2021 SH2 H3 Mathematics Preliminary Examinations Marking Scheme

Qn Solution

1 | Consider the set of remainders of integers when divided by 2n , X = {0, l,--+.2n —1} .
For p,g € X , consider the pairs (p, q) such that p+¢g = O(mﬁd 2n). :

Note that (1,2n-1),(2,2n-2),---(n—1,n+1)

: (n:, n) ,(0, 0) are such pairs and there are precisely (n - 1) +1+1=n+1 such pairs.

As there are n+2 integers in S and only n+1 of such pairings possible, there must be (at
least) two integers s,,s, in S that belong the same pairing. Then either

Case 1
5,,S, are not both congruentto 0 or n mod2n, so s, +s, =0(mod2n)

Case 2
5,,S, are actually both congruentto 0 or » mod2n , so s, —s, =0(mod2n)..




Solution

(1)

Suppose that a+ jb=a+kb (mod m) for some j, k € {0,1,2,.,.31?1 —1} . Then,
a+ jb=a+kb (modm)
jb=kb (modm)
j=k (modm) (- ged(b,m)=1)
which implies that j =k since j,k€{0,1,2,...,m—1}.
This means that a+ jb=a+kb.

Thus, a, a+b, a+2b, ..., a +(m —l)b are all incongruent modulo m.

(ii)

Suppose there exists a prime g <n such that g | d . Now, consider the g terms
p, p+d, p+2d, .., p+(q-1)d.

By (i), and since gcd (qj d ) =1, all the g terms above are incongruent modulo g. So, each

of the terms 1s congruent to exactly one of 0, 1, 2, ..., ¢ — 1 modulo g. In particular,

p+rd=0 (modg)

for some 7 €{0,1,2,...,g—1}. Thus, ¢| p+rd .
The next goal 1s to show that p+rd 1s composite, 1.e., g< p+rd .

Note that n < p because otherwise, if p <n, then one of the terms in
p,p+d, p+2d, .., p+(n—l)d

wouldbe p+ pd =p (1 +d ) which 1s a product of two integers greater than 1 and hence

composite.

By the inequalities g <n < p < p+rd , we conclude that p+rd is composite (" q| p +rd
and g < p+rd) , which is a contradiction to all the terms in the arithmetic progression
being prime.

Qn Suggest solutions
J | By AM-GM inequality,
a’+b’°
>\a’b® =|ab|=ab.
2
2 2 2 2
Similarly, b erc > be and < ;a > ca .

Summing them up, we have
a’+b>+c*>ab+bc+ca.




2(i)

From the previous part, we know x>+ y° +z° > .S, so
2

N :(x+y+z)
=x"+y°+2°+2(xy+ yz + zx)
>S5 +28
=35

Since S >0, §=3. (proven)

2(ii)

The Cauchy-Schwartz inequality

2 2 2 2 2 2 2
1% 2t 3¥3 ) =\ Y 2 3 1 2 3 )
(ab +a,b +ab) *-’-i(a +a,” +a )(b +b,”+b )

yields (x+y+z) <(1+y+2°)(x* + y+1)
when q, =1, b, :\/J_?,C] =z,a,=X,b, :\/J_?,CE =1, so

1 - 1+y+z°
X +y+1 (Jc:+y+z)2 |

Similarly,
2 2
2 1 < 1+z+x2 and — 1 < l+x+y
y+z+l (x+y+z) Z+x+l (x+y+z)

7 -

Summing them up,

1 1 1
- + +
x> +y+1 y 4+z4+1 2 +x+1

1+ y+z° 1+z+x° I+x+y°
< + + -

(x+y+zf (x+y+zf (x+y+z)

3+ S+x+y + 27

(x+y+zf

L25+x +y 4z
- 2

(x+y+:y
B 2()@2+yz+:.:c)+x2+yz+z:2

(x+y+zf

_(x+y+zf

(x+y+zf

=1 (proven)

Solution

4(a)

Consider the remainders of squares modulo 4. By the division algorithm, every integer 1s
congruent to exactly one of 0, 1, 2 or 3 modulo 4.




0° =0 (mod4) 2* =0 (mod4)
I =1 (mod4) 3* =1 (mod4)
.". Any square 1s congruent to only 0 or 1 modulo 4.

.". The sum of two squares will be congruent to only 0, 1 or 2 modulo 4.
However, each term 1n the sequence can be generically written as

999..999 =10¢ —1
s =100(10°2)~1

for some integer k£ > 2. Since
100(10°7)—1=4(25)(10°7)-1
=3 (mod4),

each term 1n the sequence 1s congruent to 3 modulo 4.
Therefore, the sequence does not contain term which 1s the sum of 2 squares.

4(b) | We attempt to generate an arithmetic progression (AP) with terms ending with n 9’s,
(1) | where neZ".
For any positive integer n, consider the AP with a =10" —1=999...999 and 6=10", so
n 9's
that each term 1n this AP ends with » consecutive 9’s.
Since b—a =1, ged(a,b)=ged (10" -1,10") =1.
Thus, for any positive integer n, by Dirichlet’s Theorem, the AP with ¢ =10" —1 and
b =10" contains infinitely many primes.
Thus, there exists a prime ending with n consecutive 9’s for any positive integer n.
4(b) | Let a and b be some given coprime positive integers.
(ii) | Let p be a prime 1n the given arithmetic progression (AP). Such a prime exists due to

Dirichlet’s Theorem.

So, p =a+ mb for some integer m > 0.

Claim: For any integer » >1, p+rpb will be a composite number in the given AP.

Proof of claim:
p+rpb=a+mb+rpb

=a+(m+rp)b
which i1s in the given AP as m+rp > 0.

Also, p+rpb= p(1+rb) is composite as p>1 and 1+rb>1.

Thus, the given AP contains infinitely many composite numbers, 1.e.,
p+pb, p+2pb, p+3pb, p+4pb,...

(In fact, these composite numbers themselves form an arithmetic progression)

Alternative:




Note that since a and b are positive integers, a+b=>2. Let s=a+b . Then, the AP
contains the terms

s, s+b,...s+sb,....s+2sb,...,s+3sb, ...

because for each teZ", s+tsb=a+b+tsb=a+(l1+ts)b and 1 +1ts>2.

Also, s+1sb = S(1+Ib). Since s =2 and 1+tb>2, s+tsb 1s composite forall reZ".

Therefore, the AP contains infinitely many composite numbers.




Solution

dx 2u
uzztanx::f-x:tan‘l(uz):—: -
du 1+u

2
Thus, j¢tanxdx=JVu2 ‘1-2|—u4 du=J 2U du.
u

u' +1
Factorising the denominator, u* +1= (uz —au + 1)(1,:2 +au + 1)

Comparing coefficients of >, @ +2=0=a= ++/2. Thus,

u“+1:(u2—\/§u+1)(uz+\/§u+l)

2u’ Au+ B Cu+D
Hence, = |

w +1 2 —u+l W +P2u+l

| 1
Solving, A=—=, C=———= and B=D =0. So,
©TTRT TR

quz dy — IJ U - U iy
u' +1 2 ) i =J2u+1 u? +2u+1
1 2u—\/5+\/§ 2H+‘\/§—‘\/E
_zﬁ 1 )\? L\ 1)\ l zdu
(=F5) +(5) (#+x) +(F)

) _—
ln(uz—ﬁu+l)+2tan]( V2

1

N

JE]

] u? —2u+1 ] | | i

= ——In + —tan «/Eu—l +——tan’ x/fu—#l +c
22 (H2+\/5H+1J J2 ( ) J2 ( )

1 [tanx—\/Ztaan]

=——1In
tanx—JZtanx+1

_|_

—ln(u2 +\/5u+1)+ 2tanl{

S

22

+L1;:::?m‘1 (\/2 tan x —1)+Ltan‘1 (\/2 tan x +1)+c

V2 V2

Solution




6 | We see that
(a)
x+14 __ Ax+B N C
(x=1)(x=2)(x+4) (x-1)(x-2) x+4
x+14=(Ax+B)(x+4)+C(x—-1)(x-2).
When x =1,
15=(A4+B)(5)
3=A+8B
When x=2,
16 =(24+B)(6)
E:A+3
6
4=_1
3
Thus, B:Q.
3
Furthermore, when x =0,
14=4B+2C
14—ﬂ:2C
3
c=1
3
1 10 1
. x+14 3" 3
C(x-1)(x-2)(x+4) (x-1)(x-2) x+4
g Let P(n) be the statement ' P(¥) =i ‘i for polynomials p(x) q(x) such that
(b) qg(x) T x-x
deg(p(x)){:degiq(x)) and g(x)=(x—x)(x—x,)...(x—x,) "
When n=1, ¢(x)=x-x,, and since deg(p(x))<deg(g(x)), p(x) is a constant function,

let's call 1t ¢. Thus,

Suppose that the statement 1s true up to n=4%, 1e.,

P (x).q,(x),such that clrf:g(gf;',:,(;:c))*:::df::g(c‘,‘vﬂr (.x)) and g,(x)=(x—x)(¥—x,)...(x—x,)'

p(x)_ ¢
q(x) x-x

rpﬂ(x

o\ X

for polynomials

L |
=2 —

X—X.

I

R L




Let p(x),q(x)=(x—x)(x—x,)...(x—x, ) (x—x,,,) such that
deg(p(x))f:deg(q(x)):kH . Let g, (x)=(x-x)(x—-x,)...(x—x,) . Consider the

polynomial

p(xﬁ;ﬂ)
p(x)- q,(x).
( ) QI('}:#H) 1( )
Note that when x=x,,,, p(x)- p((xk”))ql (x)=0. Thus, by quotient-remainder theorem,
i A+
( \
p(x..
p(x)-——=a(x)=a(x)(x—x.,)
i\ Xk+1 )

(
for some polynomial a (x) .As deg(p(.x)) < deg(q, (I)) ; deg(ﬂ(l’)) ) deg(p:

<deg(q,(x)).
Consequently,
—p(xk”) x)=a(x)(x—x

p(x) QAhgu)%( )=a(x)(x=x.,)

() =L () ) (x-,,)

P ixkﬂ) X
P(x) _ a(x)(x_xm) N q zxml)q}( )
q(x) q(x) q(x)

p (xaﬂl )
k
| X

:Z S %( k+l)

=l XX XXy
B k+1 C;-
CSx-x, =

: : : : X
where the 2nd last line follows from our induction hypothesis and ¢, ,, = p(( ‘“'; .
41\ X1

Consequently, if P, 1s true, then P, 1is true as well.

Since B 1s true and if P, 1s true, then P, 1s true

p(x)
q(x)

can be

, by mathematical induction P, 1s true for n>1. In other words, for any n>1,

. . I, C .
written 1n the form Z — for suitable constants c, .
i=] X xg

Solution




(a) Configuration No. of ways
(i) All 1s 1
2,1....1 6
3,1....1 6
2.2.1.1 4!
2121
2.3,1 3!
2,2,2 ]
3.3 1
Total number of ways
=27
7(b)| r=6
(1) (x”+x'+ 27+ +x* 57 +x°)
x(x” xt +x6)
x(x” +x° +x° )
=+ Tx"+ ..
7 ways.
7 (b) (x“ XX+ + o+ x +x‘“)
(i1) |
x(x” +xt+xt+x0 X0 +xm)
x(x“ +x° 4+ x° +x9)
7(c) |5
(1)
7(¢c) | There are 5 partitions of 24 where each part 1s distinct and 1s a prime number.
(i1)
7(_d) (1 + x)(l + xz)(l + x4)(1 +x° )
(1) o
=l4+x+x"+x +...
7(d) | Every positive integer can be uniquely written as a sum of distinct powers of 2.

(i)




Qn Solution
3 /Bff:kn
(1)
| smx=T1(1-
| SINX =X -
(11) 11 I
SINX 1 (1i]
X km
L
pli km km
- a0 1_ xE
o e klﬂ:l
3 . . . . r X
..., |From the Maclaurin series of sinx. sinx=x——+——...
(111) ’ 315
Sin x x> x
:]_— -+ — e
X 6 120

On the other hand, by collecting the x” terms from the factorised form of

. . sin x
of x° in the expansion of ——

— 1
:_sz

n=1 nm

Therefore, by comparing the coefficients of x”, —Z 21 — = _é
n=I n
n

o

2

n

)
| T
2

n
= 6

SIN X

X

3

coefficient

(iv)

sInx .

The coefficient of x*” in the Maclaurin series of 1S

X

l
2m+1)!

siInx .

The coefficient of x*” from the factorised form of 1S

X
1 1 1 1

Eﬁm 22:}1 Eim 32::-1 ﬂZm 42:}1 nlm

- |
:_Z 2m __2m

n=1 n |

Therefore, by comparing the coefficients of x>”

3

0 1 1 o0 1 nimr
_Z 2m__2m - = Z 2m -
(2m+1)! (2m+1)!

n=l1 n m n=I n




Solution

. Lo ]
Let S, denote the sum of the first £ terms in the series Z—p
n=1 n

Observe that

Y P S S

T (2 ) (22 (2
I 1

Hence

. . N
which 1s finite. Thus, the series Z—P converges.

n=l1 n
OR

1 1

1s a convergent geometric series since 1ts common ratio, ——

p—172?

The series i (2!5'—1 )k
k=0

absolute value that 1s smaller than 1.

= 1
Thus, the series Z—F converges.

n=I N

has an




Working

9 (1)

g counts the number of calves born in the n" year.

Calves are born by two groups of cows: cows which reach their fourth year, and cows
which reach at least their fifth year.

The number of cows 1n these two groups are mutually exclusive and exhaustive 1f we
look at only cows which can bear calves.

In the n" year:

The number of cows which reach their fourth year 1s given by g ..

Since there are g, , number of calves born in (n —l)th year, 1t means that there are g, |

cows which are in their fourth year. Consequently, in the n" year, there are g . cows
which have reached at least their fifth year.

Since each cow which reaches at least their fourth year gives birth to exactly one calf,
we have

gﬁ — gn—l +gn—3 fOf n 2 4

(11)

Method 1: Recurrence
g0 = 89 T &5
:(gs +§ﬁ: +(§ﬁ +§4)
:(.g? +§5] +28,+8,
:(ga+§4)+§5 +2g,+8,
=g.+3g,+2g,
=3+3x4+2x2
=19
g, =8 +tg =1+1=2
8;=8,+8 =2+1=3
8s=8st8g =3+1=4
Method 2: Enumeration

n 1 12 |3 14 |5

o)
~
oo

10

No. 1 (1T |1 [2 |3
of

calves
born
in n°

N
)]
O
—
('Y

19

year

(iii)

h, =1
h, =2

(1v)

h _, counts the number of compositions of n consisting of parts of sizes | or 3 (or
both).




For each composition counted by #, _,, we add a part of size 1 at the end. In this way,

h _, would have counted all compositions of n ending with part of size 1 .

For each composition counted by 4, ., we add a part of size 3 to the end. In this way,

h ., would have counted all compositions of n ending with part of size 3 .

Since compositions ending with part of size 1 and part of size 3 are mutually exclusive
and exhaustive, h =h _,+h ..

(V) 2n—2r 1s the smallest numerator
r 1s the greatest denominator
We need 2n—-2r=>r
So we need the greatest integer » such that2n—2r > r
2n > 3r
n=1.5r
which 1s equivalent to solving for r = % .
{iJ 2n—-2r
r=0 | r |
Qn Suggest solutions
10(i) | Let the rectangle has vertices

(a,b), (a+k,b), (a+k,b+h) and (a,b+h),
where a,b,k,heZ, k>0 and h>0.

In this case, A =kh.

Interior to the rectangle, any lattice point has x-coordinate between (a+1) and

(a+k—1) inclusive, and y-coordinate between (b+1) and (b+h—1) inclusive. By MP,
I=|(a+k-1)=(a+1)+1]|[(b+h=1)—(b+1)+1]

= (k=1)(h-1)

On each of 1its horizontal boundary (excluding the vertices), there are
(a+k —1)—(a+ l)+l =k —1 lattice points. On each of its vertical boundary (excluding

the vertices), there are (b+h—1)—(b+1)+1=h-1 lattice points. Thus,
B=2(k-1)+2(h-1)+4
=2k+2h

Therefore, for any rectangle,




I+§—1=(k—1)(h—1)+

2k+2h_

2
=kh—k—-h+1+k+h-1

= kh = A (proven)

1

10(ii)

Assemble two such 1dentical triangles into one rectangle in part (i), then each triangle has

area lkh :

2

Supposing there are / lattice points on the hypotenuse shared by the two triangles
(excluding the vertices), these points are interior to the rectangle.

(k—-1)(h-1)-1
2
and B=(k-1)+(h-1)+1+3=k+h+I+1

For each triangle, / =

There, for any such right-angled triangle

I+E_1:(k—l)(h—l)—!+(k+h+l+1)_l
2 2 2

_kh—k—-h+1-l+k+h+[+1-2
2

kh
Py = A (proven)

10(iii)

Construct a rectangle subscribing the triangle, then rotate and/or reflect the figure into the
following configure. The area and the number of lattice points inside/on the boundaries
will not be affected.

Let the numbers of lattice points interior to (I), (II), (III) and (IV) be 1,,1,, I, and I,

respectively.

Let the number of lattice points on the boundaries of (I) be B, (including the vertices).

Now, the number of lattice points interior to the rectangle is (/, +/, +1;+1, + B, —3)

Let the numbers of lattice points on the boundaries of (II), (III) and (IIII) be
B,, B, and B, respectively (including the vertices).

Now, the number of lattice points on the boundaries of the rectangle 1s
(B, +B,+B,-B,).

From part (i), the area of rectangle 1s

(I, +1,+1,+1,+B, —3)+(BE+B3;B“_81)—1

B
=(Il +i—1]+(12 +£—lj+[[3+—3—1]+([4+£—1j
2 2 2 2

For part (ii), the areas of (II), (III) and (IV) are

B B B .
[12 +—21){]3 +?3l)and [14 +7“l] respectively.

2




. B
Therefore, the area of (I) 1s (I] + 7‘ — l] . (proven)
Let P, be the proposition that 4 =17+ g —1 for any n-sided polygon, where n>3.

P, 1s true as shown 1n part (iii).

Assuming P, 1s true for some £ > 3.

For P,
We can partition a (k + 1)-sided polygon 1nto a triangle and a £-sided polygon.

+1°

Let the numbers of lattice points interior to the triangle and to the k-sided polygon be 7,

and /  respectively.

Let the numbers of lattice points on the boundaries of the triangle and the k-sided polygon
be B, and B, respectively.

By the assumption made and part (iii) result, the area of the (k£ + 1)-sided polygon is

B
A:(],+5—1]+ I +——1
2 £2

Let the number of lattice points on edge shared by the triangle and the k-sided polygon
be L (excluding the two end-points).

The number of lattice points interior to the (k + 1)-sided polygon 1s
I=1+1,+L,

and on the boundariesis B=B, + B —2L—-2.

B B+B —2L-2
[+—-1=1+1,+L+ *‘ -1
2 2
B B,
=1+ +L+—++——-L—-1-1
g 2 2

B
:(II+B*’1]+ I +L2-1|=4
2 P2

By mathematical induction, Pick’s Theorem 1s true for any n-sided polygon.




