2012 RI H2 Mathematics Preliminary Examination Paper 2

$$\begin{aligned} \text{LHS} &= \sum_{r=1}^{k} \cos r\theta + \cos(k+1)\theta \\ &= \frac{\sin\left(k+\frac{1}{2}\right)\theta - \sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}} + \cos(k+1)\theta \\ &= \frac{\sin\left(k+\frac{1}{2}\right)\theta - \sin\frac{\theta}{2} + 2\cos(k+1)\theta\sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}} \\ &= \frac{\sin\left(k+\frac{1}{2}\right)\theta - \sin\frac{\theta}{2} + \sin\left[(k+1)\theta + \frac{\theta}{2}\right] - \sin\left[(k+1)\theta - \frac{\theta}{2}\right]}{2\sin\frac{\theta}{2}} \\ &= \frac{\sin\left(k+\frac{1}{2}\right)\theta - \sin\frac{\theta}{2} + \sin\left(k+\frac{3}{2}\right)\theta - \sin\left(k+\frac{1}{2}\right)\theta}{2\sin\frac{\theta}{2}} \\ &= \frac{\sin\left(k+\frac{3}{2}\right)\theta - \sin\frac{\theta}{2}}{2\sin\frac{\theta}{2}} = \text{RHS} \\ \text{Hence } P_k \text{ is true implies } P_{k+1} \text{ is true.} \\ \text{Since } P_1 \text{ is true, and } P_k \text{ is true implies } P_{k+1} \text{ is true, by Mathematical induction, } P_n \text{ is true for all } n \in \mathbb{I}^+ \\ \frac{200}{16} \frac{dx}{dt} = -kx, k > 0 \\ &= \int \frac{1}{x} dx = \int -k dt \\ &= \ln x = -kt + c, \because x > 0 \\ &\Rightarrow x = Ae^{-tt} \\ \text{When } t = 0, x = 80, \text{ thus } A = 80. \\ \text{When } t = 3, x = 20, \\ &= 20 - 80e^{-3t} \\ &\Rightarrow k = -\frac{1}{3}\ln\frac{1}{4} = \frac{1}{3}\ln 4. \\ \text{Thus } x = 80e^{-\frac{1}{3}ht} = \frac{1}{16}(80) \\ \text{Just before the } (n+1)\text{ th injection, the amount of drug present in the blood stream} = \frac{1}{16}u_x^{-1} \end{aligned}$$

	Immediately after the $(n+1)$ th injection,
	amount of drug present, $u_{n+1} = 80 + \frac{1}{16}u_n$
[1]	In the long run, the amount present approaches the value 85.3 (3 s.f.).
3a [3]	$ \begin{pmatrix} -3\\1\\5 \end{pmatrix} + \lambda \begin{pmatrix} -1\\4\\3 \end{pmatrix} = \begin{pmatrix} 0\\9\\c \end{pmatrix} + \mu \begin{pmatrix} 22/7\\-4\\-2-c \end{pmatrix} $
	$-3 - \lambda = \frac{22}{7}\mu \qquad \qquad$
	$-8 + 4\lambda = -4\mu \qquad \qquad(2)$
	$5+3\lambda = c - 2\mu - c\mu \qquad(3)$
	From (1) and (2) we have
	$\lambda + \frac{22}{7}\mu = -3 \qquad \qquad(4)$
	$4\lambda + 4\mu = 8 \qquad \qquad(5)$
	Solve (4) and (5) by GC
	$\lambda = \frac{13}{3}, \mu = -\frac{7}{3}$
	Sub into (5) $5+3\left(\frac{13}{3}\right) = c - (2+c)\left(-\frac{7}{3}\right) \Rightarrow c = 4.$
[3]	Let the foot of perpendicular be F. Then
	(-1)
	$AF \cdot \begin{vmatrix} 4 \end{vmatrix} = 0$
	$\left(\begin{array}{c}3\end{array}\right)$
	$ \begin{pmatrix} -3\\1\\5 \end{pmatrix} + \lambda \begin{pmatrix} -1\\4\\3 \end{pmatrix} - \begin{pmatrix} 0\\9\\4 \end{pmatrix} \end{pmatrix} \cdot \begin{pmatrix} -1\\4\\3 \end{pmatrix} = 0 $
	$3+4+15+\lambda(1+16+9)-(36+12)=0$
	$\lambda = 1$
	The coordinates of F are $(-4, 5, 8)$.
3b	c=1=d
[2]	
3bi	Shortest distance is
[3]	

	$ \begin{pmatrix} 0 \\ -3 \\ 1 \end{pmatrix} \begin{pmatrix} -1 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ -1 \\ -1 \end{pmatrix} $
	$ \begin{bmatrix} 9 \\ 1 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \times \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 8 \\ -4 \end{bmatrix} \times \begin{bmatrix} 4 \\ 3 \end{bmatrix} $
	$\frac{1}{\sqrt{1+4^2+3^2}} = \frac{1}{\sqrt{26}}$
	(40)
	$=\frac{1}{\sqrt{26}} \begin{bmatrix} -5\\ 20 \end{bmatrix}$
	$\left[\left(\frac{20}{2} \right) \right]$
	$=\frac{5\sqrt{8^2+1+4^2}}{\sqrt{26}}=\frac{45}{\sqrt{26}}$
3bii	$ \begin{pmatrix} 8 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 8 \end{pmatrix} $
[2]	$\mathbf{r} \cdot \begin{vmatrix} -1 \\ 4 \end{vmatrix} = \begin{vmatrix} 9 \\ 1 \end{vmatrix} \cdot \begin{vmatrix} -1 \\ 4 \end{vmatrix}$
	$\mathbf{r} \cdot \begin{vmatrix} -1 \end{vmatrix} = -5$
21."	
3011 i	$p_1: 8x - y + 4z = -5$ $p_2: 8x - (-y) + 4(z - 2) = -5$
[2]	$p_2 \cdot 8x - (-y) + 4(z-2) = -3$ 8x + y + 4z = 3
	(8)
	$\mathbf{r} \cdot \begin{vmatrix} 1 \end{vmatrix} = 3$
	(4)
4(a) [2]	$z^{\circ} = 1$
	$z = e^{k \left(\frac{\pi}{3}\right)i}, k = -2, -1, 0, 1, 2, 3$
4bi	$\angle P_k OP_{k+1} = \frac{2\pi}{n}$.
	$\binom{n}{(2\pi)}$ po $\binom{(2\pi)}{(2\pi)}$
	$OQ_2 = \cos\left(\frac{n}{n}\right) P_1Q_2 = \sin\left(\frac{n}{n}\right)$
4bii [2]	For $k = 2, 3,, n-1$
	$OQ_{k+1} = OQ_k \cos\left(\frac{2\pi}{n}\right) \Rightarrow \frac{OQ_{k+1}}{OQ_k} = \cos\left(\frac{2\pi}{n}\right) \text{ (constant)}$
	Since the ratio of consecutive terms is a constant, $\partial Q_2, \partial Q_3,, \partial Q_n$ are in GP.

	participate in the survey such as tourists.
	No, as the sampling frame, a list of all users of the train system is not easily obtainable.
7i	Number of ways in which 1 man and 2 women are chosen
[2]	$={}^{6}C_{1}{}^{n}C_{2} = \frac{6n(n-1)}{2} = 3n(n-1)$
	Number of ways in which 3 women are chosen
	$= {}^{n}C = \frac{n(n-1)(n-2)}{n} = \frac{n(n-1)(n-2)}{n}$
	3! 6 $(1)(-2)$ $(-1)(-1)(-1)$
	Total number of ways = $\frac{n(n-1)(n-2)}{6} + 3n(n-1) = \frac{n(n-1)(n+16)}{6}$ So, $a = \frac{1}{6}$
7ii	$f(n) = \frac{n(n-1)(n+16)}{n}$ is an increasing function for $n \ge 1$.
[2]	6 From the GC when $n = 9$ f(n) = 300
	when $n = 10$, $f(n) = 300$ when $n = 10$, $f(n) = 390$
	Thus, $n \in \Box$, $n > 9$ (or $n \ge 10$)
[1]	X does not follow a binomial distribution Reason:
[T]	The event that a committee member is a man is not independent of the event another
	committee member is a man.
	OR The conder of a committee member is not independent of that of eacther
8i	r = 0.929(3 s f)
[2]	<i>r</i> is close to 1, which indicates a strong linear correlation between x and t. So it suggests
	that a linear model is appropriate.
8ii	z
[2]	
	\overline{o} \overline{f} \overline{f} \overline{f} t/h
	The souther diagram shows that as timercases, winercases at an increasing rate, which
	suggests that the data points may fit better with $\ln x = a + bt$.
	suggess and at any point may it could will have a could
8iii	$\ln x = 3.02 + 0.654t \ (3 \text{ s.f})$
[2]	r = 0.999
8iv	When $x = 200$,
[2]	$\ln 200 = 3.0210 + 0.65432t$
	t = 3.5 (1 d.p)
	Since $x = 200$ lies within the given range of data of x between 20 to 510 and there is a
	strong linear correlation between $\ln x$ and t as the product moment correlation coefficient
	is 0.999 (close to 1), the estimate is reliable.
0:	Let Die die were of a how of well
וע	Let K be the mass of a box of red grapes in grams.

[2]	Then $R \square N(300, 40^2)$
	Required probability = $\begin{bmatrix} {}^{9}C_{1} \times P(R < 310)^{8} P(R \ge 310) \end{bmatrix} P(R \ge 310) = 0.0239 (3 \text{ s.f})$
9ii [3]	Let G be the mass of a box of green grapes in grams. Then $G \square N(150, 20^2)$
	Let $X = R_1 + R_2 + R_3 - 3G$
	E(X) = 3E(R) - 3E(G) = 450
	$Var(X) = 3Var(R) + 3^{2}Var(G) = 8400$
	Then $X \square N(450, 8400)$
	$P(X \ge 500) = 1 - P(X < 500) = 1 - P(-500 < X < 500) = 0.293 (3 \text{ s.f})$
9iii	Let $Y = 0.005(R_1 + R_2 + + R_{10}) - 0.006(G_1 + G_2 + + G_{10})$
[4]	$E(Y) = 0.005 \times 10E(R) - 0.006 \times 10E(G) = 6$
	$Var(Y) = 0.005^{2} \times 10Var(R) + 0.006^{2} \times 10Var(G) = 0.544$
	Then $Y \square N(6, 0.544)$
	$P(Y \le 7) = 0.912 \ (3 \text{ s.f})$
10i	$P(A \cap B) = P(rise, rise, fall) + P(rise, fall, fall)$
[2]	$= (0.1 \times 0.7 \times 0.3) + (0.1 \times 0.3 \times 0.9)$
10ii	=0.048
[3]	$= P(A \cap B) + P(A' \cap B)$
	= 0.048 + P(fall, fall, fall) + P(fall, rise, fall)
	$= 0.048 + (0.9 \times 0.9 \times 0.9) + (0.9 \times 0.1 \times 0.3) = 0.804$
10ii	$P(A, \bigcup B) = 1 - [P(A) - P(A \cap B)]$
i [2]	=1-[0.1-0.048]=0.948
[4] 10;	$P(A \cap B) = 0.048$
V IOI	$P(B A) = \frac{\Gamma(A + B)}{P(A)} = \frac{0.048}{0.1}$
[2]	
[1]	$= 0.48$ Since $[\mathbf{D}(\mathbf{R}) = 0.804] \neq [\mathbf{D}(\mathbf{R} \mid \mathbf{A}) = 0.48]$ is A and R are not independent.
11;	Since $[P(B) - 0.804] \neq [P(B A) = 0.48]$ A and B are not independent.
[2]	$X \square B(40, 0.1)$
	$P(X > 2) = 1 - P(X \le 2)$
	=1-0.22281
(ii)	=0.777 (3s.t)
	Let Y be the number of prizes given out in 7 days, out of 140
(II) [4]	Let Y be the number of prizes given out in 7 days, out of 140 Y \square B(140,0.1)
[4]	Let Y be the number of prizes given out in 7 days, out of 140 $Y \square B(140, 0.1)$ Since $n = 140$ is large such that $np = 14 > 5$, $n(1-p) = 126 > 5$,

	$P(Y \le k) = P(Y \le k + 0.5) < 0.4$ by continuity correction
	From GC
	when $k = 12$, $P(Y \le 12, 5) = 0.3363 \le 0.4$
	when $k = 13$, $P(V \le 13.5) = 0.44300 \ge 0.4$
	when $K = 15$, $F(T \ge 15.5) = 0.443375 > 0.4$
	\therefore largest $k = 12$
(iii)	P(X < 3) = P(X < 2) = 0.223
[2]	Let W be the number of restaurants, out of 10 that gives out less than 3 prizes in 2 days
	$W \square B(10, 0.223)$
	$P(W \le 2) = 0.608$ (3s.f)
[3]	Let <i>R</i> be the number of prizes given out in a day, out of 50, by the restaurant.
	$R \square B(50, 0.05)$
	Since $n = 50$ is large and $p = 0.05$ is small such that $np = 2.5 < 5$,
	$R \square Po(2.5)$ approximately
	Required probability
	$=(P(R\geq 1))^3$
	$=(1-0.082085)^3$
	= 0.773 (3sf)
12i	To test $H_0: \mu = 250$ vs $H_1: \mu > 250$
[4]	Perform a 1-tail test at 5% level of significance.
	Under H $T = \frac{\overline{X} - \mu_0}{n + 1}$ where $\mu = 250$
	$V_{n_0}, T = \frac{1}{S/\sqrt{n}} \sim t(n-1)$ where $\mu_0 = 250$
	From the sample, $\bar{x} = 251.25$, $s = 2.1213$, $n = 8$
	Using a t -test p -value = 0.0698 (3 s f)
	Using a t -test, p -value = 0.0098 (5 s.i.)
	Since $p - \text{value} = 0.0698 > 0.05$, we do not reject H ₀ and conclude that there is
	insufficient evidence, at 5% level of significance, that the mean quantity of coffee in a
	cup is more than 250 ml.
	In order to use a <i>t</i> -test, we need to assume that X , the quantity of coffee dispensed in a cup follows a normal distribution
12ii	A 5% significance level in this context means that the probability of concluding that the
[1]	mean quantity of coffee in a cup is more than 250ml when it actually is 250ml is 0.05.
[5]	$H_0: \mu = 250$ vs $H_1: \mu \neq 250$
	Under H \overline{X} N(250 5^2)
	$(1001 110, \Lambda \sim 10(230, -))$
	Since H ₀ is rejected, $P(\overline{X} > c) < 0.025$ or $P(\overline{X} < c) < 0.025$
	$P(\bar{X} < c) > 0.975$ or $P(\bar{X} < c) < 0.025$
	c > 253 (3s.f.) or $c < 247$ (3s.f.)
	Yes, we will need to assume that X is normally distributed as the sample size $n = 8$ is
	small.

ſ

