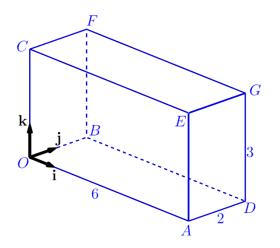


National Junior College 2025 – 2026 H2 Mathematics Topic 1A Vectors I

Tutorial

Check Your Understanding

1 The diagram below shows a rectangular cuboid *OADBFCEG* with dimensions OA = 6 units, OB = 2 units and OC = 3 units.



- (a) Find the following vectors, giving your answers in column vector notation.
 - (i) \overrightarrow{OE} ,
 - (ii) \overrightarrow{OG} ,
 - (iii) \overrightarrow{CB} ,
 - (iv) \overrightarrow{CD} .

State another two displacement vectors that are equal to \overrightarrow{OE} and \overrightarrow{CB} respectively.

- (b) Find the magnitude of \overrightarrow{CD} . Hence, or otherwise, find two distinct vectors that are parallel to \overrightarrow{CD} and has length 21 units each.
- (c) The lines OG and CD intersect at point P. Find the position vector of P.
- (d) The point Q is such that E lies on the line segment BQ and BQ : EQ = 3 : 2. Find the position vector of Q.

- 2 For each of the following pairs of vectors, find their scalar product.
 - (a) $\mathbf{i} + \mathbf{j} 3\mathbf{k}$ and $2\mathbf{i} + \mathbf{k}$,
 - (b) $\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$.
- 3 Relative to an origin *O*, the position vectors of the points *A* and *B* are $\mathbf{i} \mathbf{j} + 2\mathbf{k}$ and $-2\mathbf{i} + \mathbf{j}$ respectively. Find
 - (a) $\angle AOB$,
 - **(b)** ∠*OBA*.
- 4 Relative to an origin *O*, *A* and *B* have position vectors $\mathbf{i} + c\mathbf{j} 2\mathbf{k}$ and $-c\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ respectively, where *c* is a real constant. Find the value of *c*
 - (a) if \overrightarrow{OA} is perpendicular to \overrightarrow{OB} ,
 - (b) if instead $\angle AOB = 120^{\circ}$.
- 5 For each of the following pairs of vectors, find their vector product.
 - (a) i+j-3k and 2i+k,

(b)
$$\begin{pmatrix} 1 \\ -4 \\ 3 \end{pmatrix}$$
 and $\begin{pmatrix} -1 \\ -3 \\ 1 \end{pmatrix}$,
(c) $2\mathbf{i} - 6\mathbf{k}$ and $\begin{pmatrix} -3 \\ 0 \\ 9 \end{pmatrix}$.

- 6 Relative to an origin *O*, the position vectors of the vertices *A*, *B* and *C* of a triangle are $\mathbf{i} + \mathbf{j} \mathbf{k}$, $2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $5\mathbf{i} + 4\mathbf{j} \mathbf{k}$ respectively.
 - (i) Find the exact area of triangle *ABC*.
 - (ii) Find the length of projection of \overrightarrow{AB} onto \overrightarrow{AC} .
 - (iii) Find the projection vector of \overrightarrow{AB} onto \overrightarrow{AC} in the form $\frac{1}{5}(a\mathbf{i}+b\mathbf{j}+c\mathbf{k})$ for some integers a, b and c to be determined.
 - (iv) Find the length of the vector component of \overrightarrow{AB} perpendicular to \overrightarrow{AC} in the form \sqrt{n} for some integer *n* to be determined.
 - (v) Find the vector component of \overrightarrow{AB} perpendicular to \overrightarrow{AC} in the form $\frac{1}{5}(p\mathbf{i}+q\mathbf{j}+r\mathbf{k})$ for some integers p, q and r to be determined.

Practice Questions

- 1 (a) Relative to the origin *O*, the position vectors of two points *A* and *B* are $\mathbf{a} = \mathbf{i} + t\mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} \mathbf{j} + \mathbf{k}$ respectively, where $t \in \Box$. Given that the angle between \mathbf{a} and \mathbf{b} is 60°, evaluate the possible exact values of *t*.
 - (b) Relative to the origin *O*, the position vectors of the points *P* and *Q* are **p** and **q** respectively. The point *R* lies on *PQ* produced such that QR:PR=3:5 and *OR* is perpendicular to *OP*. Show that $\mathbf{p} \cdot \mathbf{q} = \frac{3}{5} |\mathbf{p}|^2$.

[2015 / NJC / SH2 / T1LT / Q1]

- 2 (i) Find a unit vector **n** such that $\mathbf{n} \times (2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}) = \mathbf{0}$.
 - (ii) Given that the vector **u** has a magnitude of 5 units and is parallel to the vector $2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$, find the possible vectors of **u**.
 - (iii) Find the cosine of the acute angle between u and the *z*-axis.[MI Promo 9758/2018/PU2/01/Q6 modified]
- 3 (a) Given that **u** and **v** are non-zero vectors such that $\mathbf{u} \times \mathbf{v} = (\mathbf{u} \mathbf{v}) \times (\mathbf{u} + \mathbf{v})$, what can be deduced about **u** and **v**?
 - (b) Referred to an origin *O*, the points *A* and *B* have position vectors **a** and **b** respectively, where **a** and **b** are not parallel to each other. Point *C* is the mid-point of *AB*. Point *D* lies on *OA* produced such that OA:OD = 1: p, where p > 1. Point *E* lies on *BD*, between *B* and *D*, such that BE:ED = p:2. Given that points *O*, *C* and *E* are collinear, find the value of *p*.

[EJC Promo 9758/2018/Q5]

- 4 Relative to the origin *O*, the position vectors of the points *A*, *B* and *P* are $-\mathbf{i}-3\mathbf{j}+2\mathbf{k}$, $5\mathbf{i}+2\mathbf{k}$ and $(1+2\lambda)\mathbf{i}+(\lambda-2)\mathbf{j}+2\mathbf{k}$ respectively, where $\lambda \in \mathbf{R}, \lambda \neq -1$.
 - (i) Show that A, B and P are collinear.
 - (ii) Find the value of λ such that *P* is on the line *BA* produced and area of triangle *OAP* is $162\sqrt{5}$ square units. Give a reason for your choice.

[2012 / NJC / Prelims / P1 / Q2]

- 5 Referred to the origin *O*, the points *A* and *B* have position vectors **a** and **b** such that $\mathbf{a} = \mathbf{i} \mathbf{j} + \mathbf{k}$ and $\mathbf{b} = 2\mathbf{i} + 3\mathbf{k}$. The point *C* has position vector **c** given by $\mathbf{c} = \lambda \mathbf{a} + \mu \mathbf{b}$, where λ and μ are constants.
 - (i) Find the exact area of triangle *OAB*.
 - (ii) Given that *OABC* forms a parallelogram, write down the values of λ and μ .
 - (iii) Given instead that $\mu = 2$ and that $OC = \sqrt{59}$, find the possible coordinates of C, leaving your answers in exact form.

[2016 / MJC / Promo / Q4]

- 6 Referred to the origin O, the points A and B are such that $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$ where \mathbf{a} and \mathbf{b} are non-parallel vectors. It is also given that C, D and E are the midpoints of OA, OB and AB respectively, and M is the point of intersection of the lines AD and BC.
 - (i) Find OM in terms of **a** and **b**.
 - (ii) Show that *M* lies on the line *OE*.
 - (iii) Find the area of the quadrilateral *OCMD*, expressing your answer in the form $k |\mathbf{a} \times \mathbf{b}|$, where k is a constant to be determined.
- 7 (i) Given that $\mathbf{u} \times \mathbf{v} = \mathbf{0}$, what can be deduced about the vectors \mathbf{u} and \mathbf{v} ?

Vectors **a**, **b** and **c** are such that $\mathbf{a} \neq \mathbf{0}$ and $\mathbf{a} \times 3\mathbf{b} = 2\mathbf{a} \times \mathbf{c}$.

- (ii) Show that $3\mathbf{b} 2\mathbf{c} = \lambda \mathbf{a}$, where λ is a constant.
- (iii) It is now given that **a** and **c** are unit vectors, the modulus of **b** is 4 and that the angle between **b** and **c** is 60°. Using a suitable scalar product, find exactly the two possible values of λ .

[2018 / A-Level / P1 / Q6(modified)]

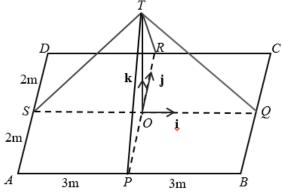
- 8 Relative to the origin *O*, two points *A* and *B* have position vectors given by **a** and **b** respectively such that they are non-zero, non-parallel and $|\mathbf{a}| = |\mathbf{b}|$.
 - (i) Show that $(\mathbf{a}+\mathbf{b})\cdot(\mathbf{a}-\mathbf{b})=0$.
 - (ii) Give a geometrical interpretation of the result shown in part (i).
 - (iii) Suppose $|\mathbf{a}| = |\mathbf{b}| = 1$, show that $|\mathbf{a} \cdot \mathbf{b}|^2 + |\mathbf{a} \times \mathbf{b}|^2 = 1$.

[2016 / NJC / SH2 / T2 CT / Q6]

- 9 Relative to the origin *O*, the position vectors of *A* and *B* are $\frac{11}{3}\mathbf{i} + 4\mathbf{j} + \frac{7}{3}\mathbf{k}$ and $2\mathbf{i} + 4\mathbf{k}$ respectively. It is given that *R* lies on *BA* produced such that 2BR = 3AR.
 - (i) Show that \overrightarrow{OR} is given by $7\mathbf{i}+12\mathbf{j}-\mathbf{k}$ and hence find the exact length of projection of \overrightarrow{OR} on \overrightarrow{OB} .
 - (ii) Find the vector NR, where N is the foot of perpendicular from R to OB.
 - (iii) Find the position vector of the point R', which is a reflection of the point R in the line passing through OB.

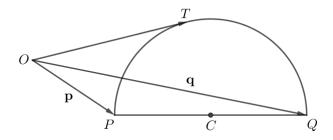
[2016 / SRJC / J1 CT / Q7]

10 During a camp, a group of scouts builds a structure using wooden poles as shown in the diagram. The structure has a rectangular base ABCD on the horizontal ground, with AB = 6 metres and AD = 4 metres. The top of the structure, *T*, is 2 metres vertically above *O*, the centre of *ABCD*. *T* is connected to *P*, *Q*, *R* and *S*, the mid-points of *AB*, *BC*, *CD* and *DA* respectively.



- (i) If \mathbf{i} , \mathbf{j} and \mathbf{k} are the unit vectors in the directions of *OQ*, *OR* and *OT* respectively, write down the position vectors of *Q*, *R* and *T*. Hence find angle *QTR* to the nearest degree.
- (ii) The scouts tie a rope from P to a point E on ST such that $4\overline{SE} = \overline{ST}$. Find the length of the rope between E and P, assuming that the rope is taut.
- (iii) Another rope is tied from P to a point F on TQ. Find the position vector of F such that the length of the rope between F and P is minimised.
- (iv) A flagpole of 5 metres is erected vertically at the point $G(\alpha, \beta, 0)$. Find the values of α and β if the top of the flagpole is collinear with A and T.

[2016 / PJC / J1 CT / Q10]



PQ is the diameter of a semicircle with centre *C* as shown above. *O* is the origin and $\overrightarrow{OP} = \mathbf{p}$

- and $OQ = \mathbf{q}$. The tangent to the semicircle drawn from O touches the semicircle at T.
- (i) State, in terms of **p** and **q**, the position vector of *C*, and hence show that the radius of the semicircle is $\frac{1}{2}|\mathbf{p}-\mathbf{q}|$ units.

By considering the triangle *OTC*, show that $OT^2 = \mathbf{p} \cdot \mathbf{q}$.

(ii) Give a geometrical interpretation of $\frac{\left|\overrightarrow{OC} \cdot \overrightarrow{OT}\right|}{OT}$ and write down its value in terms of **p** and

(iii) Show that $\left|\overrightarrow{OC} \times \overrightarrow{OT}\right| = \frac{1}{m} |\mathbf{p} - \mathbf{q}| \sqrt{\mathbf{p} \cdot \mathbf{q}}$, where *m* is an integer to be determined. [2014 / NJC / SH2 / Common Test / Q5 (adapted)]

11

Numerical Answers

Practice Questions

1	(a)	$4\pm\sqrt{21}$		
2	(i)	$\mathbf{n} = \pm \frac{1}{7} \left(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} \right)$	(ii)	$\mathbf{u} = \pm \frac{5}{7} \left(2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k} \right)$
	(iii)	$\frac{6}{7}$	(iv)	$p = \frac{3}{2}, \theta = \frac{\pi}{2}, q = \frac{3\sqrt{3}}{2}$
3	<i>p</i> = •	/2		
4	(iii)	-109		
5	(i)	$\frac{\sqrt{14}}{2}$	(ii)	$\lambda = -1, \ \mu = 1$
	(iii)	$\left(\frac{13}{3}, -\frac{1}{3}, \frac{19}{3}\right), (-3, 7, -1)$		
6	(i)	$\frac{1}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$	(iii)	$\frac{1}{6} \mathbf{a} \times \mathbf{b} $
7	$\lambda = \pm 2\sqrt{31}$			
9		$\sqrt{5}$ units	(ii)	$\overrightarrow{NR} = 6\mathbf{i} + 12\mathbf{j} - 3\mathbf{k}$
	(iii)	$\overrightarrow{NR'} = -5\mathbf{i} - 12\mathbf{j} + 5\mathbf{k}$		
10	(i)		(ii)	3.05
	(iii)	$\overrightarrow{OF} = \frac{6}{13} \begin{pmatrix} 2\\0\\3 \end{pmatrix}$	(iv)	$\alpha = \frac{9}{2}, \beta = 3$