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PURE MATHEMATICS 
 

Algebraic series  
Binomial expansion: 
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Maclaurin expansion: 
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Partial fractions decomposition 
Non-repeated linear factors: 
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Non-repeated quadratic factor:   
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Trigonometry 
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Derivatives:  
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Integrals 
(Arbitrary constants are omitted;  a denotes a positive 
constant.) 
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Vectors 
The point dividing AB in the ratio  :  has position vector 
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1 The first 3 terms of a sequence are given by 1 1823u  , 2 200u   and 3 2023.u    Given 

that nu  is a quadratic polynomial in n, find nu  in terms of n. [4] 
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2 Do not use a calculator in answering this question. 
 

 
Solve the inequality 2 5

6 5
3 1

xx x
x


 
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 .                 [4] 
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 Hence solve 
  

(a) 
2

4 2
2
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xx x
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
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3 Vectors a and b are such that the magnitude of  a is 2 and b is a unit vector perpendicular 
to a. 
 

 (a) Find the area of the parallelogram with adjacent sides formed by the vectors 
3a b  and 5 4a b .                 [3]  

 

 

 

 

 

 

 

 

 A vector c is such that  21  b c a b . 
 

 (b) Show that 21 c b a , where   is a constant. [2] 
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(c) Give the geometrical meaning of b .c  and find the possible values of   if 

5b.c .                   [3]  
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4 
 

(a) Write 
1

( 1)r r 
 in partial fractions. [1] 

 

 

 

 

 

  

(b) Using your answer to part (a), find 
2

1

1n

r r r  . [2] 
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  Hence find 
  

(i)     
2

2
1

1n

r n r r   , [2] 

 

 

 

 

 

 

 

 

 

 

  (ii)    1 1 1

2 3 3 4 4 5
  

  
   [2] 
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5 In this question you may use expansions from the List of Formulae (MF26). 

 
 

(a) Find the first four non-zero terms of the Maclaurin series of  e 1 cos3x x  , in 

ascending powers of x. [4] 
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 (b) It is given that the first three terms of this series are equal to the first three terms 

in the series expansion, in ascending powers of x, of 21 cx
a bx




.  Find the 

values of a, b and c.  [4] 
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6 
 

(a) Let xy a , where a is a positive constant. Show that 
d

ln .
d

xy a a
x
  [2] 

 
 
 
 
 
 
 
 
 
 
 

  

 (b) A curve has equation  

  13 2 2.x yy    

Find the equation of the normal to the curve at the point  0, 1 . Give your 

answer in the form y Ax B  , where A and B are constants in the exact 
form.      [6] 
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7 
 

(a) A curve C has equation 
3

( 3)( 1)

axy
x x




 
 where a is a real constant such that 

1,  3a  .  Determine the range of values of a for which the curve C has no 
turning points. [4] 
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7 [Continued] 
 

 (b)   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The diagram above shows the graph of f ( )y x .  It has asymptotes 1y  , 1x    

and 4x  .  The curve cuts the y-axis at the point B (0,1) , has a minimum at the 

point A 2
2,

3
  
 

 and a maximum at the point C (2, 2) .   

  By showing clearly the equations of asymptotes and the coordinates of the 
points corresponding to A, B and C where possible, sketch, on separate 
diagrams, the graphs of 
 

  (i) 3f ( 1)y x  , [4] 
   
 

   

   

O x 

B 

C 

A  

y 
 

x = 1 

  

x = 4 

y = 1 
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(ii) 
1

f ( )
y

x
 . [4] 
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8 Do not use a calculator in answering this question. 
 

 
 

(a) One root of the equation 3 22 5 5 0,z z z     where ,   is 1 2i.z     

Find the value of   and the other roots. [5] 
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 (b) The complex number z is given by  

 2

1 1
12 12

2 2 3 i

cos i sin
z

 

 



. 

Find z  and arg( )z . [4] 
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9 It is given that 

1
f :  , where , 4,

4

g : ln( 2) , where , 2.

x x x
x

x x x x

 

   

 

 
 

 (a) Explain why the composite function gf exists and find gf in a similar form. [3] 
 

 

 

 

 

 

 (b) Find the range of gf.                                                                                        [1] 
 

 

 

 

 

 

 (c) Explain why f does not have an inverse.                                                         [1] 
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(d) If the domain of f is further restricted to x k , state the maximum value of k 
such that the function 1f   exist.                                                                       [1] 

 

 

 

 In the rest of this question, the domain of f is , 3.x x   
 

 

(e) Find 1f ( )x  and state the domain of  1f .  [3] 
 

 

 

 

 

 

 

 

 
 

(f) Sketch the graphs of f ( )y x  and 1f ( )y x  on the same diagram and state the 
geometrical relation between the two graphs. [3] 
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10 In long-track speed skating, races are run counter-clockwise on a 400-metre two-lane 
oval rink.  A full 400-metre round the rink is known as a lap. The current world records 
for the 10000 metres men’s race and 500 metres men’s race are 12 minutes 30.74 
seconds (11 Feb 2022) and 33.61 seconds (9 Mar 2019) respectively. 

Abel and Caine are 2 skaters training for the 10000 metres men’s race.  During a 
particular training session for Abel, he completes the first lap in b seconds and he takes 
10% longer to complete each succeeding lap than he does in the previous lap. 

 (a) Write down an expression for the time taken by Abel to complete n laps, in 
terms of b and n. 

Hence find the value of b that will enable Abel to complete 10000 metres in 13 
minutes.                                                                                                                       [3] 

   
 

   

    

 

 

 

 

 

 

 

 

 

 

 (b) Comment on the feasibility of this value of b in the context of the question.    [1] 
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 After training for 6 months, Abel and Caine both entered a 10000 metres men’s race.  
During the race, Abel completes the first lap in k seconds and then he takes 1% longer 
to complete each succeeding lap than he does in the previous lap.  Caine also completes 
the first lap in k seconds and on each subsequent lap he spends d seconds more than he 
spent on the previous lap.  They arrive at the finish line at the same time.  

  

(c) Find the value of 
d
k

, correct to 5 decimal places.                                     [4]   

    
 

 

 

 

 

 

 

 

 

 (d) Given that Abel completes his 25th lap in p seconds and Caine completes his 

25th lap in q seconds, evaluate 
q
p

, giving your answer correct to 3 decimal 

places.  

Hence determine the skater who has the faster time for the first 24 laps. [4] 
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11 The lines 1l  and 2l  have equations 

10 3

1 1

2 1


   
         
   
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r    and   

4 1

4 2

5 3


   

       
   
   

r  

respectively, where   and   are parameters. 
   
 (a) Without the use of a calculator, show that 1l  and 2l  are skew lines. [3] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 

 
 

(b) Find a vector, ,n  that is perpendicular to both 1l  and 2l . [1] 
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Referred to the origin O, points P and Q have position vectors 

4

4

5

 
 
 
 
 

 and 

10

1

2

 
  
 
 

 

respectively. 
  

  
(c) Find the exact length of projection of PQ



 onto n . [2] 
   

 

 

 

 

 A plane   has equation 3 11x z  . 
   

 (d) Find, in degrees, the acute angles between 1l  and ,  and between 2l  and  . 

Hence, or otherwise, determine which one of 1l  or 2l  is not intersecting  . [4] 
 

 

 

 

 

 

 

 

 

 

 

 (e) Find the exact distance between the line determined in part (d) and  . [2] 
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You may continue your working on this page if necessary, indicating the question 
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