x) = p\left(\frac{1}{2}x - 4\right), x \in \mapsto$.	
	(iii) State a sequence of transformations that will transform the graph of p graph of q. Hence state the line of symmetry for the graph of q.[3]	on to the
3	The function f is defined by	
	$f: x \mapsto (x-k)^2$, $x < k$ where $k > 5$.	
	(i) Find $f^{-1}(x)$ and state the domain of f^{-1} .	[3]
	$4 y = g(x)$ $-2 -1 5 -1 0 1 1 5 2 x$ The diagram above shows the curve with equation $y = g(x)$, where $-2 \le x \le 2$.	The curve
	crosses the x-axis at $x = -2$, $x = -1$, $x = 1$ and $x = 2$, and has turning	points at
	(-1.5,-1), $(0,4)$ and $(1.5,-1)$.	[0]
	(ii) Explain why the composite function ig exists. (iii) Find in terms of k,	[2]
	(a)the value of fg (-1) (b)the range of fg.	[1] [2]
4	It is given that $z = -1 - i\sqrt{3}$.	
	(i) Given that $\frac{(iz)^n}{z^2}$ is purely imaginary, find the smallest positive integer <i>n</i> .	[4]
	The complex number w is such that $ wz = 4$ and $\arg\left(\frac{w^*}{z^2}\right) = -\frac{5\pi}{6}$.	
	(ii) Find the value of $ w $ and the exact value of $\arg(w)$ in terms of π .	[3]

(ii) Given that a = 423, find the greatest possible integral value of n and the corresponding length of the shortest plank. [4] 7 (i) Express $\frac{1}{r^2-1}$ in partial fractions, and deduce that $\frac{1}{r(r^2-1)} = \frac{1}{2} \left[\frac{1}{r(r-1)} - \frac{1}{r(r+1)} \right].$ [2] (ii) Hence, find the sum, S_n , of the first *n* terms of the series $\frac{1}{2\times3} + \frac{1}{3\times8} + \frac{1}{4\times15} + \dots$ [4] (iii) Explain why the series converges, and write down the value of the sum to infinity. [2] (iv) Find the smallest value of *n* for which S_n is smaller than the sum to infinity by less than 0.0025. [3] 8 A drug is administered by an intravenous drip. The drug concentration, x, in the blood is measured as a fraction of its maximum level. The drug concentration after t hours is modelled by the differential equation $\frac{\mathrm{d}x}{\mathrm{d}t} = k\left(1+x-2x^2\right),\,$ where $0 \le x < 1$, and k is a positive constant. Initially, x = 0. (i) Find an expression for x in terms of k and t. [5] After one hour, the drug concentration reaches 75% of its maximum level. (ii) Show that the exact value of k is $\frac{1}{3}\ln 10$, and find the time taken for the drug concentration to reach 90% of its maximum level. [3] A second model is proposed with the following differential equation $\frac{\mathrm{d}x}{\mathrm{d}t} = \sin^2\left(\frac{1}{2}t\right),$ where x is the drug concentration, measured as a fraction of its maximum level, in the blood after t hours. Initially, x = 0. (iii) Find an expression for x in terms of t. [3] (iv) Explain, with the aid of a sketch, why this proposed second model is inappropriate. [2]

The piece of plexiglass is represented by a plane p_1 with equation x + 2y - 3z = 0.

[2]

[2]

Referred to the origin, a laser beam *ABC* is fired from the point *A* with coordinates (1, 2, 4), and is reflected at the point *B* on p_1 to form a reflected ray *BC* as shown in the diagram above. It is given that *M* is the midpoint of *AA*', where the point *A*' has coordinates (2, 4, 1).

(i) Show that AA' is perpendicular to p_1 . [2]

(ii) By finding the coordinates of M, show that M lies in p_1 .

The vector equation of the line *AB* is $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 4 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}, \ \lambda \in \mapsto$.

(iii) Find the coordinates of *B*.

The acute angle between the incident ray AB and the reflected ray BC is θ (see diagram).

(iv) Given that A'BC is a straight line, find the value of θ . Hence, or otherwise, write down the acute angle between the line AB and p_1 . [3]

To reduce the effect of laser illumination on the pilot sitting in the cockpit at point A', a scientist proposes to include a protective film, represented by a plane p_2 , such that the perpendicular distance from p_1 to p_2 is 0.5.

(v) State the possible cartesian equations of p_2 . [2]

To further investigate the effects of a laser beam on plexiglass, separate laser beams are fired such that the incident ray AD is now a variable line which is also fired from the same point A and is reflected at the variable point D on p_1 to form a reflected ray DE.

(vi) Given that AD is perpendicular to the previous ray AB, find the minimum possible distance between B and D. [2]

(vii) Find the acute inclination of the reflected ray DE to the *z*-axis when DE is inclined at 60° to the *x*-axis and 45° to the *y*-axis. [3]

– End Of Paper –