Revision Worksheet on Sequences and Series

A. Σ (Sigma) notation

Given $\sum_{r=1}^{n} u_r$,	<i>r</i> : index of sum
First term = u_m	<i>m</i> : lower limit
Last term $= u_n$	<i>n</i> : upper limit
No. of terms = $n - m + 1$	Note: Lower limit of a sum does not always need to be 1.

B. Basic properties/rules of summation

No.	Property	Express the following examples in a
		similar form to the property given (the
		final answer is not required)
1	$\sum_{r=m}^{n} k = (n-m+1)k, \text{where } m < n$	$\sum_{r=3}^{10} 4 = 8 \times 4$
	Note: r is the index and k is treated as a constant $n-m+1$ is the number of terms in the series	(Note : can use GC to check the answer if the limits are finite known values)
2	$\sum_{r=1}^{n} k u_r = k \sum_{r=1}^{n} u_r$	$\sum_{r=1}^{8} \left(\frac{5}{r}\right) = \sum_{r=1}^{8} \left(5 \times \frac{1}{r}\right) = 5 \sum_{r=1}^{8} \left(\frac{1}{r}\right)$
3	$\sum_{r=1}^{n} (u_r \pm v_r) = \sum_{r=1}^{n} u_r \pm \sum_{r=1}^{n} v_r$	$\sum_{r=1}^{n} (r+2^{r}) = \sum_{r=1}^{n} r + \sum_{r=1}^{n} 2^{r}$
4	$\sum_{r=m}^{n} u_{r} = \sum_{r=1}^{n} u_{r} - \sum_{r=1}^{m-1} u_{r} \text{where } m < n$	$\sum_{r=5}^{13} r! = \sum_{r=1}^{13} r! - \sum_{r=1}^{4} r!$
5	Given the formula for S_n , i.e. $\sum_{r=1}^n u_r$, the	Given $S_n = 6 - \frac{3}{2^n}$, $u_n = S_n - S_{n-1}$
	n^{th} term of the series, $u_n = \sum_{r=1}^n u_r - \sum_{r=1}^{n-1} u_r$	$= \left(6 - \frac{3}{2^{n}}\right) - \left(6 - \frac{3}{2^{n-1}}\right)$
	$=S_n - S_{n-1}$	$=\frac{3}{2^{n-1}}-\frac{3}{2^n}$
		$=\frac{6}{2^{n}}-\frac{3}{2^{n}}=\frac{3}{2^{n}}$

C. Formula for some standard series

No.	Formula	Example	Remark
1	$\sum_{r=1}^{n} r = \frac{n(n+1)}{2}$	$\sum_{r=1}^{20} 4r$ = $4\sum_{r=1}^{20} r$ = $4 \times \frac{(20)(21)}{2}$ = 840	Using result of $\sum_{r=1}^{n} ku_r = k \sum_{r=1}^{n} u_r$
2	$\sum_{r=1}^{n} r^{2} = \frac{n(n+1)(2n+1)}{6}$ Formula will be given in the question when required	$\sum_{1}^{n} [r(3r-1)]$ $= \sum_{r=1}^{n} (3r^{2} - r)$ $= 3\sum_{r=1}^{n} r^{2} - \sum_{r=1}^{n} r$ $= 3\left[\frac{n(n+1)(2n+1)}{6}\right] - \frac{n(n+1)}{2}$ $= \frac{n(n+1)[(2n+1)-1]}{2}$ $= n^{2}(n+1)$	Using result of $\sum_{r=1}^{n} ku_r = k \sum_{r=1}^{n} u_r$
3	$\sum_{r=1}^{n} r^{3} = \left[\frac{n(n+1)}{2}\right]^{2}$ Formula will be given in the question when required	$\sum_{6}^{15} (r^{3} + 2)$ $= \sum_{r=6}^{15} r^{3} + \sum_{r=6}^{15} 2$ $= \left(\sum_{r=1}^{15} r^{3} - \sum_{r=1}^{5} r^{3}\right) + \sum_{r=6}^{15} 2$ $= \left[\frac{(15)(16)}{2}\right]^{2} - \left[\frac{(5)(6)}{2}\right]^{2} + (15 - 6 + 1)(2)$ $= 14400 - 225 + 20$ $= 14195$	change lower limit to 1

D. Limit and Convergence of Series

Let $S_n = \sum_{r=1}^n u_r = u_1 + u_2 + u_3 + \dots + u_n$.

When we write $\lim_{n\to\infty} S_n = S$, where S is a unique finite value, it means that S_n approaches the finite value S as $n \to \infty$.

- If $\lim_{n \to \infty} S_n = S$, where S is a finite value, the series S_n converges.
- If $\lim_{n\to\infty} S_n$ does not exist or is infinite, the series S_n diverges.

E. Recurrence Relations

Recurrence relations are when the nth term is expressed in terms of the previous terms. Eg. $u_{n+1} = 3u_n$; $u_1 = 3$; . To find the terms, we do the following: When n = 1, $u_2 = 3u_1 = 3(3) = 9$ When n = 2, $u_3 = 3u_2 = 3(9) = 27$ When n = 3, $u_4 = 3u_3 = 3(27) = 81$...and so on.

Do remember how to use the graphing calculator to find the *n*th term of a recurrence relation.

Practice Problems

1 HCI JC 1 Promo 9758/2024/Q2

(a) Given that
$$\sum_{r=1}^{n} r^2 = \frac{n}{6} (n+1) (2n+1)$$
, find $\sum_{r=1}^{n} \left[\left(\frac{1}{2} \right)^r - r \left(r + \frac{1}{3} \right) \right]$, in terms of *n*. [4]

(**b**) Explain why
$$\sum_{r=1}^{n} \left[\left(\frac{1}{2} \right)^r - r \left(r + \frac{1}{3} \right) \right] < 1$$
 for all positive integers *n*. [1]

2 NYJC JC2 Prelim 9758/2019/01/Q10

For this question, you may use the results
$$\sum_{r=1}^{n} r^2 = \frac{n(n+1)(2n+1)}{6}$$
 and $\sum_{r=1}^{n} r^3 = \frac{n^2(n+1)^2}{4}$.

(i) Find
$$\sum_{r=1}^{n} r^2 (2r-1)$$
 in terms of *n*. [2]

(ii) Find
$$\sum_{r=1}^{n} r^2 (r-1)$$
 in terms of *n*. Hence find $\sum_{r=2}^{n-1} r(r+1)^2$ in terms of *n*. [5]

[3]

(iii) Without using a graphing calculator, find the sum of the series
$$4(25)-5(36)+6(49)-7(64)+\dots-59(3600)$$
.

3 SAJC JC2 Prelim 9758/2019/02/Q4 (b)

(b) (i) Cauchy's root test states that a series of the form $\sum_{r=0}^{\infty} a_r$ (where $a_r > 0$ for all r) converges when $\lim_{n \to \infty} \sqrt[n]{a_n} < 1$, and diverges when $\lim_{n \to \infty} \sqrt[n]{a_n} > 1$. When $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$, the test is inconclusive. Using the test and given that $\lim_{n \to \infty} \sqrt[n]{n^p} = 1$ for all positive p,

explain why the series $\sum_{r=0}^{\infty} \frac{2^r r^x}{3^r}$ converges for all positive values of *x*.

(ii) By considering $(1 - y)^{-2} = 1 + 2y + 3y^2 + 4y^3 + ...$, evaluate $\sum_{r=0}^{\infty} \frac{2^r r^x}{3^r}$ for the case when x = 1. [2]

[3]

4 TJC JC2 Prelim 9758/2019/02/Q2 (modified)

It is given that $\sum_{r=1}^{N} \left(\left(\frac{1}{7} \right)^{r+1} \frac{6r+7}{r(r+1)} \right) = \frac{1}{7} - \frac{7^{-N-1}}{N+1}$ (i) Give a reason why the series $\sum_{r=1}^{\infty} \left(\left(\frac{1}{7} \right)^{r+1} \frac{6r+7}{r(r+1)} \right)$ converges, and write down its value. [2]

(ii) Use your answer in part (i) to find
$$\sum_{r=1}^{N} \left(\left(\frac{1}{7} \right)^{r+1} \frac{6r+13}{(r+1)(r+2)} \right).$$
 [3]

5 CJC JC1 Promo 9758/2024/Q3

It is given that
$$\sum_{r=1}^{n} \frac{1}{r(r+1)} = 1 - \frac{1}{n+1}$$
.
(a) Find $\sum_{r=5}^{n+1} \frac{1}{r(r+1)}$.
[3]

(b) Give a reason why the series in part (a) is convergent and state the value of $\sum_{r=5}^{\infty} \frac{1}{r(r+1)}$. [2]

6. CJC JC1 Promo 9758/2024/Q8 (b)

(b) A sequence u_0, u_1, u_2, \dots is given by

 $u_0 = 400$ and $u_n = 1.01u_{n-1} - x$ for $n \ge 1$, where x is an integer.

- (i) Show that $u_n = 1.01^n (400) 100x (1.01^n 1)$. [3]
- (ii) Given that x = 16 and $y = 1.01u_k$, where 0 < y < 16, find the value of k and y. [4]

7 DHS JC 1 Promo 9758/2024/Q3(a)

Given that
$$\sum_{r=1}^{n} r^2 = \frac{n}{6}(n+1)(2n+1)$$
, evaluate $\sum_{r=-n}^{n} (r+1)(r+3)$ in terms of *n*. [4]

8 ACJC JC 1 Promo 9758/2024/Q8

(a) It is given that
$$\sum_{r=1}^{n} \frac{1}{4r^2 - 1} = \frac{n}{2n+1}$$
.

- (i) Explain why the series $\sum_{r=1}^{\infty} \frac{1}{4r^2 1}$ converges and write down the value to which it converges. [2]
- (ii) Find $\sum_{r=6}^{N} \frac{1}{(2r+1)(2r+3)}$ in terms of *N*, express your answer in a single fraction.

[3]

(**b**) The sequence
$$u_1, u_2, u_3, \dots$$
 is defined by $u_1 = 2, u_{n+1} = 1 - \frac{1}{u_n}, n \ge 1$.
Find the value of u_2, u_3 and u_4 . Hence find the value of $\sum_{r=1}^{50} u_r$. [4]

9 RI JC 1 Promo 9758/2024/Q5

(a) Find $\sum_{r=0}^{n} [(n+2)r+n]$, giving your answer in terms of *n*. [3]

[You may use the result $\sum_{r=1}^{n} r^3 = \frac{1}{4}n^2(n+1)^2$ for the rest of this question.]

- (b) By writing down the first two and the last two terms in the series, find $\sum_{r=1}^{n} (r+2)^3$, giving your answer in terms of *n*. [3]
- (c) Find $1^3 2^3 + 3^3 4^3 + 5^3 6^3 + \ldots + (2n-1)^3 (2n)^3$, giving your answer in terms of *n*. [3]

End Answers

1. (a)
$$1 - \left(\frac{1}{2}\right)^n - \frac{n}{3}(n+1)^2$$

2. (i) $\frac{1}{6}n(n+1)(3n^2+n-1)$ (ii) $\frac{1}{12}n(n+1)(3n+2)(n-1)$; $\frac{1}{12}n(n+1)(n-1)(3n+2)-4$

(iii) -108836

3. (b)(ii) 6

$$4.\frac{1}{7}; \frac{1}{14} - \frac{7^{-N-2}}{N+2}$$

$$5. (a) \frac{1}{5} - \frac{1}{n+2} \quad (b) \frac{1}{5}$$

$$6. (b)(ii) \ k = 28; \ y = 14.6$$

$$7. a) \frac{2n+1}{3}(n^2 + n + 9)$$

$$8 (ai) \frac{1}{2} (aii) \frac{N-5}{13(2N+3)} (b) 26.5$$

$$9 (a) \frac{n}{2}(n+1)(n+4); \ (b) \frac{1}{4}(n+2)^2(n+3)^2 - 9 \ ;(c) -n^2(4n+3)$$