

SINGAPORE CHINESE GIRLS' SCHOOL PRELIMINARY EXAMINATION 2022 SECONDARY FOUR O-LEVEL PROGRAMME

CANDIDATE NAME			
CLASS CENTRE NUMBER	4 S	REGISTER NUMBER INDEX NUMBER	
MATHEMATION PAPER 2	CS		4048/02
Monday	29 Augus	st 2022	2 hours 30 minutes
Candidates answ	er on the Question Paper.		
READ THESE II	NSTRUCTIONS FIRST		
Write in dark blue You may use an H	class, register number, centre nur or black pen. B pencil for any diagrams or grap s, paper clips, glue or correction fl	bhs.	on all the work you hand in.
Omission of essen The use of an app If the degree of ac to three significant	ed for any question, it must be sho tial working will result in loss of m roved scientific calculator is expe ccuracy is not specified in the que figures. Give answers in degrees our calculator value or 3.142, unlo	narks. cted, where appropriate estion, and if the answer s to one decimal place.	is not exact, give the answer
	rks is given in brackets [] at the of the first for this paper is 100.	end of each question or	part question.
			For Examiner's Use

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard Deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

1 (a) (i) Solve the inequalities $\frac{3x+1}{2} < 1 - \frac{2}{4}$	1	$<1-\frac{2x}{5} \le 5$.
---	---	---------------------------

(ii) Hence, state the largest integer that satisfies $\frac{3x+1}{2} < 1 - \frac{2x}{5} \le 5$.

(b) Simplify $\frac{(4x-10)^2}{10+21x-10x^2}$.

(c) Solve the equation $\frac{6}{x+2} - \frac{x-5}{3x^2 - 12} = 1.$

Answer
$$x = \dots$$
 [4]

2 The stem-and-leaf diagram shows the scores of a group of students in an English test.

Key: 1 | 8 represents 18 marks

(a) Students who scored more than n marks were awarded a distinction. Given that 35% of the students were awarded a distinction, find the value of n.

(b)	The range of scores for The mean score for the By forming two equations	English test is 33.3 ma	arks.	
		<i>A</i> -		h — [2]
			$a = \dots,$	$b = \dots [3]$
(c)	The same group of stud Their results for the Sc			
	111011 1000110 101 0110 2			
		Mean Standard Deviation	38 marks 6 marks	
	1			4
	Make two comments co	omparing the performa	nce of the students in b	oth tests.
	Answer		• • • • • • • • • • • • • • • • • • • •	•••••
			•••••	•••••
		•••••	• • • • • • • • • • • • • • • • • • • •	•••••

[2]

Jon and Lim are regular customers of the same fruit supplier.

As regular customers, they are given a 10% discount off all their purchases.

The matrix, **T**, shows the number of cartons of fruits they purchased from the supplier.

$$\mathbf{T} = \begin{pmatrix} 15 & 18 \\ 20 & 15 \\ 12 & 16 \end{pmatrix} \begin{array}{c} \text{Apples} \\ \text{Oranges} \\ \text{Pears} \\ \end{pmatrix}$$

(a) Each carton of apples costs \$45.
Each carton of oranges costs \$35.
Each carton of pears costs \$40.
Represent these amounts in a 1×3 row matrix N.

Answer
$$\mathbf{N} = \begin{bmatrix} 1 \end{bmatrix}$$

(b) Evaluate the matrix C = 0.9NT.

Answer
$$\mathbf{C} = [2]$$

(c) State what each element of matrix C represents.

Answer	
	[1]

- (d) The elements of the matrix \mathbf{R} , where $\mathbf{R} = \mathbf{QT}$, represent the total number of each type of fruit that Jon and Lim purchased respectively.
 - (i) Given that there are 32 apples in each carton of apples, 72 oranges in each carton of oranges and 45 pears in each carton of pears, write down a 3×3 matrix **Q** to represent these information.

Answer
$$\mathbf{Q} = \begin{pmatrix} & & \\ & & \end{pmatrix}$$
 [1]

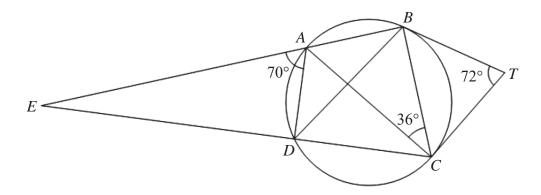
(ii)	Evaluate the	matrix R.
------	--------------	-----------

Inswer	$\mathbf{R} =$		[1]

(e) Jon sold all his apples in bags of 5 and at \$6 per bag.

He sold all his pears at \$1 each.

He found that 15% of his oranges were rotten and could not be sold.


He sold all the remaining oranges.

Given that Jon made a profit of 20% from the sale of the fruits, calculate the price at which he sold each orange.

Give your answer correct to the nearest cent.

Answer	\$ [4]

[Turn over

The diagram shows a circle ABCD. BAE and CDE are straight lines. BT and CT are tangents to the circle. Angle $EAD = 70^{\circ}$, angle $ACB = 36^{\circ}$ and angle $BTC = 72^{\circ}$.

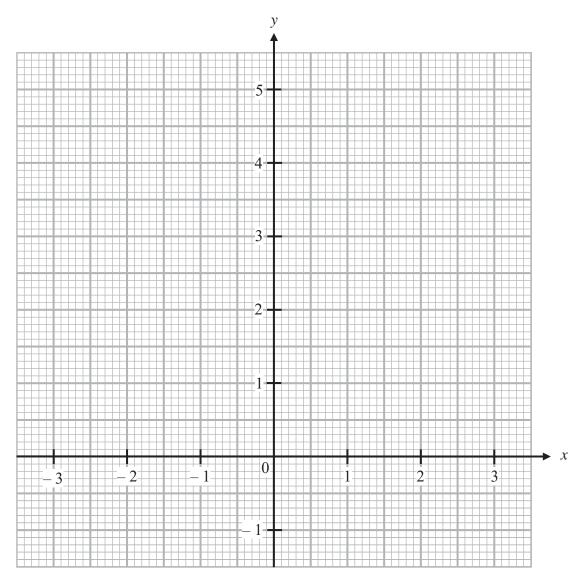
- (a) Find, giving reasons for each answer,
 - (i) angle BCD,

Answer Angle
$$BCD = \dots$$
 [2]

(ii) angle ABD,

Answer Angle
$$ABD = \dots$$
 [2]

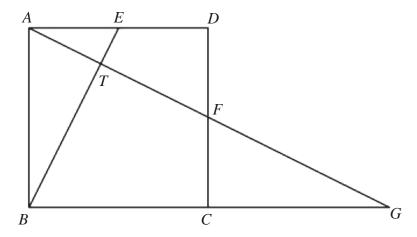
(iii) angle ACT.


Answer Angle
$$ACT = \dots$$
 [2]

(b)	Hence, what can you deduce about the line <i>AC</i> ? Give a reason for your answer.	
	Answer	
		[2]
(c)	Q is a point on AC such that angle $AQB = 72^{\circ}$. Explain clearly whether Q is the centre of the circle.	
	Answer	
		[2]

5 (a) Complete the table of values for $y = 2 + x - \frac{x^3}{5}$.

Х	-3	-2	-1	0	1	2	3	
у	4.4	1.6	1.2	2	2.8	2.4		[1]


(b) On the grid, draw the graph of $y = 2 + x - \frac{x^3}{5}$ for $-3 \le x \le 3$. [3]

(c) The equation $2 + x - \frac{x^3}{5} = k$ has exactly two solutions. Use your graph to write down a possible value of k.

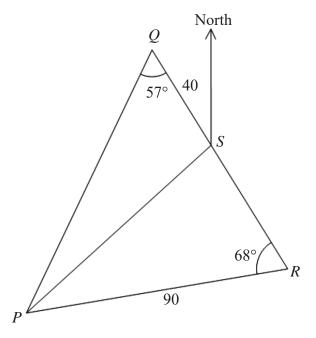
Answer $k = \dots$ [1]

(d)	By draw	ring a tangent, fir	nd the gradien	nt of the c	urve at (2, 2.	4).		
				Answer				[2]
(e)		ints of intersection $Ax^3 - Bx - 1$		x + 4y = 5	and the cur	ve give the so	lutions of	
	(i) Fi	nd the value of A	and of B .					
				Answer	<i>A</i> =	, B =		[2]
		drawing the lin $x^3 - Bx - 15 = 0.$	e x + 4y = 5	on the gri	d for $-3 \le x$	≤ 3 , solve the	equation	
				Answer	<i>x</i> =			[3]

In the diagram, ABCD is a square. E and F are the midpoints of AD and DC respectively. T is the point of intersection of AF and BE. When produced, the lines ATF and BC meet at G.

(a) Show that triangle ADF is congruent to triangle GCF.

Answer


[3]

(b) Show that triangle FCG is similar to triangle ABG.

Answer

(c)	Write	down another pair of triangles that a	re similar	but not congruent.	
(d)	Find t	er Triangle is some she ration area of triangle AET : area of triangle $ext{T}$		triangle	[1]
	(ii)	area of triangle $FCG:$ area of quad		: :	[1]
	(iii)	area of triangle AET : area of quadr		: :	[1]
			Answer	: :	[1]

[Turn over

In the diagram, P, Q and R are three points on horizontal ground. S is a point on QR, such that the bearing of R from S is 145° . QS = 40 m and PR = 90 m. Angle $PQS = 57^{\circ}$ and angle $PRS = 68^{\circ}$.

(a) Calculate the bearing of Q from P.

Answer	 [2]

(b) Show that SR = 47.9 m, correct to 3 significant figures.

Answer

Calculate PS.

(c)

	<i>Answer</i> m	[3]
(d)	A surveyor at point S walks along QR such that the distance between him and the point P is a minimum. Showing your working clearly, state whether the surveyor should walk towards point Q or point R and find the distance he should walk from S such that the distance between him and point P is a minimum.	
	The surveyor should walk towards point for a distance	
	of metres such that the distance between him and point P is a	
	minimum.	[3]

8	ABCD is a rhombus.
	D is to the right of A such that AD is parallel to the x-axis.

\overrightarrow{AD}	(4.5)
AB =	$\left(\begin{array}{c} 6 \end{array}\right)$

		1
(a)	Find	\overrightarrow{AB}

(b)	Write down the column vector \overrightarrow{BC} .	Answer	units	[1]
		Answer		[1]

(c) Find the column vector \overrightarrow{BD} .

(d) A line is parallel to *BD* and passes through the point (3, 7). Find the equation of the line.

(e)	The	diagonals of the rhombus intersect at the point <i>P</i> .	
	(i)	D is the point $(5, -2)$. Using vector method, find the position vector of P.	
		Answer	[2]
	(ii)	Stating your reasons clearly, determine whether a circle passing through points C , D and P can be drawn.	
		Answer	
			[2]

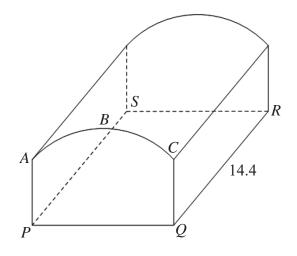


Diagram I

Diagram II

Diagram 1 shows a barn constructed with a rectangular base *PQRS*. The barn is positioned on horizontal ground with both its ends open. QR = 14.4 m.

Diagram II shows the cross-section of one end of the barn where APQC is a rectangle. The roof is represented by ABC, the arc of a circle of radius 10 m, centre M. M is a point on PQ such that it is vertically below B.

$$\cos \angle CMQ = \frac{3}{5}.$$

(a) Without calculating the value of angle CMQ, show that the exact length of PQ is 12 m.

Answer

[1]

(b) Hence, calculate the angle of elevation of B from R.

Answer[2]

(c)	Calculate the total surface area, including the base, of the barn.	
	Answer m^2 [4]	4]
(d)	The volume of a geometrically similar barn is $\frac{1}{3}$ of the volume of the barn in	
	Diagram I. Given that the cost of painting the roof of the barn in Diagram I is \$1000, calculate the cost of painting the roof of the smaller barn.	
	Answer \$ [2	3]
	(Turn c	0 1/

10 (a) The cash price of a laptop is \$4800.

Paul buys the laptop on hire purchase.

He pays a deposit of \$1000.

He then makes 18 monthly payments of \$230.

Calculate the additional amount that Paul has to pay as a percentage of its cash price.

Answer % [3]

(b) Smith is a foreigner working in Singapore.

He has a sum of money, in euros, which he intends to invest for 3 years.

He visits an investment company and is given the following information.

Average Exchange Rate

				USD (US\$)
			Euro (€)	1.0500
		JPY (¥)	0.0071	0.0074
	GBP (£)	164.95	1.1641	1.2225
SGD (S\$)	0.5884	97.1506	0.6854	0.7193

Key: £1 = €1.1641

	Plan A	Plan B	Plan C
Minimum Amount	€10 000	S\$10 000	S\$1000
Simple interest rate per annum	First €5000 : 0% Subsequent : 2.5%	1.8%	2.02%
Minimum Period	3	2	3
Currency Used	€	S\$	S\$
Eligibility	All	All	Singaporeans

Smith has a choice of investing the sum of money in euros or changing the sum of money to Singapore dollars before investing it.

If he changes all the euros that he has to Singapore dollars, he will get S\$8 less than when he changes it to US dollars first, then Singapore dollars.

Smith thinks that Plan A will be the best investment plan for him as the simple interest rate per annum is the highest.

Do you agree with him?

Justify the decision you make and show your calculations clearly.

[7]

BLANK PAGE

Sec 4OLP Mathematics Preliminary Examinations Paper 2 Solutions

Qn	Answer	
	Total Marks: [100 Marks]	
1ai	$\frac{3x+1}{2} < 1 - \frac{2x}{5} \le 5$	
	$\frac{3x+1}{2} < 1 - \frac{2x}{5} \qquad , \qquad 1 - \frac{2x}{5} \le 5$	
	$5(3x+1) < 10 - 4x \qquad , \qquad 5 - 2x \le 25$	
	$19x < 5 \qquad , \qquad -2x \le 20$	
	$x < \frac{5}{19} \qquad , \qquad x \ge -10$	
	$\therefore -10 \le x < \frac{5}{19}$	0
1aii	Largest integer = 0	
1b	$\frac{(4x-10)^2}{10+21x-10x^2} = \frac{4(2x-5)^2}{(5x+2)(-2x+5)}$	
	$=\frac{-4(2x-5)^2}{(5x+2)(2x-5)}$	2 2 2 N
		600
	$=\frac{-4(2x-5)}{5x+2}$	Whatsanpaper.com
1c	$\frac{6}{x+2} - \frac{x-5}{3x^2 - 12} = 1$	or Mrs.
	$x+2 3x^2-12$	O, Col.
	$\frac{6}{x+2} - \frac{x-5}{3(x-2)(x+2)} = 1$	Box Sel.
	x+2 - 3(x-2)(x+2)	7 75 434
	$18(x-2) - (x-5) = 3x^2 - 12$	Mr. Sky.
	$18x - 36 - x + 5 = 3x^2 - 12$	1 182
	$3x^2 - 17x + 19 = 0$	1,75
	$x = \frac{-(-17) \pm \sqrt{(-17)^2 - 4(3)(19)}}{2}$	1.
	(2(3)	
	$18x - 36 - x + 5 = 3x^{2} - 12$ $3x^{2} - 17x + 19 = 0$ $x = \frac{-(-17) \pm \sqrt{(-17)^{2} - 4(3)(19)}}{2(3)}$ $x = \frac{17 \pm \sqrt{61}}{6}$ $x \approx 4.13504 \text{or} x \approx 1.53162$ $\therefore x = 4.14 \text{or} x = 1.53 (3 \text{ s.f.})$ No. of distinctions = 0.35 × 20 $= 7 \text{ students}$	
	$x \approx 4.13504$ or $x \approx 1.53162$	
	$\therefore x = 4.14$ or $x = 1.53$ (3 s.f.)	
2a	No. of distinctions = 0.35×20 = 7 students	
<u></u>	$\therefore n = 36$	
2b	Let the smallest score be x and the greatest score be y .	
	$y - x = 44 \cdot \dots \cdot (1)$	
	$x + y = 56 \cdot \cdot \cdot \cdot \cdot (2)$	
	(2)-(1): 2x=12	
	x = 6 $y = 50$	
	$y = 50$ $\therefore a = 6, b = 0$	
	$\therefore a = 6 , b = 0$	

2c	Mean (EL) = 33.3 , Standard Deviation (EL) = 11.4 Mean (Sci) = 38 , Standard Deviation (Sci) = 6
	Since the mean score for the Science test is higher than
	that of the English test, the students generally performed
	better for the Science test. Since the standard deviation for the Science test is
	smaller than that of the English test, the scores for the
	Science test is less spread out and more consistent than
3a	the English test. $N = \begin{pmatrix} 45 & 35 & 40 \end{pmatrix}$
3b	(17, 10)
30	$\mathbf{C} = 0.9(45 35 40) \begin{pmatrix} 15 & 18 \\ 20 & 15 \\ 12 & 16 \end{pmatrix}$
	$C = 0.9(45 - 35 - 40) \begin{vmatrix} 20 & 15 \\ 12 & 16 \end{vmatrix}$
	(12 10)
	$\mathbf{C} = (40.5 31.5 36) \begin{pmatrix} 15 & 18 \\ 20 & 15 \end{pmatrix}$
	$C = (40.5 \ 31.5 \ 36) 20 \ 15 $
	(12 16)
	$C = (1669.5 \ 1777.5)$ \$1669.50 and \$1777.50 represents the total cost that Jon and Lim paid respectively (or each person paid) for their purchases after a 10% discount. $Q = \begin{pmatrix} 32 & 0 & 0 \\ 0 & 72 & 0 \\ 0 & 0 & 45 \end{pmatrix}$ $R = \begin{pmatrix} 480 & 576 \\ 1440 & 1080 \\ 540 & 720 \end{pmatrix}$
3c	\$1669.50 and \$1777.50 represents the total cost that Jon and Lim paid respectively (or each person paid) for
	their purchases after a 10% discount.
3di	$(32 \ 0 \ 0)$
	$\mathbf{Q} = \begin{bmatrix} 0 & 72 & 0 \end{bmatrix}$
	$\begin{pmatrix} 0 & 0 & 45 \end{pmatrix}$
3dii	(480 576)
	$ \mathbf{R} = 1440 1080 $
	540 720
3e	Total amt. collected = 1.2(1669.5)
	= \$2003.40
	(480) 540
	Amt. collected from oranges = $2003.4 - 6 \left(\frac{300}{5} \right) - 540$
	= \$887.40
	No. of oranges that can be sold = $0.85(1440)$
	=1224
	∴ Price of each orange = $887.4 \div 1224$
	= 0.725
	= \$0.73 (nearest cent)
4ai	Method 1 ∠DAB = $180^{\circ} - 70^{\circ}$ (angles on a str. line)
	=110°
	$\therefore \angle BCD = 180^{\circ} - 110^{\circ} \text{ (angles in opp. segment)}$
	= 70°
4ai	Method 2 ∴ $\angle BCD = \angle EAD = 70^{\circ}$ (ext. angle of cyclic quad.)

4aii	Method 1
4411	$\angle ACD = 70^{\circ} - 36^{\circ}$
	$=34^{\circ}$
	$\therefore \angle ABD = \angle ACD \text{(angles in same segment)}$
4aii	= 34° Method 2
+all	$\frac{ \mathbf{Method} \ Z }{\angle ADB} = \angle ACB \text{(angles in same segment)}$
	= 36°
	$\therefore \angle ABD = 180^{\circ} - 36^{\circ} - 110^{\circ} \text{ (sum of angles in } \triangle ABD)$
	= 34°
4aiii	
	$\angle BCT = \frac{180^{\circ} - 72^{\circ}}{2} (BT = CT, \text{ tangents from ext. pt.})$
	=54°
	$\therefore \angle ACT = 54^{\circ} + 36^{\circ}$
	= 90°
4b	Since $\angle ACT = 90^{\circ}$, by tangent perpendicular to
	radius, AC is the diameter of the circle.
4c	Since $\angle AQB = 72^\circ = 2(36^\circ) = 2\angle ADB$, by angle at the
	centre, twice angle at the circumference, O is the
	centre of the circle.
5a	
5b	Correct plotting of points.
	centre, twice angle at the circumference, <i>Q</i> is the centre of the circle. -0.4 Correct plotting of points. Smooth curve Exact k: Either 1.14 or 2.86 (3s.f.)
5c	Exact k: Either 1.14 or 2.86 (3s.f.)
	Accept: 1.0, 1.05, 1.1, 1.15
5d	Accept: 2.85, 2.9, 2.95
Su	Drawing of tangent line. Exact gradient: -1.4
	Accept: $-1.5 \le m \le -1.3$
5ei	$2+x-\frac{x^3}{5}=-\frac{x}{4}+\frac{5}{4}$
	$2+x-\frac{1}{5}=-\frac{1}{4}+\frac{1}{4}$
	$40 + 20x - 4x^3 = -5x + 25$
	Accept: 2.85, 2.9, 2.95 Drawing of tangent line. Exact gradient: -1.4 Accept: $-1.5 \le m \le -1.3$ $2 + x - \frac{x^3}{5} = -\frac{x}{4} + \frac{5}{4}$ $40 + 20x - 4x^3 = -5x + 25$ $4x^3 - 25x - 15 = 0$
	$\therefore A = 4, B = 25$
5eii	Drawing of line $y = -\frac{x}{4} + \frac{5}{4}$.
	Drawing of line $y =+-$.
	Exact x: -2.12, -0.642, 2.76
	Accept: -2.05, -2.1, -2.15
	Accept: -0.7, -0.65, -0.6, -0.55 Accept: 2.7, 2.75, 2.8, 2.85
6a	$\angle ADF = \angle GCF \text{(alt. angles, } AD \text{ parallel to } CG\text{)}$
	$\angle AFD = \angle GFC$ (vert. opp. angles)
	DF = CF (F is the midpoint of DC)
	∴ By ASA, $\triangle ADF$ is congruent to $\triangle GCF$.
	by ASA, ΔADF is congruent to ΔGCF.

	(CEC (DAG (1 AD 111 FG)
6b	$\angle CFG = \angle BAG$ (corrs. angles, AB parallel to FC)
	$\angle FCG = \angle ABG$ (corrs. angles, AB parallel to FC)
	$\angle CGF = \angle BGA$ (common angle)
	$\therefore \Delta FCG$ is similar to ΔABG .
6c	$\triangle AET$ is similar to $\triangle GBT$; $\triangle AET$ is similar to $\triangle BAT$ $\triangle AET$ is similar to $\triangle GFC$; $\triangle FDA$ is similar to $\triangle ABG$
6di	1:16
6dii	1:3
6diii	1:11
7a	Method 1
	$\angle N_Q QS = \angle N_S SR = 145^{\circ}$ (corrs. angles)
	$\angle N_Q QP = 360^{\circ} - 145^{\circ} - 57^{\circ} = 158^{\circ}$
	$\therefore \text{ Bearing of } Q \text{ from } P = 180^{\circ} - 158^{\circ} = 022^{\circ}$
7a	Method 2
	$\angle SRS_R = \angle N_S SR = 145^\circ$ (alt. angles)
	$\angle N_P PR = \angle PRS_R$ (alt. angles)
	$=145^{\circ}-68^{\circ}$
	= 77°
	$\angle QPR = 180^{\circ} - 68^{\circ} - 57^{\circ} = 55^{\circ}$
	$\therefore \text{ Bearing of } Q \text{ from } P = 77^{\circ} - 55^{\circ} = 022^{\circ}$
7b	$ ∠QPR = 180^{\circ} - 68^{\circ} - 57^{\circ} = 55^{\circ} $ ∴ Bearing of Q from $P = 77^{\circ} - 55^{\circ} = 022^{\circ}$ $ ∠QPR = 180^{\circ} - 68^{\circ} - 57^{\circ} = 55^{\circ} $ $ \frac{\sin 57^{\circ}}{90} = \frac{\sin 55^{\circ}}{QR} $ $ QR = \frac{90 \sin 55^{\circ}}{\sin 57^{\circ}} $ ≈ 87.9054
	$\frac{\sin 57^{\circ}}{\sin 55^{\circ}} = \frac{\sin 55^{\circ}}{\cos 55^{\circ}}$
	90 QR
	$QR = \frac{90\sin 55^{\circ}}{\sin 57^{\circ}}$
	$\sin 57^{\circ}$
	≈ 87.9054
	$\therefore SR = 87.9054 - 40$
	≈ 47.9054
	= 47.9 m (3 s.f.) (shown)
7c	
	<i>PS</i> ≈ 84.6445
	$\therefore PS = 84.6 \text{ m} (3 \text{ s.f.})$
7d	Let the new position of the surveyor be <i>S</i> '.
	$\cos 68^\circ = \frac{RS'}{90}$
	$RS' = 90\cos 68^{\circ}$
	≈ 33.71459
	\therefore Dist. to walk = $47.9054 - 33.71459$
	≈ 14.19081
	= 14.2 m (3 s.f.) The converge should well towards noint B for a distance
	The surveyor should walk towards point \underline{R} for a distance of $\underline{14.2}$ m given that the distance between him and point
	P is a minimum.

Sec 4OLP Mathematics Preliminary Examinations Paper 2 Solutions

8a $ \overline{AB} = \sqrt{4.5^2 + 6^2} = 7.5 \text{ units}$ 8b $ \overline{BC} = \begin{pmatrix} 7.5 \\ 0 \end{pmatrix}$ 8c $ \overline{BD} = \overline{BA} + \overline{AD} $ $= \begin{pmatrix} -4.5 \\ -6 \end{pmatrix} + \begin{pmatrix} 7.5 \\ 0 \end{pmatrix}$ $\therefore \overline{BD} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ 8d Gradient of line $= -\frac{6}{3} = -2$ Equation of line: $y - 7 = -2(x - 3)$ $\therefore y = -2x + 13$ 8ci $ \overline{Method 1} $ $ \overline{PD} = \frac{1}{2} \overline{BD} $ $ \overline{OD} - \overline{OP} = \frac{1}{2} \overline{AD} $ $ \overline{OD} = \frac{5}{2} -1 $ $ \overline{AD} = \frac{1}{2} \overline{BD} $ $ \overline{OD} = \frac{5}{2} -1 $ $ \overline{AD} = \frac{1}{2} \overline{BD} $ Coordinates of $P: (3 - 1.5, 2 + 3) = (3.5, 1)$ $ \overline{OP} = \frac{3.5}{1} $ 8ei $ \overline{Method 2} $ $ \overline{PD} = \frac{1}{2} \overline{BD} = \frac{1.5}{-3} $ Coordinates of $P: (3 - 1.5, 2 + 3) = (3.5, 1)$ $ \overline{OP} = \frac{3.5}{1} $ 8ei $ \overline{Method 2} $ $ \overline{PD} = \frac{1}{2} \overline{BD} = \frac{1.5}{-3} $ Coordinates of $P: (3 - 1.5, 2 + 3) = (3.5, 1)$ $ \overline{OP} = \frac{3.5}{1} $ Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through $P(P) = 90$		
8c $\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$ $= \begin{pmatrix} -4.5 \\ -6 \end{pmatrix} + \begin{pmatrix} 7.5 \\ 0 \end{pmatrix}$ $\therefore \overrightarrow{BD} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ 8d Gradient of line $= -\frac{6}{3} = -2$ Equation of line: $y - 7 = -2(x - 3)$ $\therefore y = -2x + 13$ 8ei $\overrightarrow{DD} = \frac{1}{2} \overrightarrow{DD} = \frac$	8a	
8d Gradient of line = $-\frac{6}{3} = -2$ Equation of line: $y - 7 = -2(x - 3)$ $\therefore y = -2x + 13$ 8ci Method I $\overrightarrow{PD} = \frac{1}{2} \overrightarrow{BD}$ $\overrightarrow{OD} - \overrightarrow{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overrightarrow{ODP} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ci Method 2 $\overrightarrow{PD} = \frac{1}{2} \overrightarrow{BD} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ci Method 2 $\overrightarrow{PD} = \frac{1}{2} \overrightarrow{BD} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ Coordinates of $P : (5 - 1.5, = 2 + 3) = (3.5, 1)$ $\therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 3.5 \end{pmatrix}$ 8eii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C, P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m} \text{ (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6} \right)$	8b	$\overrightarrow{BC} = \begin{pmatrix} 7.5\\0 \end{pmatrix}$
8d Gradient of line $= -\frac{6}{3} = -2$ Equation of line: $y - 7 = -2(x - 3)$ $\therefore y = -2x + 13$ 8ei Method 1 $\overline{PD} = \frac{1}{2}\overline{BD}$ $\overline{OD} - \overline{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overline{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ci Method 2 $\overline{PD} = \frac{1}{2}\overline{BD} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ Coordinates of $P: (5-1.5, -2+3) = (3.5, 1)$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8eii Since the diagonals of a rhombus intersect perpendicularly. $\angle CPD = 90^\circ$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1}\left(\frac{10}{15.6}\right)$	8c	$\overrightarrow{BD} = \overrightarrow{BA} + \overrightarrow{AD}$
8d Gradient of line $=-\frac{6}{3}=-2$ Equation of line: $y-7=-2(x-3)$ $\therefore y=-2x+13$ 8ei Method 1 $\overline{PD} = \frac{1}{2} \overline{BD}$ $\overline{OD} - \overline{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overline{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ei Method 2 $\overline{PD} = \frac{1}{2} \overline{BD} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ Coordinates of $P: (5-1.5, -2+3) = (3.5, 1)$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8eii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C, P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$		
Gradient of line: $y-7=-2(x-3)$ Equation of line: $y-7=-2(x-3)$ $\therefore y=-2x+13$ 8ci $\frac{\text{Method 1}}{\overline{PD} = \frac{1}{2}BD}$ $\overline{OD} - \overline{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overline{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ci $\frac{\text{Method 2}}{\overline{PD} = \frac{1}{2}\overline{BD}} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ Coordinates of $P: (3-1.5, -2+3) = (3.5.1)$ $\therefore \overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8cii $\frac{\text{Since the diagonals of a rhombus intersect}}{\text{perpendicularly. } 2CPD = 90^{\circ}}$ Hence, by right-angle in a semi-circle property, a circle passing through C, P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{Angle of clevation} = \tan^{-1} \left(\frac{10}{15.6} \right)$		$\therefore \overrightarrow{BD} = \begin{pmatrix} 3 \\ -6 \end{pmatrix}$
8ci $\frac{\mathbf{Method 1}}{PD} = \frac{1}{2} \overline{BD}$ $\overline{OD} - \overline{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overline{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\overline{OP} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$ 8ci $\frac{\mathbf{Method 2}}{PD} = \frac{1}{2} \overline{BD} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\operatorname{Coordinates of } P : (5 - 1.5, -2 + 3) = (3.5, 1)$ $\overline{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8cii $\operatorname{Since the } \frac{\mathbf{diagonals of a rhombus fintersect}}{\mathbf{perpendicularly}}$ $\frac{\mathbf{CPD} = 90^{\bullet}}{\mathbf{l}}$ Hence, by $\frac{\mathbf{right-angle in a semi-cirele}}{\mathbf{lepassing through } C, P \text{ and } D \text{ can be drawn}} \text{ with } CD \text{ as the diameter of the cirele.}$ 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\overline{DP} = \frac{1}{2} \overline{DP} = \frac{1}{2} \overline$	8d	Gradient of line $= -\frac{6}{3} = -2$
8ei $\frac{\text{Method 1}}{PD} = \frac{1}{2} \overline{BD}$ $\overline{OD} - \overline{OP} = \frac{1}{2} \binom{3}{-6}$ $\overline{OP} = \binom{5}{-2} - \binom{1.5}{-3}$ $\overline{OP} = \binom{3}{1}$ 8ei $\frac{\text{Method 2}}{PD} = \frac{1}{2} \overline{BD} = \binom{1.5}{-3}$ Coordinates of $P: (5-1.5,-2+3) = (3.5,1)$ $\overline{OP} = \binom{3.5}{1}$ 8eii $\frac{\text{Since the diagonals of a rhombus intersect}}{\text{perpendicularly, } \angle CPD = 90^{\bullet}}.$ Hence, by right-angle in a semi-cirefe property, a circle passing through C, P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\overline{DPQ} = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\overline{DPQ} = \frac{1}{2} \overline{DPQ} = \frac{1}{$		
$\overrightarrow{PD} = \frac{1}{2}\overrightarrow{BD}$ $\overrightarrow{OD} - \overrightarrow{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$ $\overrightarrow{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $\therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$ 8ei $\frac{\text{Method 2}}{\overrightarrow{PD} = \frac{1}{2}\overrightarrow{BD}} = \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$ $Coordinates of P: (5-1.5, -2+3) = (3.5, 1) \therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix} 8eii Since the diagonals of a rhombus intersect perpendicularly, \angle CPD = 90^\circ. Hence, by right-angle in a semi-circle property, a circle passing through C, P and D can be drawn with CD as the diameter of the circle. 9a \cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM} \therefore PQ = 6 \times 2 = 12 \text{ m (shown)} 9b MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m} \therefore \text{Angle of clevation} = \tan^{-1} \left(\frac{10}{15.6} \right)$		
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$	8ei	Method 1
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$		$PD = \frac{1}{2}BD$
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$		$\overrightarrow{OD} - \overrightarrow{OP} = \frac{1}{2} \begin{pmatrix} 3 \\ -6 \end{pmatrix}$
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$		$\overrightarrow{OP} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} - \begin{pmatrix} 1.5 \\ -3 \end{pmatrix}$
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$		$ \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix} $
Reii Since the diagonals of a rhombus intersect perpendicularly, $\angle CPD = 90^{\circ}$. Hence, by right-angle in a semi-circle property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ \therefore Angle of elevation = $\tan^{-1}\left(\frac{10}{15.6}\right)$	8ei	Method 2
perpendicularly, $\angle CPD = 90^{\bullet}$. Hence, by <u>right-angle in a semi-circle</u> property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$		$PD = \frac{1}{2}BD = \begin{pmatrix} 10 \\ -3 \end{pmatrix}$
perpendicularly, $\angle CPD = 90^{\bullet}$. Hence, by <u>right-angle in a semi-circle</u> property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$		Coordinates of $P: (5-1.5, -2+3) = (3.5,1)$
perpendicularly, $\angle CPD = 90^{\bullet}$. Hence, by <u>right-angle in a semi-circle</u> property, a circle passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$		$\therefore \overrightarrow{OP} = \begin{pmatrix} 3.5 \\ 1 \end{pmatrix}$
Hence, by <u>right-angle in a semi-circle</u> property, a circle passing through C , P and D <u>can be drawn</u> with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$	8eii	Since the <u>diagonals of a rhombus intersect</u>
passing through C , P and D can be drawn with CD as the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$		
the diameter of the circle. 9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1}\left(\frac{10}{15.6}\right)$		nassing through C. P. and D. can be drawn with CD as
9a $\cos \angle CMQ = \frac{3}{5} = \frac{6}{10} = \frac{MQ}{CM}$ $\therefore PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$	L_	
$PQ = 6 \times 2 = 12 \text{ m (shown)}$ 9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ ∴ Angle of elevation = $\tan^{-1} \left(\frac{10}{15.6} \right)$	9a	
9b $MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$ $\therefore \text{Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6}\right)$		
	9b	$MR = \sqrt{6^2 + 14.4^2} = 15.6 \text{ m}$
22.6600		$\therefore \text{ Angle of elevation} = \tan^{-1} \left(\frac{10}{15.6} \right)$
≈ 32.6609		≈ 32.6609
= 22.7° (1 d n)		$=32.7^{\circ}$ (1 d.p.)
-22.7° (1 d p)		$= 32.7^{\circ} (1 \text{ d.p.})$

9c	$\left \angle AMC = 180^{\circ} - 2 \left \cos^{-1} \left(\frac{3}{5} \right) \right \approx 73.7397^{\circ}$
	$AP = \sqrt{10^2 - 6^2} = 8 \text{ m}$
	Perimeter $ABCQP = \frac{73.7397^{\circ}}{360^{\circ}} \times 2\pi(10) + 8 + 12 + 8$
	≈ 40.87000 m
	\therefore Total surface area of barn = 40.87000×14.4
	≈ 588.528
	$= 589 \text{ m}^2 \text{ (3 s.f.)}$
9d	Method 1
	Let l_1 and l_2 be the lengths of the small and large barns
	respectively.
	$\frac{l_1}{l_2} = \sqrt[3]{\frac{1}{3}}$
	$l_2 = \sqrt{3}$
	$\frac{A_1}{A_2} = \left(\sqrt[3]{\frac{1}{3}}\right)^2$
	$\frac{1}{A_2} = \left(\sqrt[3]{3}\right)$
	Since the cost of painting the roof is directly proportional
	to its area, then
	$\frac{A_1}{A_2} = \sqrt[3]{\frac{1}{3}}$ $\frac{A_1}{A_2} = \left(\sqrt[3]{\frac{1}{3}}\right)^2$ Since the cost of painting the roof is directly proportional to its area, then $\text{Cost of painting smaller barn} = \left(\sqrt[3]{\frac{1}{3}}\right)^2 \times 1000$ ≈ 480.7498 $= \$480.75 \text{(nearest cent)}$ $\frac{\text{Method 2}}{2}$ $= 3.737397^\circ$
	Cost of painting smaller barn $-\left(\sqrt{\frac{3}{3}}\right)$
	≈ 480.7498
	= \$480.75 (nearest cent)
9d	Method 2
	Area of roof of larger barn = $\frac{73.7397^{\circ}}{360^{\circ}} \times 2\pi(10) \times 14.4$
	360°
	$\approx 185.328 \text{ m}^2$
	Area of roof of smaller barn = $\left(\frac{3}{4}\right)^{\frac{1}{2}} \times 185.328$
	Area of roof of larger barn = $\frac{73.7397^{\circ}}{360^{\circ}} \times 2\pi(10) \times 14.4$ $\approx 185.328 \text{ m}^2$ Area of roof of smaller barn = $\left(\sqrt[3]{\frac{1}{3}}\right)^2 \times 185.328$ $\approx 89.0964 \text{ m}^2$
	$\approx 89.0964 \text{ m}^2$
	1000 80 0064
	$\therefore \text{ Cost of painting smaller barn} = \frac{1000}{185.328} \times 89.0964$
	≈ 480.7498
	= \$480.75 (nearest cent)
10a	Price of laptop on hire purchase = $1000 + 18(230)$
	= S\$5140
	∴ Percentage of additional amt.
	$=\frac{5140-4800}{4000}\times100\%$
	4800
	=7.08% (3s.f.)

10b Method 1

Let the amount of euros that Smith has be $\in x$.

$$\frac{\text{Euros} \to \text{SGD}}{\text{S}\$1 = \$0.6854}$$

Amt. of Euros in SGD =
$$S$$
\$ $\left(\frac{x}{0.6854}\right)$

$\underline{\text{Euros}} \rightarrow \text{USD} \rightarrow \text{SGD}$

Amt. of USD =
$$US$1.05x$$

$$S$1 = US$0.7193$$

Amt. of Euros in SGD =
$$S$$
\$ $\left(\frac{1.05x}{0.7193}\right)$

$$\frac{x}{0.6854} + 8 = \frac{1.05x}{0.7193}$$

$$0.7193x + 3.94406576 = 0.71967$$

$$x = \frac{3.94406576}{0.71967 - 0.7193}$$

$$x \approx 10659.6371$$

Amount of Euros that Smith has is €10 659.64.

Interest earned at end of 3 years in Euros

$$=\frac{(10659.6371-5000)(2.5)(3)}{100}$$

Since S\$ $\left(\frac{1.05x}{0.7193}\right)$ gives more Singapore dollars, it will

be used for all conversion from Euros to Singapore

Interest in S\$ for Plan A =
$$\frac{1.05(424.4727)}{0.7193}$$

= S\$619.63 (nearest cent)

Plan B

Interest earned at end of 3 years in SGD

$$= \frac{\frac{1.05(10659.6371)}{0.7193} \times 1.8 \times 3}{100}$$
= S\$840.26 (nearest cent)

Since $\underline{\$\$619.63} < \underline{\$\$840.26}$, Plan A will not give higher

interest than Plan B.

Hence, I disagree with Smith. In addition, Smith is a tourist and thus, does not qualify for Plan C.

10b Method 2

Let the amount of euros that Smith has be $\in x$.

$$\frac{\text{Euros} \to \text{SGD}}{\text{S}\$1 = \$0.6854}$$

Amt. of Euros in SGD =
$$S$$
\$ $\left(\frac{x}{0.6854}\right)$

$$\underline{\text{Euros}} \rightarrow \text{USD} \rightarrow \text{SGD}$$

Amt. of USD =
$$US$1.05x$$

$$S$1 = US$0.7193$$

Amt. of Euros in SGD =
$$S$$
\$ $\left(\frac{1.05x}{0.7193}\right)$

$$\frac{x}{0.6854} + 8 = \frac{1.05x}{0.7193}$$

$$0.7193x + 3.94406576 = 0.71967$$

$$x = \frac{3.94406576}{0.71967 - 0.7193}$$

$$r \approx 10659 6371$$

$$=\frac{(10659.6371-5000)(2.5)(3)}{100}$$

Interest in S\$ for Plan A =
$$\frac{424.4727}{0.6854}$$
$$= S$619.31 (nearest cent)$$

$$=\frac{\frac{10659.6371}{0.6854} \times 1.8 \times 3}{100}$$

$$=$$
S\$839.83 (nearest cent)

Since \$\$619.31 < \$\$839.83, Plan A will not give higher interest than Plan B.

Hence, I disagree with Smith. In addition, Smith is a tourist and thus, does not qualify for Plan C.

