Tampines Secondary School

Sec 4&5 Express Additional Math Paper 1 2024 Marking Scheme

Total Marks: 90

v = follow through

No.	Answers	Marks	
1	$y = \frac{2x^2}{x+1}$		
	x+1	M1	
	$\frac{dy}{dx} = \frac{(x+1)(4x) - (2x^2)(1)}{(x+1)^2}$	1911	
	$=\frac{2x^2+4x}{(x+1)^2}$	A1	
	Decreasing function $\Rightarrow \frac{dy}{dx} < 0$ Since $(x + 1)^2 > 0$, $2x^2 + 4x < 0$ 2x(x + 2) < 0		
	Since $(x + 1)^2 > 0$, $2x^2 + 4x < 0$	M1	
	$\therefore -2 < x < 0$	A1	
2(a)	$-20x^2 + 120x + 3 = -20(x^2 - 6x) + 3$		
	$= -20[(x-3)^{2} - 3^{2}] + 3$ = -20 (x - 3)^{2} + 183	M1	
	-20(x-5) + 105	A1	
(b)	$h_1(0) = 3$ $h_2(0) = 6.6$	B1	
	TP-1 was fired from a height of 3 metres above ground while TP-2		
	was fired from a height of 6.6 metres above ground.	B1	
(c)	From TP-1's max pt (3, 183) and TP-2's max pt (6, 183), they both reach the <u>same height</u> .	B1	
	reach the <u>same neight</u> .		
	TP-1: $h = 0 \rightarrow x = 6.02 \text{ m}$ TP-2: $h = 0 \rightarrow x = 12.1 \text{ m} > 6.02 \text{ m}$	M1	
	$11-2. n = 0 \rightarrow x = 12.1 \text{ m} > 0.02 \text{ m}$		
	Since TP-2 could reach a further distance from the launched position,	B1	
	compared to TP-1, TP-2 should be acquired.	DI	
3	Height = $\frac{(2x+1)^2}{x^2(2x-1)}$	M1	
	$=\frac{4x^{2}+4x+1}{x^{2}(2x-1)}=\frac{A}{x}+\frac{B}{x^{2}}+\frac{C}{2x-1}$	A1	
	$x^{2}(2x-1) x x^{2} 2x-1$ $4x^{2} + 4x + 1 = Ax(2x-1) + B(2x-1) + Cx^{2}$		
	Let $x = 0$, $B = -1$	M1: either sub mtd or compare coeff	
	Let $x = \frac{1}{2}$, $4 = \frac{1}{4}C \rightarrow C = 16$	compare coen	
	Compare coeff of x^2 , $4 = 2A + 16 \rightarrow A = -6$		
	: Height = $\frac{16}{2x-1} - \frac{6}{x} - \frac{1}{x^2}$	A3	
	$\frac{1}{2x-1} - \frac{1}{x} - \frac{1}{x^2}$		

No.	Answers	Marks	
4a(i)	$(2+qx)^6 = 64 + 192qx + 240q^2x^2 + \dots$	B3	
(ii)	$(2+px)(2+qx)^6 = (2+px)(64+192qx+240q^2x^2+\dots)$		
	Term in x: $384q + 64p = 0 \rightarrow p = -6q$	M1	
	Term in x^2 : $480q^2x^2 + 192pqx^2 = -168$	M1	
	$480q^2 + 192(-6q)q = -168$ $-480q^2 = -168$		
	$q = \frac{1}{2}$ or $q = -\frac{1}{2}$ (rej since $q > 0$)	A1	
	p=-3	A1	
(b)	$T_{r+1} = {}^{12}C_r (x^3)^{12-r} (-2)^r (x^{-1})^r$	M1	
	36 - 3r - r = 0 $r = 9$	M1	
	$Term = {}^{12}C_9 (-2)^9$ = -112 640	A1	
5(a)	$f'(x) = \frac{18e^{-3x}}{-3} + c$ = -6e^{-3x} + c	M1	
	When $x = 0$, $f'(x) = 2$, $-6e^{-3(0)} + c = 2$ c = 8	M1: subt $x = 0 \& f'(x) = 2$	
	Stationary point, $f'(x) = -6e^{-3x} + 8 = 0$ $6e^{-3x} = 8$	M1	
	$e^{-3x} = \frac{4}{3}$ $x = -\frac{1}{3}\ln\frac{4}{3}$	A1	
	When $x = -\frac{1}{3}\ln\frac{4}{3}$, $f''(x) = 18e^{-3x}$ = 24 > 0 \rightarrow point is minimum	M1 A1	
(b)	$f'(x) = -6e^{-3x} + 8$ $f(x) = \frac{-6e^{-3x}}{-3} + 8x + d$ $= 2e^{-3x} + 8x + d$	M1	
	Subt $\left(1, \frac{2}{e^3}\right)$, $\frac{2}{e^3} = 2e^{-3} + 8 + d \rightarrow d = -8$		
	Hence eqn of curve is $f(x) = 2e^{-3x} + 8x - 8$	A1	

No.	Answers	Marks	
6(a)	$\frac{dy}{dx} = 2x + 6 - 2m$	M1	
	At $x = 4$, $\frac{dy}{dx} = 0$ $\rightarrow 14 - 2m = 0$ m = 7	M1 A1	
	OR $y = (x + 3 - m)^2 - (3 - m)^2 + m + 5$	OR M1(complete the sq)	
	Min pt is at $x = 4$ \rightarrow $(3 - m) = 4$ m = 7	M1 A1	
(b)	When $m = 8$, $y = x^2 - 10x + 13 + p$		
	Lies above x-axis, discriminant < 0 $\rightarrow (-10)^2 - 4(13 + p) < 0$ 48 - 4p < 0	B1	
	<i>p</i> > 12	B1	
8(a)	$\angle EDC = \angle DAC$ (alt seg thm) $\angle DAC = \angle DCA$ ($AD = CD$, isos triangle)	B1 B1	
	$\therefore \angle EDC = \angle DCA$ Hence AC is parallel to DE (alt angles)	B1	
(b)	$\angle BCD = \angle BAD$ (angles in semicircle)	B1	
	Let $\angle EDC = x$ $\angle EDC = \angle CBD = x$ (alt seg thm) $\angle DCA = \angle DAC = x$ (shown in part (a))		
	$\angle DAC = \angle ADM = x (alt angle, AD parallel DE)$ $\angle ADM = \angle ABD = x (alt seg thm)$ $\therefore \angle ABD = \angle CBD$	A1	
	By AA, triangle <i>ABD</i> is similar to triangle <i>CBD</i> .	A1	
9(a)	Period = $\frac{2\pi}{p}$ $12 = \frac{2\pi}{p}$		
	$p = \frac{\pi}{6}$ (shown)	A1	
(b)	$\begin{array}{c} a = 6\\ b = 2 \end{array}$	B2	

No.	Answers	Marks
(c)	3	G1: Shape
		G1: period
		G1: max & min points
(d)	03 00 to 09 00 or 3 a.m. to 9 a.m. 15 00 to 21 00 or 3 p.m. to 9 p.m.	B1 B1
10(a)	$s = \int t^2 - 6t + 5 dt$	
	$=\frac{t^3}{3} - \frac{6t^2}{2} + 5t + c$	M1
	When $t = 0$, $s = 3$: $s = \frac{t^3}{3} - 3t^2 + 5t + 3$	A1
(b)	When $v = 0$, $t^2 - 6t + 5 = 0$ t = 5 or $t = 1$	M1
	When $t = 0$, $s = 3$	A1
	When $t = 1$, $s = \frac{16}{3}$	M1: for $t = 1$ or 5
	When $t = 5$, $s = -\frac{16}{3}$	
	Total dist = $\left(\frac{16}{3} - 3\right) + \frac{16}{3} \times 2$	M1
	= 13 m	A1
(c)	a = 2t - 6	M1
	At $a = 0, t = 3, s = 0$	M1
	Hence it is nearer to its initial starting position which is 3 m away	
	compared to point <i>B</i> which is $\frac{16}{3}$ m away.	A1
11(a)	Grad = -3	B1
	Equation of <i>AD</i> is $y = -3x + 6$	B1

No.	Answers	Marks	
(b)	D(0, 6)		
	Midpoint of AD is $(1, 3)$	M1	
	Grad of bisector = $\frac{1}{3}$	B1	
	Grad of disector $-\frac{1}{3}$		
	1 8		
	Eqn: $3 = \frac{1}{3}(1) + d \rightarrow d = \frac{8}{3}$		
	Equation of perpendicular bisector is $y = \frac{1}{3}x + \frac{8}{3}$	A1	
	$\frac{1}{3}$	AI	
(c)	1 8	M1	
	$11 - 3x = \frac{1}{3}x + \frac{8}{3}$	1411	
	$11 - \frac{8}{3} = \frac{1}{3}x + 3x$		
	$3 \overline{3} \overline{3}$		
	$x = \frac{5}{2}$		
	$x = \frac{5}{2}$ $y = \frac{7}{2}$ $\therefore C\left(\frac{5}{2}, \frac{7}{2}\right)$	A1	
	$y = \frac{1}{2}$ $\therefore C(\frac{1}{2}, \frac{1}{2})$		
(d)	$BC = \frac{1}{2}AD$		
	$\begin{pmatrix} 2\\ (5 & 7 \end{pmatrix}$ $(7 1)$	A1	
	$B\left(\frac{5}{2}+1,\frac{7}{2}-3\right) = B\left(\frac{7}{2},\frac{1}{2}\right)$ (shown)	AI	
(e)			
	Area = $\frac{1}{2} \begin{vmatrix} 2 & \frac{7}{2} & \frac{5}{2} & 0 & 2 \\ 0 & \frac{1}{2} & \frac{7}{2} & 6 & 0 \end{vmatrix}$		
	$\frac{2}{0} \frac{1}{2} \frac{7}{2} \frac{7}{6} 0$	M1	
	= 7.5 sq units	A1	
	1		
12(a)	$\frac{dy}{dx} = \frac{12}{\left(4x - 5\right)^2}$	M1	
	For curve to have stationary point, $\frac{dy}{dx} = 0$.		
	In this case, $\frac{dy}{dx} = \frac{12}{(4x-5)^2} \neq 0$ since $12 \neq 0$.	A1	
	Honos this sums does not have a stationer a sist	D1	
	Hence this curve <u>does not have</u> a stationary point.	B1	
(b)	<i>dy</i> 12 4	M1	
	$\frac{dy}{dx} = \frac{12}{(4x-5)^2} = \frac{4}{3}$		
	$(4x-5)^2 = 9$		
	$x = 2$ or $\frac{1}{2}$ (rej since $x > \frac{5}{4}$)	M1	
	y = 1	1411	
	$\therefore P(2, 1)$ $y = 1$	A1	

No.	Answers					Marks	
(c)	Eq of normal: $1 = -\frac{3}{4}(2) + c$ $c = \frac{5}{2} \qquad \Rightarrow y = -\frac{3}{4}x + \frac{5}{2}$						M1
	When $y = 0, x = \frac{10}{3}$						M1
	Area = $\frac{1}{2} \times \left(\frac{10}{3} - \frac{5}{4}\right) \times 1$ 25 1 04						A 1
	$=\frac{25}{24}$ or 1.04 sq units						A1
7(a)							
	t	2	4	6	8	10	
	lg m	2.96	3.04	3.12	3.21	3.29	
(b)	$\lg m = \lg a + \frac{\lg b}{3}t$						M1
	$\lg a = 2.87$	$a \rightarrow a = 74$	11 [accept 7	24, 733, 75	50]		A1
	grad = $\frac{\lg b}{3} = \frac{3.04 - 2.96}{4 - 2}$ b = 1.32						A1
(c)	$lg m^{40} = t + 120$ $lg m = 0.025t + 3$ $i = 7.5 weeks$						G1 (correct line drawn on grid) A1
	$\therefore t = 7.5$ weeks						

