Anglo-Chinese School

(Independent)

PRELIMINARY EXAMINATION 2019

YEAR 6 IB DIPLOMA PROGRAMME

MATHEMATICS

HIGHER LEVEL

PAPER 1

Tuesday 17 September 2019

2 hours

INSTRUCTIONS TO CANDIDATES

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions in the boxes provided.
- Section B: answer all questions on the writing paper provided. Fill in your session number on each answer sheet, and attach them to this examination paper using the string provided.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the Mathematics HL and Further Mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [100 marks]

Section (50 Ma	on A arks)	Section B (50 Marks)	
Question	Marks	Question Marks	
1		9	
2			
3		10	
4			
5			
6		11	
7			
8			
Subtotal		Subtotal	
TOTAL		/ 100	

Candidate Session Number

0 0 2 3 2 9	
-------------	--

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A

Answer **all** questions in the boxes provided. Working may be continued below the lines if necessary.

1. [Maximum mark: 5]

The discrete random variable X has probability density function $P(X = x) = k \left(\frac{2}{5}\right)^x$ for

 $x = 2, 3, \dots$

(a) Show that
$$k = \frac{15}{4}$$
. [2]

(b) Find the cumulative distribution function $P(X \le x)$.

Given that $f(x) = \sin x$, for $x \in [0, 2\pi]$ and $g(x) = 2x + \frac{\pi}{2}$ for $x \in [0, 1]$,

- (a) Determine if fg(x) exists and find fg(x), stating its domain clearly. [3]
- (b) Sketch the graph of y = fg(x), indicating clearly the positions of the axial intercepts and turning points. [3]

r

The points P, Q and R are (2,5,1), (0,2,-1) and (3,7,-2) respectively.

(a) Find the cartesian equation of the plane PQR.

[4]

(b) Find the volume of the pyramid formed by the origin and the points *P*,*Q*, and *R*. [2]

The curve *C* has equation $e^{x+2y} = 2$. Find the equation of the normal to *C* at the point where x = 0.

_	
-	
-	
-	
1	
1	
1	
-	
-	
-	
-	
1	
1	
1	
1	
1	

Consider the three planes below, where $k \in \mathbb{R}$ is a constant.

$$x + y + z = 0$$
$$2x + 3y + 3z = 2$$
$$3x - 10y + kz = -1$$

Find the value of k for which the three planes do not meet at a unique point. [3] [2] (a)

(b) If k = -9, find the coordinates of the point of intersection of the three planes.

By using a suitable substitution, find $\int \sqrt{x} \cos \sqrt{x} \, dx$.

(a)	Use mathematical induction to prove that	$\sum_{r=1}^{n} (-1)^r \frac{r^2}{r}$	$\frac{+r+1}{r!} = \left(-1\right)^n$	$\frac{n+1}{n!} - 1$ for any	
	positive integer n.				[6]

(b) Hence, find the value of $\sum_{r=3}^{20} (-1)^r \frac{r^2 + r + 1}{r!}$ in the form $\frac{A}{B!} + C$. [3]

A continuous random variable X has probability density function defined by

$$f(x) = \begin{cases} e^{-x}, & 0 \le x \le 1\\ \frac{1}{2e}, & 1 < x \le 3\\ 0, & \text{otherwise} \end{cases}$$

(a) Find $P(0 \le X \le 2)$, leaving your answer in terms of <i>e</i> .	[3]
(b) Hence, explain why the median lies in $0 \le x \le 1$.	[2]
(c) Find the median of X.	[2]

Do not write solutions on this page.

Section B

Answer all questions in the answer sheets provided. Please start each question on a new page.

9. [Maximum mark: 17]

Let
$$y = \frac{x-1}{e^{x-3}}$$
 for $x > 0$

- (a) Prove that $\frac{dy}{dx} = e^{3-x} y.$ [3]
- (b) Find the maximum and minimum values of y in the interval [1,4]. [4]
- (c) Find the coordinates of the point of inflexion on the graph of $y = \frac{x-1}{e^{x-3}}$. [4]

[You do not need to justify that it is a point of inflexion]

- (d) (i) State the range of values of x where the graph is concave down.
 - (ii) Give a reason why the graph of $y = \frac{x-1}{e^{x-3}}$ is decreasing for x > 2.
 - (iii) Find the equation of the horizontal asymptote of $y = \frac{x-1}{e^{x-3}}$. [6]

Let
$$f(x) = \frac{3x-8}{x-3}$$
, where $x \neq 3$.

- (a) (i) Sketch the graph of y = f(x), indicating clearly the positions of the axial intercepts and asymptotes.
 - (ii) Hence, sketch the graph of $y = \frac{3|x|-8}{|x|-3}$, indicating clearly the positions of the axial intercepts and asymptotes.
 - (iii) The graph of y = f(x) undergoes the following transformations in succession

A : a translation by the vector $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$

B : a stretch by a factor of 2 units parallel to the y-axis. Find the equation of the resulting function.

(b)The equation $f(x) = x^2$ has roots α, β, γ .

- (i) Write down the values of $\alpha + \beta + \gamma$ and of $\alpha\beta\gamma$.
- (ii) Find the value of $\alpha^2 + \beta^2 + \gamma^2$.
- (iii) Find, in the form $Ay^3 + By^2 + Cy + D = 0$, a cubic equation whose roots are

$$\frac{1}{\alpha}, \frac{1}{\beta} \text{ and } \frac{1}{\gamma}.$$
 [6]

11. [Maximum mark: 18]

Let $\alpha = (\sqrt{3} + i)(1-i)$.

- (a) (i) Find the modulus and argument of α .
 - (ii) Hence, find the exact value of $\cot \frac{\pi}{12}$. [8]
- (b) Given that $n \in \mathbb{Z}^+$, find the smallest value of *n* that makes α^n a positive real number.

[3]

[9]

(c) (i) Show that, for any complex number $z, r > 0, -\pi < \theta \le \pi$,

$$(z-re^{i\theta})(z-re^{-i\theta}) = z^2 - (2r\cos\theta)z + r^2$$

- (ii) Solve the equation $z^4 + |\alpha|^8 = 0$, listing the roots individually in the form $re^{i\theta}$, where r > 0 and $-\pi < \theta \le \pi$.
- (iii) Hence, or otherwise, express $z^4 + |\alpha|^8 = 0$ as the product of two quadratic factors with real coefficients, simplifying your answer as far as possible. [7]

END OF PAPER