Answer all the questions.

1.	List the following	numbers in d	escending order	, starting with	the largest.
----	--------------------	--------------	-----------------	-----------------	--------------

1.8² π $\sqrt[3]{42}$ 3.14 $\sqrt[3]{42}$ 1.8² π 3.14 $\sqrt[3]{42}$ 1.8² π 3.14 $\sqrt[3]{42}$ 1.8² π 3.14 $\sqrt[3]{42}$ 1.8² π 3.14

2. (a) Solve the inequality 4y > -38.

4y > -38 $y > -9.5$	B1

Answer[1]

(b) Find the smallest integer satisfying 4y > -38.

-9 ----- B1

Answer[1]

3. Factorise 3xy - py + 6xq - 2pq completely.

3xy - py + 6xq - 2pq = y(3x - p) + 2q(3x - p) = (y + 2q)(3x - p)------ M1 (first line factorisation)
------ A1

4. Draw a reduction of the figure using a scale factor of $\frac{2}{3}$.

Answer Answer

5. Solve 3(1-x) = 15.

3(1-x) = 15 $3-3x = 15$ $-3x = 15-3$	M1 (expand)	$3(1-x) = 15$ $1-x = \frac{15}{3}$	M1 (÷3)
$ \begin{array}{c c} -3x = 12 \\ x = -4 \end{array} $	A1 / B1	$ \begin{aligned} 1 - x &= 5 \\ x &= -4 \end{aligned} $	A1 / B1

Answer $x = \dots [2]$

6.

Quadrilaterals ABCD and PQRS are similar.

All the lengths are in centimetres.

(a) Calculate x.

Answer $x - \dots$

(b) Find y in terms of z.

$$\frac{y}{z} = \frac{6}{8}$$

$$y = \frac{3z}{4}$$
------ B1

Answer $y = \dots [1]$

2, 9, 16, 23, 30, ...(a) Write down the next 2 terms in the sequence.

(b) Find an algebraic expression for the *n*th term in the sequence.

7*n* – 5 ——— B2 ———— [2]

(c) Find the 154th term of this sequence.

7(154) - 5 = 1073	B1
-------------------	----

Answer[1]

8. It is given that y is inversely proportional to the square of x. When x = 6, y = 4.

Find the value(s) of x when y = 100.

when
$$y = 100$$
,
$$100 = \frac{144}{x^2}$$
$$x^2 = \frac{144}{100}$$
$$x^2 = 1.44$$
$$x = \pm \sqrt{1.44}$$
$$x = \pm 1.2$$

---- M1 (finding k correctly to inverse proportion)

---- M1 (Substituting 100 correctly 'their' equation)

____ **Δ** 1

Answer
$$x = \dots [3]$$

9. In the diagram, ABC is straight line, angle $BAD = 90^{\circ}$, AD = 3 cm and BD = 7 cm.

(a) Write $\sin x^{\circ}$ as a fraction.

$\sin x = \sin (180 - x)$ $= \frac{3}{7}$	B1
	Answer[1]

(b) Find *y*.

$y = \cos^{-1}\left(\frac{3}{7}\right) = 64.6^{\circ}$
--

Answer [2]

10. A solid cylinder has radius 8 cm and height h cm.

Given that the total surface area of the cylinder is 650 cm^2 , calculate h.

Total surface area of cylinder = $2\pi r^2 + 2\pi rh$

$$2\pi(8)^{2} + 2\pi(8)h = 650$$

$$128\pi + 16\pi h = 650$$

$$16\pi h = 650 - 128\pi$$

$$h = \frac{650 - 128\pi}{16\pi}$$

$$h = \frac{650 - 128\pi}{16\pi}$$

$$= 4.93133$$

$$= 4.93 \text{ cm (3 sf)}$$

---- M1 (correct application of formula)

---- M1 (isolating h correctly)

---- A1

Answer $h = \dots$ cm [3]

11. Simplify $\frac{3}{x-5} + \frac{x}{x^2 - 25}$.

$$\frac{3}{x-5} + \frac{x}{x^2 - 25} = \frac{3}{x-5} + \frac{x}{(x+5)(x-5)}$$

$$= \frac{3(x+5)}{(x-5)(x+5)} + \frac{x}{(x+5)(x-5)}$$

$$= \frac{3x+15+x}{(x+5)(x-5)}$$

$$= \frac{4x+15}{(x+5)(x-5)}$$

---- M1 (factorization)

---- M1 (making single fraction)

---- A1

12.

The diagram (not drawn to scale) shows a circle divided into sectors of different colours.

Given than $\frac{1}{9}$ of the circle is red, find b.

Red = $\frac{2}{9} \times 360^{\circ}$ = 80° $b = 360^{\circ} - 80^{\circ} - 130^{\circ} - 90^{\circ}$ = 60°	M1 M1 A1	$1 - \frac{5}{6} = \frac{1}{6}$ $\frac{1}{6} \times 360^{\circ} = 60^{\circ}$	M1 A1
		Answer b	$p = \dots $ [3]

13. The equation of a straight line is 3y = 12 - 2x.

Find the coordinates of the point where the line cuts the y-axis.

$$3y = 12 - 2x$$
Let $x = 0$, $3y = 12 - 0$

$$y = 4$$

$$(0, 4)$$
----- M1 (accept rearranging to make y the subject to find c)
----- A1 / B2

Answer (.....) [2]

14. Jenny travelled from Singapore to Thailand.

She exchanged 800 dollars (\$) into Thai Baht (THB) when the exchange rate is \$1 = 25 THB. While in Thailand, she spent 10 800 THB.

On her return, she exchanged the remaining Thai Baht into dollars when the exchange rate was 1 = 24 THB.

How many dollars (\$) did she receive? Leave your answer correct to the nearest dollar.

Answer \mathfrak{z} [3]

15.

(a) Which one of the following is a possible equation for the graph?

$$y = 4x - 16$$
 $y = x(4 - x)$ $y = x(x - 4)$ $y = x^2$

y = x(x-4) - B1Answer [1]

(b) Write down the equation of line of symmetry.

$x = \frac{0+4}{2}$	
x = 2	B1

Answer	 1

16. (a) Rearrange this equation to make a the subject of the formula.

$$\frac{3a+c}{d} = 2$$

$$\frac{3a+c}{d} = 2$$

$$3a+c=2d$$

$$3a=2d-c$$

$$a = \frac{2d-c}{3}$$
----- A1

(b) Hence or otherwise, find the value of a if c = -5 and d = 8.

$a = \frac{2(8) - (-5)}{2}$	M1
= 7	A1

Answer $a = \dots [2]$

17. The diagram below shows a trapezium, where AB = BC = CD, BC is parallel to AD and angle $ABC = 150^{\circ}$.

(a) Find angle ACD.

angle
$$BCA = \frac{180-150}{2}$$
 (base angle isosceles triangle)
= 15°
angle $ACD = 150^{\circ} - 15^{\circ}$
= 135°

Answer° [2]

(b) Explain why AC bisects angle BAD. Show working and/or reasons clearly.

Answer

[3]

18. The diagram below shows the layout of a garden.

(a) Measure angle *QRS*.

Answer angle $QRS = \dots \circ [1]$

(b) Construct the angle bisector of angle *RQP*.

---- B1

[1]

(c) Construct the perpendicular bisector of PS.

---- B1

[1]

- 19. $(x+1)^2 11$ can be expressed in the form $x^2 + bx + c$.
 - (a) Find the value of b and c.

$$(x+1)^{2} - 11 = x^{2} + 2x + 1 - 11$$

$$= x^{2} + 2x - 10$$

$$b = 2, c = -10$$

$$Answer b = \dots, c = \dots [2]$$

(b) Solve the equation $(x+1)^2 - 11 = 0$, leaving your answers correct to two decimal places.

$$(x+1)^{2}-11=0$$

$$(x+1)^{2}=11$$

$$x+1=\sqrt{11} \quad or \quad x+1=-\sqrt{11}$$

$$x=\sqrt{11}-1 \quad or \quad x=-\sqrt{11}-1$$

$$x=2.32 \quad or \quad x=-4.32$$
----- A1 (both correct)

20. (a) Jae invested \$4500 at 2.5% compound interest per annum, compounded annually.

Calculate the compound interest Jae will receive at the end of 5 years? Give your answer correct to the nearest cent.

(b) Gina invested some money in government bonds.

One year later her investment had gained 8.5% of its original value. It was then worth \$8029.

How much did Gina invest originally?

21. George participated in a 30 km marathon.

The distance-time graph below represents his run from the start to finish.

(a) What does the line BC represent?

(b) How long did it take for George to reach point B?

(c) 'George's average running speed from A to B is faster than his average running speed from C to D.'

Is this statement correct? Explain your answer.

Answer

AB Speed =
$$\frac{16 \div 1\frac{7}{10} = 9.4117}{\text{km/h}}$$

CD speed = $14 \div 2 = 7 \text{ km/h}$

The statement is correct because speed AB is faster than speed CD.

Alternatively:
From A to B, George covers 16 km in less than 2 hours.
Whereas from C to D, George covers 14 km in 2 hours, covering less distance in longer time.
Hence, the statement is correct,

----- M1 (either correct speed)

----- M1 (either correct speed)

22. The diagram below, which is not drawn to scale, shows a triangle *PQR*.

The coordinates of P, Q and R are (0, 11), (3, p) and (13, 12) respectively.

(a) Find the length of *PR*, leaving your answer correct to 2 decimal places.

Length PR =
$$\sqrt{(12-1)^2 + (13+0)^2}$$
 ----- M1
= 13.0384
= 13.04 units ----- A1

(b) Given that the gradient of RQ is 1, find the value of p.

$\frac{12-p}{13-3} = 1$	M1
$ \begin{vmatrix} 12 - p = 10 \\ p = 2 \end{vmatrix} $	A1 / B2

(c) Find the equation of RQ.

$$y = mx + c$$
Equation PQ , using $(3, 2)$:
$$2 = 3 + c$$

$$c = -1$$
Answer: $y = x - 1$
----- A1

Answer [2]