Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
С	Α	С	D	С	В	D	В	D	С
Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20
D	Α	С	Α	Α	D	В	С	В	В
Q21	Q22	Q23	Q24	Q25	Q26	Q27	Q28	Q29	Q30
В	В	С	Α	В	С	В	С	D	D

SAJC JC2 H1 Physics Prelims 2024 Paper 1 Solutions

1

 Ans: C Wire diameter H 0.1 cm (can estimate by using your ruler thus estimate in cm) Area H □r² = □ (0.05/100)² = 7.8 × 10⁻⁷ m² Ans: A Charge. Current not charge is the SI base quality for electricity quantities. Ans: C Since the plane is moving at constant speed, a = 0 □ F_{net} = 0 Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. Ans: C S = ut + ½ at² s = ½ (3.71)Tm² (2) (2) / (1): Tm/ T = (9.81/3.71)^{1/2} = 1.63 		
 Wire diameter H 0.1 cm (can estimate by using your ruler thus estimate in cm) Area H □r² = □ (0.05/100)² = 7.8 × 10⁻⁷ m² Ans: A Charge. Current not charge is the SI base quality for electricity quantities. Ans: C Since the plane is moving at constant speed, a = 0 □ F_{net} = 0 Image: Constant speed, a = 0 □ F_{net} = 0 Image: Constant speed, a = 0 □ F_{net} = 0 Along the path, W sin{+ R = T Perpendicular to path, W cos{ = L Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. Ans: C s = ut + ½ at² s ± ½ (9.81)T_E² (2) (2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63 	1	Ans: C
Area H $\Box r^2 = \Box (0.05/100)^2 = 7.8 \times 10^{-7} \text{ m}^2$ Ans: A Charge. Current not charge is the SI base quality for electricity quantities. Ans: C Since the plane is moving at constant speed, $a = 0 \Box F_{net} = 0$ I = 0 I = 0 Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (3.71)T_M^2 - (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Wire diameter H 0.1 cm (can estimate by using your ruler thus estimate in cm)
 Ans: A Charge. Current not charge is the SI base quality for electricity quantities. Ans: C Since the plane is moving at constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Along the path, W sin(+ R = T Perpendicular to path, W cos(= L) Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. Ans: C s = ut + ½ at² s = ½ (3.71)T_M²(2) (2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63 		Area H $\Box r^2 = \Box (0.05/100)^2 = 7.8 \times 10^{-7} \text{ m}^2$
 Charge. Current not charge is the SI base quality for electricity quantities. 3 Ans: C Since the plane is moving at constant speed, a = 0 II F_{net} = 0 Image: Constant speed, a = 0 II F_{net} = 0 Image: Constant speed, a = 0 II F_{net} = 0 Image: Constant speed, a = 0 II F_{net} = 0 Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C s = ut + ½ at² s = ½ (9.81)T_E² (1) s = ½ (3.71)T_M² (2) (2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63 	2	Ans: A
Charge. Current not charge is the St base quality for electricity quantities. 3 Ans: C Since the plane is moving at constant speed, $a = 0 \square F_{net} = 0$ Along the path, $W sinl + R = T$ Perpendicular to path, $W cosl = L$ 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2(1)$ $s = \frac{1}{2} (3.71)T_M^2(2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Charge Current not charge is the CI have quality for electricity quantities
 3 Ans: C Since the plane is moving at constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Image: Constant speed, a = 0 [] F_{net} = 0 Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C s = ½ (9.81)T_E² (1) s = ½ (3.71)T_M² (2) (2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63 		Charge. Current not charge is the SI base quality for electricity quantities.
Since the plane is moving at constant speed, $a = 0 \ \square F_{net} = 0$ Along the path, $W \sin(+R = T)$ Perpendicular to path, $W \cos(= L)$ 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2(1)$ $s = \frac{1}{2} (3.71)T_M^2(2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$	3	Ans: C
Along the path, W sinl + R = T Perpendicular to path, W cosl = L 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C s = ut + ½ at ² s = ½ (9.81)T _E ² (1) s = ½ (3.71)T _M ² (2) (2) / (1): T _M / T _E = (9.81/3.71) ^{1/2} = 1.63		Since the plane is moving at constant speed, $a = 0$ [] $F_{net} = 0$
Along the path, W sinl + R = T Perpendicular to path, W cosl = L 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is N ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 - (1)$ $s = \frac{1}{2} (3.71)T_M^2 - (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		
Along the path, W sin $(+R = T)$ Perpendicular to path, W cos $(=L)$ 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C s = ut + ½ at ² s = ½ (9.81)T _E ² (1) s = ½ (3.71)T _M ² (2) (2) / (1): T _M / T _E = (9.81/3.71) ^{1/2} = 1.63		
Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NA ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		
Along the path, W sin $[+R = T]$ Perpendicular to path, W cos $[=L]$ 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NA ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C s = ut + ½ at ² s = ½ (9.81)T _E ² (1) s = ½ (3.71)T _M ² (2) (2) / (1): T _M / T _E = (9.81/3.71) ^{1/2} = 1.63		R
Along the path, $W \sin(+R = T)$ Perpendicular to path, $W \cos(=L)$ 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is Ne ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Te W
Along the path, W sin\ + R = T Perpendicular to path, W cos\ = L4Ans: DAverage value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NACCURATE The set of repeated readings are close to each other thus PRECISE.5Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		
Perpendicular to path, W cos(= L 4 Ans: D Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NA ACCURATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Along the path. W sin $+ R = T$
4Ans: DAverage value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NACCURATEThe set of repeated readings are close to each other thus PRECISE.5Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Perpendicular to path, W cos $= L$
Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NACCURATEThe set of repeated readings are close to each other thus PRECISE.5Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$	4	Ans: D
Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NA ACCURATEThe set of repeated readings are close to each other thus PRECISE.5Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ $(2) / (1): T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		
ACCORATE The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81) T_E^2 (1)$ $s = \frac{1}{2} (3.71) T_M^2 (2)$ (2) / (1): $T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		Average value = 48.00 mm is far from the true diameter of 42.03 mm thus it is NOT
The set of repeated readings are close to each other thus PRECISE. 5 Ans: C $s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81)T_E^2 (1)$ $s = \frac{1}{2} (3.71)T_M^2 (2)$ (2) / (1): $T_M / T_E = (9.81/3.71)^{1/2} = 1.63$		ACCURATE
5 Ans: C $s = ut + \frac{1}{2} at^{2}$ $s = \frac{1}{2} (9.81)T_{E}^{2} (1)$ $s = \frac{1}{2} (3.71)T_{M}^{2} (2)$ $(2) / (1): T_{M} / T_{E} = (9.81/3.71)^{1/2} = 1.63$		The set of repeated readings are close to each other thus PRECISE.
$s = ut + \frac{1}{2} at^{2}$ $s = \frac{1}{2} (9.81)T_{E}^{2} (1)$ $s = \frac{1}{2} (3.71)T_{M}^{2} (2)$ $(2) / (1): T_{M} / T_{E} = (9.81/3.71)^{1/2} = 1.63$	5	Ans: C
$s = ut + \frac{1}{2} at^{2}$ $s = \frac{1}{2} (9.81) T_{E}^{2} (1)$ $s = \frac{1}{2} (3.71) T_{M}^{2} (2)$ $(2) / (1): T_{M} / T_{E} = (9.81/3.71)^{1/2} = 1.63$		
$s = \frac{1}{2} (3.71) T_{M}^{2} (2) (2) / (1): T_{M} / T_{E} = (9.81/3.71)^{1/2} = 1.63$		$s = ut + \frac{1}{2} at^2$ $s = \frac{1}{2} (9.81) T_F^2 (1)$
$(2) / (1): I_M / I_E = (9.81/3.71)^{1/2} = 1.63$		$s = \frac{1}{2} (3.71) T_{M}^{2} - (2)$
		(2) / (1): $I_M / I_E = (9.81/3.71)^{1/2} = 1.63$

6	Ans: B
-	
	acc = gradient of v-t graph
	Initially, gradient is positive and decrease to zero. Then gradient is negative, much steeper than the positive gradient and then become zero.
	C, D – incorrect as initial acceleration should be positive A – incorrect as the negative acceleration is not bigger than the positive acceleration
7	Ans D
	The force the Earth acts on sky-diver is equal to the force the sky-diver acts on Earth as they are action-reaction pair but they will not cancel each other as they are not acting on the same body.
8	Ans: B
	X: Air resistance increases with velocity till a constant value Y: F_{net} = weight – air resistance decreases till zero as weight = constant
9	Ans: D
	For m.
	$KE_{f} = \frac{1}{4} KE_{i}$ $\frac{1}{2} m v_{m}^{2} = \frac{1}{4} (\frac{1}{2} mu^{2})$ $v_{m} = u / 2$
	By COM,
	$mu = m (- u /2) + 4mv_{4m}$ $3u / 8 = v_{4m}$
10	Ans: C
	Since p_i is not zero as the momenta of the spheres are not equal, $p_{2kg} = 4x 2 p_{3kg} = 6 \times 3$ thus by COM, $p_f 0$ as $p_f = p_i$
	A – Impulse $F \otimes t = \otimes p$ is equal and opp when COM can be applied as $F_{net} = 0$ (N3L) B, D – momentum not mass or speed is considered in COM
11	Ans: D
	Torque of a couple – 15sin 65° (0.4) – 5.4 Nm

12	Ans: A
	For 0.50 kg $0.50(9.81) - T = 0.50(2.0)$
	T = 3.9
	For 0.20 kg, $T - f = 0.20(2.0)$ f = 3.9 - 0.4 = 3.5 N
13	Ans: C
	Horizontally, F = ⊗p/⊗t =(200/1000) [7 – (-14)]/0.6 = 7.0 N
14	Ans: A
	Initially, F = kx for each wire 1/3 W = kx (Weight of lamp W is shared equally by the 3 wires) W = 3kx
	Finally, $\frac{1}{2} W = kx'$ (W is now shared equally by the 2 wires) $\frac{1}{2} (3 kx) = kx'$ x = 3/2 x
	difference between $h = x' - x = 3/2 x - x = 0.5 x = 0.5 (0.4 cm) = 0.20 cm$
15	Ans: A
	Since the car is travelling at constant speed, friction f =driving force F
	P = Fv = fv
	Pt = fvt E = fvt
	Since $f \square v^2$ and $t = d/v$ $E \square v^2$
	$E_{60km}/E = (60)^2/(70)^2$ $E_{60km} = 0.73 E$
16	Ans: D

	VV = FU = F + K
	4W = 4Fd = 4(P + K) = 4P + 4K
17	Ans: B
	Forces acting on the ball is weight and tension.
	Do not draw F _{net} which is the centripetal force in a FBD
18	Ans: C
	A minute hand takes 1 hr to cover 2
	7 = 2 / T = 2 / 3600 = 1.7 x 10 ⁻³ rad s ⁻¹
10	Ana: D
19	ANS: D
	$a = r^{2} = r (2 \pi/T)^{2}$
	$(a/r)^{1/2} = 2\Box/T$
	$T = 2 \Box (r/a)^{1/2}$
	$12T = 24\Box (r/a)^{1/2}$
20	Ans: B
	V = WD / Q
21	Ans: B
	$P_{x} = I^{2}R = 9R$
	$15 P_{u} - 135 R - l^{2}R$
	$I' = (135)^{1/2} = 37 \Delta$
22	Ans: B
	If current in Y is <i>1</i> , then current in F is 21, so current in C is 31
	Lat the resistance of one resister be P
	$ \begin{array}{c} \text{Let the residute of one residute be } \\ \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{ D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D} \text{op} \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D} \text{op} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D} (4/4 + 4/2)^{-1} \text{D} 2/2 \text{D}$
	$\kappa_{AB} = (1/1+1/2)^{-1} \kappa = 2/3 \kappa, SU - \kappa_{C+AB+D} = 1 + 2/3 + 1 = 8/3 \kappa$
	Since ourrent in \mathbf{P}_{1} , \mathbf{r}_{1} is 21 then ourrent in \mathbf{F} is 21
	Since current in K_{C+AB+D} is 31, then current in E is 67
	50 current III = 51 + 61 = 111

26	Ans: C
	When a current flows in the wire from A to B, using RHGR, the B-field due to the current is vertically downwards at position of the compass. Since the B-field due to the current is much larger than B-field due to Earth, a possible resultant B-field is vertically downwards.
27	Ans: B
	$tan \square = F_p / W_p$ $tan \square = F_q / W_q$
	Since $\Box > \mathbb{R}$
	$ \begin{array}{l} tan \square > tan \circledast \\ F_p / W_p > F_Q / W_Q \ \mbox{(Since } F_P = F_Q) \\ W_p < W_Q \\ m_p < m_Q \end{array} $
28	Ans: C
	Energy released in 1 reaction = \otimes m c ² = (2.014102 + 3.016049 - 4.002602 - 1.008665) x1.66 x 10 ⁻²⁷ x (3 x 10 ⁸) ² = 2.821 x 10 ⁻¹² J Energy used per month = 2000 kWh = (2000 x 10 ³ x 3600) J No of reaction = Energy used per month/ Energy released in 1 reaction = 2.6 x 10 ²¹
29	Ans: D
	A random process is defined as a process in which the exact time of decay of a nucleus cannot be predicted. Instead, the nucleus has a constant probability, ie. the same chance, of decaying in a given time. Therefore, with large numbers of nuclei, it is possible to statistically predict the behaviour of the entire group. One cannot know which nucleus will decay and when it will decay because it is down to chance.
30	Ans: D

For paper, beta to be used as all alpha would be stopped and all gamma would penetrate

For steel, gamma to be used as all alpha and beta would be stopped.