2022 Preliminary Examination Paper 2 Suggested Solution

Qn 1	Answer			
(a) (i)	When mass <i>M</i> is placed on the spring, the spring extends by a length of $(L_2 - L_1)$.			
	$mg = k(L_2 - L_1)$			
	$k = \frac{mg}{L_2 - L_1}$			
	$=\frac{(0.0985)(9.81)}{0.037-0.013}=40.3 \text{ N m}^{-1}$			
(a) (ii)				
	$\frac{\Delta k}{k} = \frac{\Delta m}{m} + \frac{\Delta (L_2 - L_1)}{L_2 - L_1} = \frac{0.2}{98.5} + \frac{0.2 + 0.1}{3.7 - 1.3} = 0.127$			
	Thus			
	$\Delta k = k \times \frac{\Delta k}{k} = 40.3(\frac{0.2}{98.5} + \frac{0.2 + 0.1}{3.7 - 1.3}) = 5 \text{ N m}^{-1}$			
	(Do not penalise if Δk is left to a value that is greater than 1 s.f. – this mark will be marked in (a)(iii))			
(a)(iii)	$k = (40 \pm 5) \text{ N m}^{-1}$			
	Allow ecf from (a)(ii) and (a)(iii).			
(b)(i)	N	Iarking Guidance:		
	Tension	31 – 3 forces drawn with correct direction		
	≜ В	B1 – Relative lengths of forces show T+U = W	B2	
	[-	1] – Missing labels/legend		
	N m	lote that first B1 mark must be obtained before the second B1 nark can be given.		
	[F s b o	Point of action is not marked here. But in general, students hould know that the upthrust is acting at the centre of uoyancy $-$ c.g. of the liquid displaced and weight is at the c.g. f the cube.]		
	weight			
(b)(ii)	Initially (Fig. 1.2), P is inequilibrum, net force on it is zero. Weight = upthrust $W = (0.7V)\rho g$		M1	
(b)(iii)	After cube Q was connected (Fig. 1.3), at new equilibrium, net force on P is zero.			
	Weight of P = Tension due to string + new upthrust			

	$W = T + U' = T + 0.4 V \rho g$	M1
	Solving the two equations above gives	
	$T = W - 0.4V \rho g = W - \frac{0.4W}{0.7} = \frac{3}{7}W$ (Shown)	M1
(b)(iii)	Consider the forces acting on cube Q.	
	Resolving the weight of cube Q along the slope, and since it is in equilibrium,	
	$T = (3/7) W = W \sin(\theta) \implies$ Solving, $\theta = 25.4 \circ$	A1
	[Total : 11 m	

Qn 2	Answer	Marks	
(a) (i)	For circular motion, centripetal force is provided by the gravitational force,		
	$\frac{GM_{J}m}{R^{2}} = mR\omega^{2}$ $M_{J}m = 2\pi \sqrt{4\pi^{2}R^{3}}$	M1	
	$G \frac{m_J m}{R^2} = mR(\frac{2\pi}{T})^2 \Rightarrow T = \sqrt{\frac{4\pi}{GM_J}}$	A1	
(a) (ii)	Since $T^2 \propto R^3$,		
	$\left(\frac{T_{Th}}{T_{Am}}\right)^2 = \left(\frac{R_{Th}}{R_{Am}}\right)^3 \Longrightarrow \left(\frac{0.676}{T_{Am}}\right)^2 = \left(\frac{3.18}{2.62}\right)^3$	M1	
	$T_{Am} = 0.506$ Earth-days	A1	
(b)(i)	$v = \frac{2\pi R}{T} = \sqrt{\frac{GM_J}{R}}$	A1	
	<u>OR</u>		
	Since the orbit is circular, centripetal force is provided by gravitational force, hence		
	$\frac{GM_{J}m}{R^{2}} = \frac{mv^{2}}{R} \Longrightarrow v = \sqrt{\frac{GM_{J}}{R}}$ A1		
(b)(ii)	When the mass of the moon decreases, although the gravitational force and centripetal force required both decreases, the condition for orbit, that the gravitational force is equal to the centripetal force, is still true. Hence the moon will stay in orbit.		
(c)(i)	Read off graph with orbital period equal to one Jupiter-day = 0.417 Earth-days		
	Orbital radius of geostationary orbit is 2.30 RJ.		
	(Allow : ± 1/2 smallest div)		
(c)(ii)	Able to continuously observe the same area on Jupiter for an extended period of time.		
	[Total : 8 marks]		

Qn 3	Answer		
(a)	Using $v = f\lambda$		
	$v = \frac{1}{4.0 \times 10^{-3}} \times 1.4$ = 350 m s ⁻¹		
(b)(i)	Particle R (As the particle is undergoing SHM, at the amplitude, the instantaneous velocity of the particle is zero).	A1	
(b)(ii)	Particle Q . Vertical lines represent equilibrium position of particle along the wave. Particle P is at the centre of compression and particle Q is at the centre of rarefaction 5.00 0.7 1.4 2.1 2.8 Vertical lines represent equilibrium position of particle along the wave. Particle P is at the centre of compression and particle Q is at the centre of rarefaction		
(b)(iii)	Particle Q. (As the Fig. 3.2 shows a particle that is initially at equilibrium and is moving up in the next instant. Particle P and Q are both at equilibrium at $t = 0$. To determine which particle is presented above, the subsequent displacement-position graph in the next instant needs to be used. As seen below, since the wave is travelling towards the left, it is clear that particle P will be displaced in the negative direction and particle Q in the positive direction. Hence particle Q is depicted in Fig. 3.2). displacement / nm Direction of wave progression is to the left. 5.00 -		
(c)(i)	Using equation . $\Delta \phi = \frac{\Delta x}{\lambda} \times 360^\circ = \frac{0.7}{1.4} \times 360^\circ$		
	= 180°		
	Accept working with radians. And answer as π radians		

Qn 4	Answer		Marks
(a)(i)	Power supplied by battery	= Energy / time = (11.3 J) /(10 x 60 s)	M1
		= 0.0188 W	A1
(a)(ii)	From graph, resistance of therr	nistor = 3.1 k Ω	B1
	Power dissipated through the r $\Rightarrow 0.0188 = E^2 / (3100+1200)$	esistor and thermistor = Power supplied by battery	M1
	<i>E</i> = 8.99 V		A1
(b)	b) From graph, New resistance of thermistor = 2.0 k Ω		B1
	Since the power delivered is the same, Total resistance before =total resistance after		
	\Rightarrow 3100+1200 = R +2000		M1
	\Rightarrow R = 2 300 Ω		A1
	[Total : 8 m		marks]

Qn 5	Answer		
(a)	(Using Fleming's Left hand Rule), the magnetic force will always be perpendicular to the direction of motion of the charge . This force will provide the centripetal force for circular motion.		
	Since the magnitude of the magnetic force is constant, the magnitude of the centripetal force is constant. The electron will describe a uniform circular path.		
	<u>Or</u> since the force is always perpendicular to the motion, no work is done by the force on the system and there is no gain in kinetic energy of the electron and hence the electron is in uniform circular motion (or moving at constant speed).		
	B1 – for explaining why the motion is that of a circular one.		
	B1 – for explaining why the motion is uniform		
(b)(i)	The magnetic force provides for the centripetal force,		
	$Bqv = \frac{mv^2}{r}$		
	$mv = (9.11 \times 10^{-31})(8.5 \times 10^7)$		
	$\frac{1}{Bq} = \frac{1}{(7.5 \times 10^{-3})(1.60 \times 10^{-19})}$	M1	
(1.)(**)	$= 6.45 \times 10^{-2} \mathrm{m} = 6.5 \mathrm{cm}$	~	
	uniform magnetic field into page, flux density 7.5 mT speed 8.5 x 10 ⁻⁷ m s ⁻¹ electron 2.5 cm X X X X X X X N State in the set of	В3	
	B1- circular path curving downwards in B-field		
	B1 – straight path after leaving the B-field		
(b)(iii)	i) The magnetic force on electron provides the required centripetal force to keep the electron in circular motion. If <i>m</i> is the mass of the electron and ω is the angular velocity of the electron. $Bev = mr\omega^2 = mr\left(\frac{2\pi}{T}\right)^2 \Rightarrow T = \frac{2\pi m}{Be}$ Hence, <i>T</i> is independent of <i>v</i> and <i>r</i> .		
(b)(iv)	Since period T is independent of the speed and radius of the path taken, the period of both electrons are the same. Hence, the time spent by each electron in the magnetic field simply		

	depends on the fraction of the circular path traveled by each electron within the magnetic field.	
	<u>Electron e_1 travels for less than $\frac{1}{4}$ of a period in the field, while electron e_2 travels for $\frac{1}{2}$ a period. Hence, electron e_2 spends a longer time in the magnetic field.</u>	A1
	[Total : 10	marks]

Qn 6	Answer	
(a)	The activity of a radioactive source is the rate at which a source of unstable nuclei decays	
	or	
	the number of disintegrations per unit time.	
(b)(i)	$N = \left(2.40 \times 10^{-6}\right) \left(\frac{6.02 \times 10^{23}}{235}\right)$	M1
	$= 6.148 \times 10^{15}$	A1
(b)(ii)	Decay constant	
	$\lambda = \frac{A}{M} = \frac{0.1919}{0.140 - 10^{15}}$	M1
	$10^{-17} = 3.12 \times 10^{-17} = 3.12 \times 10^{-17} \text{ s}^{-1} (\text{to } 3 \text{ s} \text{ f})$	A1
(c)(i)	$\overset{42}{}K \rightarrow \overset{42}{}Ca + \overset{0}{}e + antineutrino$	
(0)(1)		Δ1
	beta particles are emitted. Accept electrons.	
	Accept: beta with (anti-)neutrino	
(c)(ii)	Half-life = 12.5 h	A1
(c)(iii)	Correct Shape B1	
	sum of Calcium-42 and Potassium-42 equals 1.0 N _o at $t = 0$, $t=t_{1/2}$ and $t = 40$ h	
(c)(iv)	Four parts Calcium-42 and one part Potassium-42.	M1
	From the graph, we get 0.8 N_{\circ} for Calcium-42 and 0.2 N_{\circ} for Potassium-42 giving the age as 29 hours.	
	Alternatively,	
	Ratio of Calcium-42 to Potassium is 4:1	
	Hence, for K-42,	
	$N = N_o e^{-\lambda t} \implies t = -\frac{t_{1/2}}{\ln 2} \ln(\frac{N}{N_o}) = -\frac{12.5 \text{ h}}{\ln 2} \ln(\frac{1}{5}) $ M1	
	= 29.0 h A1	
	[Total : 11 ma	

Qn 7	Answer		
(a)(i)	At level flight, there is no resultant vertical force.		
	Hence, lift = weight of aircraft = 1.5×10^6 N		
	At constant velocity, the resultant force horizontally is zero.		
	Hence, drag = thrust = 0.60×10^6 N	A1	
(a)(ii)	Taking moments about the intersection between the weight and thrust,		
	Torque generated by the lift-weight couple = Torque generated by the thrust-drag couple		
	\Rightarrow 1.5 x 10 ⁶ x 0.75 = 0.60 x 10 ⁶ x d	M1	
	\Rightarrow vertical separation $d = 1.9 \text{ m}$	A1	
(a)(iii)	The <u>horizontal stabiliser</u> with its <u>vertical downward force</u> acting on it and (its long distance from the CG),	B1	
	would provide a (<u>clockwise) moment</u> about the CG to enable the plane to rotate against the downward pitch.		
(b)(i)	Air gains momentum when it passes through the jet engine and hence by Newton's 2 nd law, there is a force acting on the air by the jet engine.		
	By Newton's 3 rd Law, there is an equal in magnitude and opposite in direction force on the jet engine to move the jet engine forward. That is the thrust.		
(b)(ii)	Force on jet engine by air = Force on air by the jet engine		
	= rate of change of momentum of the air	M1	
	= 210 kg s ⁻¹ x 580 m s ⁻¹ = 1.22 x 10 ⁵ N	A1	
(b)(iii)	Possible reasons include.		
	 Combusted fuel is mixed with the gas before ejection and hence the actual momentum gain is larger. 		
	Pressure difference between the air in front of engine and back of engine can contribute to an additional thrust		
	• The engine needs to exert a forward force on the air to reduce the speed of the air before it is combusted and pressurized, the air exerts a backward force in return and this reduces the thrust.		
	Do not accept : That there is some initial speed of the air as the question in (b)(ii) gives the speed gained.		

(c)	Each wing has to provide sufficient lift to support half of the weight.						
	$(P_L - P_U)A = \frac{mg}{2}$						
	$\Rightarrow P_U = P_L - \frac{mg}{2A} = 7.00 \times 10^4 \text{Pa} - \frac{(2.85 \times 10^5)(9.81)}{2(360)}$				M1		
	$= 6.61 \times 10^4 Pa$			A1			
	[Only deduct one mark i	f mg is used instead.]					
(d)(i)	From the Lift Equation:						
	$L = \frac{1}{2}C_L \rho v^2 S \implies$	$C_{L} = \frac{2L}{\rho v^{2} S}$					
	Units of $C_L = \frac{1}{(\text{kg})}$	(kg m s^{-2}) m ⁻³)(m ² s ⁻²)(m ²)			M1		
	= 1						
	Hence, C_L is a dimension	onless quantity.			A1		
(d)(ii)	The aircraft tilts so that force needed to make the	the horizontal componen te turn.	t of the lift force can provide	for the (centripetal)	B1		
	It needs to increase in sp	beed for a larger the lift for	ce ($L = \frac{1}{2}C_L \rho v^2 S$) so that th	e vertical component			
	of the lift force can supp	ort the weight.	Z		B1		
(e)(i)	$\frac{L}{D} = \frac{\frac{1}{2}C_{L}\rho v^{2}S}{\frac{1}{2}C_{D}\rho v^{2}} = \frac{C_{L}}{C_{D}}$			M1			
(e)(ii)	At maximum lift to drag ratio, most lift is generated (to support the weight) at minimum drag (<u>or</u> per unit drag). Hence, less fuel is wasted to overcome the drag force.			B1			
(e)(iii) 1.	For angle of attack $\alpha = 4^{\circ}$, $C_L = 0.45$ and $C_D = 0.0275$ $L/D = C_L/C_D = 0.45 / 0.0275 = 16.36$			M1			
	Other possible combina	tions:					
	CL	C _D	L/D				
	0.45	0.03	15.00				
	0.425 0.0275 15.45						
	0.425	0.03	14.20				
(e)(ii)2.	2. Correct plot B1			B2			
	A smooth best fit line through the plots with maximum at $\alpha = 4^{\circ}$ B1						
	[Total : 22 ma			marks]			