2024 RI H2 Math Year 5 Promotion Examination: Solutions with Comments

1 A curve *D* has equation

$$y = ax + b\ln x + \frac{c}{x}, \quad x > 0,$$

where a, b and c are constants. It is given that D has a stationary point at $x = \frac{3}{2}$ and the tangent to D at the point where x = 1 is y = x - 5. Find the values of a, b and c. [4]

	Solution	Comments
[4]	Method 1 $\frac{dy}{dx} = a + \frac{b}{x} - \frac{c}{x^2}$ At $x = \frac{3}{2}$, $\frac{dy}{dx} = 0 \implies a + \frac{2}{3}b - \frac{4}{9}c = 0$ (1)	Most students did well and got full marks for this question. Those who did not get full
	The gradient of <i>D</i> at $x = 1$ is equal to the gradient of the line y = x - 5. At $x = 1$, $\frac{dy}{dx} = 1 \implies a + b - c = 1 \qquad(2)$ <i>y</i> -coordinate of <i>D</i> at $x = 1$ is $1 - 5 = -4$. Substituting $x = 1$ and $y = -4$ into equation of <i>D</i> , we get $a + c = -4 \qquad(3)$ From GC, $a = 2, b = -7, c = -6$.	marks, were able to get the equations (1) and (2). Need to observe that since the tangent line and the curve touches at a point, they should share the same y-coordinate at that point. So, use the equation of the given tangent line to find the y-coordinate and obtain equation (3)
	Method 2 $\frac{dy}{dx} = a + \frac{b}{x} - \frac{c}{x^2}$ At $x = \frac{3}{2}$, $\frac{dy}{dx} = 0 \implies a + \frac{2}{3}b - \frac{4}{9}c = 0$ (1) Gradient of <i>D</i> at $x = 1$ is $\frac{dy}{dx}\Big _{x=1} = a + b - c$.	There are a few students who did not use the GC to solve the simultaneous equations and made careless mistakes in their workings and thus lost some marks.
	y-coordinate of D at $x = 1$ is $a + c$. So, the equation of tangent to D at $x = 1$ is $y - (a + c) = (a + b - c)(x - 1) \Rightarrow y = (a + b - c)x - b + 2c$ Comparing this line with $y = x - 5$, we get $a + b - c = 1 \qquad(2)$ $-b + 2c = -5 \qquad(3)$ From GC, $a = 2, b = -7, c = -6$.	Common Mistakes: • $\frac{dy}{dx} = x + \frac{b}{x} + \frac{c}{x^2}$ • Substituting $x = 1$ and $y = -5$ into equation of <i>D</i> , instead of $y = -4$

- 2 With respect to the origin *O*, the fixed points *A* and *B* have position vectors **a** and **b** respectively, where **a** and **b** are non-zero and non-parallel.
 - (a) The variable point *R* has position vector $\mathbf{r} = \lambda \mathbf{a} + (1 \lambda)\mathbf{b}$, where λ is a real parameter. Describe geometrically the set of all possible positions of *R*. [1]

It is given that the angle AOB is 90° .

- (b) Explain why $\mathbf{a} \cdot \mathbf{b} = 0.$ [1]
- (c) Among the set of all possible points R, the point R^* is the closest to the origin O. Find the position vector of R^* . Hence state the ratio $AR^*:BR^*$ in terms of magnitudes of **a** and **b**. [4]

	Solution	Comments
(a) [1]	The set of all possible positions of <i>R</i> is the line that passes through points <i>A</i> and <i>B</i> , or The set of all possible positions of <i>R</i> is the line that passes through point <i>B</i> (or <i>A</i>) and parallel to the vector \overrightarrow{AB} . Additional Notes:	Since R is a point, when describing its possible positions, it should be clear that we are describing possible points.
	When $\lambda = 0$, we get $\mathbf{r} = \mathbf{b}$, which corresponds to the point <i>B</i> . When $\lambda = 1$, we get $\mathbf{r} = \mathbf{a}$, which corresponds to the point <i>A</i> . $B(\lambda = 0)$ $A(\lambda = 1)$ $BA \text{ produced}$ $(\lambda > 1)$ $BA \text{ produced}$ $(\lambda > 1)$ $BA \text{ produced}$ $(\lambda < 0)$ $(0 \le \lambda \le 1)$ Note that a vector is NOT a line, and if we wish to talk about the position vector \mathbf{b} , we should say the line passes through the point with position vector \mathbf{b} (or simply point <i>B</i>). A line cannot pass through a vector, and a point cannot be on a vector as well. Mathematical language has to be accurate.	When describing a line, you need 2 points or 1 point and a direction vector which the line is parallel to. The line segment AB refers to the part of the line AB which is between A and B inclusive. Since λ is real, R is any point on the line AB .
(b) [1]	$\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos 90^\circ = 0$ since $\cos 90^\circ = 0$ Additional Note:	The definition of the dot product is $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta$.

	That the scalar product is 0 because 2 vectors are perpendicular (or the angle between them is 90°) is a consequence of this definition.	
(c) [4]	$\overline{OR^*} = \lambda \mathbf{a} + (1 - \lambda) \mathbf{b} \text{ for some } \lambda \in \mathbb{R}.$ $\overline{OR^*} \cdot (\mathbf{a} - \mathbf{b}) = 0$ $[\lambda \mathbf{a} + (1 - \lambda) \mathbf{b}] \cdot (\mathbf{a} - \mathbf{b}) = 0$ $\lambda \mathbf{a} ^2 - (1 - \lambda) \mathbf{b} ^2 + (1 - 2\lambda) \mathbf{a} \cdot \mathbf{b} = 0$ Since \mathbf{a} and \mathbf{b} are perpendicular, $\mathbf{a} \cdot \mathbf{b} = 0$ $\therefore \lambda = \frac{ \mathbf{b} ^2}{ \mathbf{a} ^2 + \mathbf{b} ^2}$ $\overline{OR^*} = \frac{ \mathbf{b} ^2}{ \mathbf{a} ^2 + \mathbf{b} ^2} \mathbf{a} + \frac{ \mathbf{a} ^2}{ \mathbf{a} ^2 + \mathbf{b} ^2} \mathbf{b}$ $AR^* : BR^* = 1 - \lambda : \lambda$ $= \frac{ \mathbf{a} ^2}{ \mathbf{a} ^2 + \mathbf{b} ^2} : \frac{ \mathbf{b} ^2}{ \mathbf{a} ^2 + \mathbf{b} ^2}$ $= \mathbf{a} ^2 : \mathbf{b} ^2$	The point <i>F</i> on a line closest to a given point <i>P</i> is the foot of the perpendicular from <i>P</i> to the line. This point is not necessarily the midpoint of the line segment <i>AB</i> . When expanding the scalar product, note that $\mathbf{a} \cdot \mathbf{a} = \mathbf{a} \mathbf{a} \cos 0 = \mathbf{a} ^2$ Note that if $\mathbf{r} = \lambda \mathbf{a} + (1 - \lambda) \mathbf{b}$, as shown in the diagram, $AR^* : BR^* = 1 - \lambda : \lambda$, <u>not</u> $AR^* : BR^* = \lambda : 1 - \lambda$

3 Do not use a calculator in answering this question.

Solve the inequality

$$\frac{6x^2 + 2x - 3}{2x - 1} \ge 2(x + 1).$$
 [4]

Hence solve $\frac{6x^2 + 2|x| - 3}{2|x| - 1} \ge 2(|x| + 1).$

As the instruction of not using a calculator is given in the question, you should 1) Give all answers in exact form (no 3 s.f)
 2) Show all working clearly working clearly This also means that graphical approaches need to be clearly justified to obtain full credit. The use of the OR is required when having 2 solution ranges that are distinct. Using ',' or AND is incorrect. Once you have fully factorized the expression, do feel free to use the GC (you do not need to say that you used it) to verify the shape of the cubic graph to avoid unnecessary mistakes.

Page 4

[3]

By replacing x with $ x $, $-\frac{1}{\sqrt{2}} \le x < \frac{1}{2}$ or $ x \ge \frac{1}{\sqrt{2}}$ $x \le -\frac{1}{\sqrt{2}}$ or $-\frac{1}{2} < x < \frac{1}{2}$ or $x \ge \frac{1}{\sqrt{2}}$ Additional Note:	Note that $-\frac{1}{\sqrt{2}} \le x $ holds for all real x . Thus $-\frac{1}{\sqrt{2}} \le x < \frac{1}{2}$ is equivalent to $ x < \frac{1}{2}$.
Perhaps the simplest way to think of solving modulus inequalities like $ x < \frac{1}{2}$ would be to tell yourself if the magnitude * of x is smaller than $\frac{1}{2}$, then x itself should not be too far from the origin, that is $-\frac{1}{2} < x < \frac{1}{2}$. Similarly, if $ x \ge \frac{1}{\sqrt{2}}$, then x has to be at least $\frac{1}{\sqrt{2}}$ from the origin, and thus $x \le -\frac{1}{\sqrt{2}}$ or $x \ge \frac{1}{\sqrt{2}}$.	*Note how " $ $ " is consistently used in various topics. a denotes the magnitude of a vector a , or equivalently the distance of the point <i>A</i> from the origin. <i>z</i> denotes the magnitude of a complex number <i>z</i> , or equivalently the length <i>OP</i> , if <i>P</i> represents the complex number <i>z</i> on the Argand diagram.

4 A curve *C* has parametric equations

$$x = \frac{\lambda}{1+\lambda^3}$$
 and $y = \frac{\lambda^2}{1+\lambda^3}$, for $\lambda > 0$.

The point P is a variable point on C.

(a) With reference to the origin O, OP forms the diagonal of the rectangle OQPR, where vertices Q and R lie on the x- and y-axis respectively. Using differentiation, find the value of λ which maximises the area of rectangle OQPR. You need to show that your answer gives a maximum. [5]

When the area of rectangle OQPR is at its maximum, the rate of change of the x-coordinate of the point P is 1 unit per second.

(b) Find $\frac{dy}{dx}$ and hence determine the rate of change of the y-coordinate of the point *P* at this instant [4]

	1 at this instant.		[4]
	Solution		Comments
(a) [5]	Area of rectangle OQPR, $A = xy = \frac{\lambda^3}{(1+\lambda^3)^2}$ $\frac{dA}{d\lambda} = \frac{(1+\lambda^3)^2 (3\lambda^2) - \lambda^3 (2)(1+\lambda^3)(3\lambda^2)}{(1+\lambda^3)^4}$ $= \frac{(1+\lambda^3)^2 (3\lambda^2) - \lambda^3 (2)(1+\lambda^3)(3\lambda^2)}{(1+\lambda^3)^4}$ $= \frac{3\lambda^2 (1-\lambda^3)}{(1+\lambda^3)^3}$	NORMAL FLOAT AUTO REAL RADIAN MP X17=(T2/(1+T2) R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	It is important to READ the question properly. Here, the question aims to maximise the AREA of the rectangle with respect to λ , and so we should solve for $\frac{dA}{d\lambda} = 0$. Attempts to solve other equations are not equivalent (see additional notes).

	$\frac{dA}{d\lambda} = \frac{3\lambda^2 (1-\lambda^3)}{(1+\lambda^3)^3}$ Since $\frac{3\lambda^2}{(1+\lambda^3)^3} > 0$ for all $\lambda > 0$, $\frac{\lambda}{(1+\lambda^3)} \frac{1}{1} \frac{1}{1} \frac{1}{1} \frac{1}{(1-\lambda^3)} \frac{1}{1+ve} 0 - ve}{\frac{dA}{d\lambda} + ve} 0 - ve}$ Maximum A when $\lambda = 1$. MTD 2 : Second Derivative Test $\frac{dA}{d\lambda} = \frac{3(\lambda^2 - \lambda^5)}{(1+\lambda^3)^3}$ $\frac{d^2A}{d\lambda^2} = 3\left[\frac{(1+\lambda^3)^3 (2\lambda - 5\lambda^4) - (\lambda^2 - \lambda^5)(3)(1+\lambda^3)^2 (3\lambda^2)}{(1+\lambda^3)^6}\right]$ $= 3\left[\frac{4\lambda^7 - 12\lambda^4 + 2\lambda}{(1+\lambda^3)^4}\right]$ When $\lambda = 1, \frac{d^2A}{d\lambda^2} = -\frac{9}{8} < 0$ Maximum A when $\lambda = 1$.	completely so that it is easy to see and explain which are the terms that are clearly positive. Next, use the table to explain the behavior of $1 - \lambda^3$ in the vicinity of $\lambda = 1$. In using the second derivative test, one can use the GC to evaluate the value at the stationary point.
(b) [4]	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}\lambda} \cdot \frac{\mathrm{d}\lambda}{\mathrm{d}x} = \frac{\left(1+\lambda^3\right)\left(2\lambda\right)-\lambda^2\left(3\lambda^2\right)}{\left(1+\lambda^3\right)^2} \cdot \frac{\left(1+\lambda^3\right)^2}{1-2\lambda^3} = \frac{2\lambda-\lambda^4}{1-2\lambda^3}$ $\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{\mathrm{d}y}{\mathrm{d}x} \cdot \frac{\mathrm{d}x}{\mathrm{d}t} = \frac{2\lambda-\lambda^4}{1-2\lambda^3} \cdot \frac{\mathrm{d}x}{\mathrm{d}t}$ When $\lambda = 1$, $\frac{\mathrm{d}y}{\mathrm{d}t} = (-1)(1) = -1$ unit per sec.	Clear working of how chain rule is applied is expected. Where the relation between $\frac{dy}{dt}, \frac{dy}{dt}, \frac{dx}{dt}$
	Rate of change of the y-coordinate of the point P at this instant is -1 unit	is not stated

per second or Rate of decrease of the <i>y</i> -coordinate of the point <i>P</i> at this instant is 1 unit per second.	explicitly, marks cannot be awarded.
General comments for both parts : Poor algebraic manipulation skills led to loss of marks for many students. Poor handwriting makes it extremely difficult for the marker to follow the process. For example, it was difficult to make out if the written is x or λ . to note that if the marker is not able to read the solution clearly, marks may awarded.	thought It is important 7 not be

5 (a) Find
$$\sum_{r=0}^{n} [(n+2)r+n]$$
, giving your answer in terms of *n*. [3]

[You may use the result $\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$ for the rest of this question.]

- (b) By writing down the first two and the last two terms in the series, find $\sum_{r=1}^{n} (r+2)^3$, giving your answer in terms of *n*. [3]
- (c) Find $1^3 2^3 + 3^3 4^3 + 5^3 6^3 + ... + (2n-1)^3 (2n)^3$, giving your answer in terms of *n*. [3]

	Solution	Comments
(a) [3]	$\sum_{r=0}^{n} [(n+2)r+n]$ $= \frac{n+1}{2} [n+n(n+2)+n]$ $= \frac{n+1}{2} (n^{2}+4n)$ $= \frac{n}{2} (n+1)(n+4)$ Alternative $\sum_{r=0}^{n} [(n+2)r+n] = \sum_{r=0}^{n} (n+2)r + \sum_{r=0}^{n} n$ $= (n+2)\sum_{r=1}^{n} r+(n+1)n$ $= (n+2) \cdot \frac{n}{2} (n+1)+(n+1)n$ $= \frac{n}{2} (n+1)(n+4)$	Many do not recognize that the entire series can be seen as an Arithmetic series with n+1 terms, first term n and common difference of $n+2$. Common mistakes: • Lack of basic knowledge of arithmetic or geometric series. • Lack of understanding of number of terms represented by the summation notation. • Carelessness in applying sum of terms of arithmetic series correctly, such as • $\sum_{r=0}^{n} n = n^2$ • $\sum_{r=0}^{n} [(n+2)r+n] = \frac{n}{2} [n+n(n+2)+n]$ • Factorising r "out of Σ notation" $\operatorname{Eg} \sum_{r=0}^{n} (n+2)r = r \sum_{r=0}^{n} (n+2)$
(b) [3]	$\sum_{r=1}^{n} (r+2)^{3} = 3^{3} + 4^{3} + \dots + (n+1)^{3} + (n+1)^{3}$ $\sum_{r=1}^{n} (r+2)^{3} = \sum_{r=3}^{n+2} r^{3}$ $= \sum_{r=1}^{n+2} r^{3} - 1^{3} - 2^{3}$ $= \frac{1}{4} (n+2)^{2} (n+3)^{2} - 9$	$(-2)^{3}$ To demonstrate understanding of representation of series in r^{3} form, students should present the first and last 2 terms in a series instead of simply listing out isolated individual terms .

r		~ 1 1 111
		Students should learn to interpret the series as a difference of 2 sums. Some common mistakes and misconceptions are: • $\sum_{r=1}^{n} (r+2)^3 = \frac{1}{4} (n+2)^2 (n+3)^2$ • $\sum_{r=1}^{n} (r+2)^3 = \sum_{r=-1}^{n-2} (r+2)^3$ • $\sum_{r=1}^{n} (r+2)^3 = \sum_{r=3}^{n} r^3 - 1 - 8$ • $\sum_{r=1}^{n} (r+2)^3 = \sum_{r=1}^{n} r^3 - 27 - 64$ • Wrongly identifying the series as geometric or arithmetic series and then applying sum of terms formula. • Not following instructions to write down the first two and last two terms in the series but instead attempt to expand $(r+2)^3$ to work on the summation of terms, which is more tedious. Several students expanded $(r+2)^3$ wrongly. Some examples: $(r+2)^2 = r^2 + 2r + 4$ $(r+2)^3 = r^3 + 2^3$
(c) [3]	$1^{3} - 2^{3} + 3^{3} - 4^{3} + 5^{3} - 6^{3} + \dots + (2n-1)^{3} - (2n)^{3}$ $= \sum_{r=1}^{2n} r^{3} - 2\sum_{r=1}^{n} (2r)^{3}$ $= \sum_{r=1}^{2n} r^{3} - 16\sum_{r=1}^{n} r^{3}$ $= \frac{1}{4} (2n)^{2} (2n+1)^{2} - 16\left[\frac{1}{4}n^{2}(n+1)^{2}\right]$ $= n^{2} (2n+1)^{2} - 4n^{2} (n+1)^{2}$ $= n^{2} \left[(2n+1)^{2} - (2n+2)^{2} \right]$ $= -n^{2} (4n+3)$	Mistakes in series representation include different variants of the following: $\sum_{r=1}^{2n} r^3 - \sum_{r=1}^{n} (2r)^3$ $\sum_{r=1}^{2n} r^3 - 2\sum_{r=1}^{n} 2r^3$ $\sum_{r=1}^{2n} n^3 - 2\sum_{r=1}^{n} 2n^3$ $\sum_{r=1}^{n} (2n-1)^3 - \sum_{r=1}^{n} (2n)^3$ Examples of misuse of formulae during simplification: $\sum_{r=1}^{n} (2r-1)^3 \neq \frac{1}{4} (2n-1)^2 (2n)^2$

×	$\sum_{r=1}^{n} (2r)^{3} \neq \frac{1}{4} (2n)^{2} (2n+1)^{2}.$ Some other mistakes involved in simplification are shown below: $\sum_{r=1}^{2n} r^{3} (-1)^{r+1} = \sum_{r=1}^{2n} (-1)^{r+1} \sum_{r=1}^{2n} r^{3} \text{ or}$ $\sum_{r=1}^{2n} r^{3} (-1)^{r+1} = (-1)^{r+1} \sum_{r=1}^{2n} r^{3}$
	$\sum_{r=1}^{2n} r^3 \left(-1\right)^{r+1} = \left(-1\right)^{r+1} \sum_{r=1}^{2n} r^3$

- 6 It is given that $e^y = 1 + \sin 3x$.
 - (a) Show that

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2 + 9 = 9\mathrm{e}^{-y}.$$

Hence find the series expansion of y in ascending powers of x, up to and including the term in x^3 , simplifying your answer. [5]

(b) Using standard series from the List of Formulae, verify that the series expansion obtained in **part (a)** is correct. [3]

	Solution	Comments
(a) [5]	$e^{y} = 1 + \sin 3x (1)$ Differentiating w.r.t. x, $e^{y} \frac{dy}{dx} = 3\cos 3x$ Differentiating w.r.t. x, $e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \frac{dy}{dx} \frac{dy}{dx} = -9\sin 3x = -9(e^{y} - 1) \text{ (from (1))}$ $e^{y} \frac{d^{2}y}{dx^{2}} + e^{y} \left(\frac{dy}{dx}\right)^{2} + 9e^{y} = 9$ Dividing throughout by e^{y} , $\frac{d^{2}y}{dx^{2}} + \left(\frac{dy}{dx}\right)^{2} + 9 = 9e^{-y} \text{ (shown)}$ Differentiating w.r.t. x, $\frac{d^{3}y}{dx^{3}} + 2\frac{dy}{dx}\frac{d^{2}y}{dx^{2}} = 9e^{-y} \left(-\frac{dy}{dx}\right)$	The most efficient option was to use the given equation as the starting point to find the first derivative, which many candidates did. Some candidates chose to make y the subject before differentiating, a method that proved to be inefficient and prone to errors. It should be emphasized that even if it is successful in proving the given statement this instance, candidates should learn to utilize the efficient method for future questions.
	When $x = 0$, $y = 0$; $\frac{dy}{dx} = 3$; $\frac{d^2 y}{dx^2} = -9$; $\frac{d^3 y}{dx^3} = 27$ $\Rightarrow y = 0 + 3x + \frac{-9}{2!}x^2 + \frac{27}{3!}x^3 +$ $\therefore y = 3x - \frac{9}{2}x^2 + \frac{9}{2}x^3 +$	A number of candidates made errors in differentiation e.g. $\frac{d}{dx}9e^{-y} = -9ye^{-y}\frac{dy}{dx},$ $\frac{d}{dx}9e^{-y} = -9e^{-y},$ $\frac{d}{dx}9e^{-y} = 9e^{-y}\frac{dy}{dx}.$

(b)	$e^{y} = 1 + \sin 3r$	In this question.
[3]		candidates were
I. 1	$\Rightarrow y = \ln(1 + \sin 3x)$	pointed to the
		expansions in the List
	$= \ln \left(1 + \left(3x - \frac{(3x)^3}{(3x)^3} \right) + \dots \right)$	of Formulae and most
	$\prod_{i=1}^{n} \binom{2n}{3!} \binom{2n}{3!}$	candidates made use
	$((2)^3)^2$ $((2)^3)^3$	of these formulae.
	$(3x - \frac{(3x)^3}{3x $	The most common
	$-\left(3x-(3x)^{3}\right)-\left(3x-3!\right)+\left(3x-3!\right)$	approach was to write
	$-\left(\frac{3x-\frac{3}{3!}}{3!}\right)^{-\frac{3}{2}}$	down the Maclaurin
	27.3 0.2 27.3	expansion for $\sin(3x)$
	$=3x-\frac{27x}{3}-\frac{9x}{3}+\frac{27x}{3}+$	and then substitute it
	6 2 3	into the Maclaurin
	$-3r$ $9r^{2}$ $9r^{3}$	expansion for
	$-3x - \frac{1}{2}x + \frac{1}{2}x + \dots$	$\ln(1+x)$. A number of
		candidates did not go
	which is same as the expansion for y found in part (a), up to and	far enough in their
	including the term in x^3 .	expansion; the answer
		was required up to and
		including the term in
		x^3 , so it is essential to
		use
		$\sin 3x = 3x - \frac{(3x)^3}{3!} + \dots$

7 Do not use a calculator in answering this question.

(a) Given that x = 1 + 3i is a root of the equation

$$x^3 + ax^2 + 18x + b = 0,$$

find the values of the real numbers *a* and *b*, and the other roots.

(b) The complex numbers z and w satisfy the following equations.

$$w^* + z = 4 - 6i$$
$$w - 2z = 1 + 10i$$

Find z and w, giving your answers in the form c+id, where c and d are real numbers. [5]

		L J
	Solution	Comments
(a) [5]	Since $a, b \in \mathbb{R}$, then all the coefficients of the polynomial are real, complex roots will occur in conjugate pairs. Given 1+3i is a root, then 1-3i is also a root. $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1) - 3i \end{bmatrix} \begin{bmatrix} (x-1) + 3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ $x^3 + ax^2 + 18x + b = (x^2 - 2x + 10)(x + p)$ Compare coefficients of $x : 18 = -2p + 10 \implies p = -4$ $x^2 : a = p - 2 \implies a = -6$ $x^0 : b = -40$ The other roots are 4 and 1-3i.	This way of solving was chosen by the majority of students. However, a good number of them did not state the condition necessary for the existence of conjugate roots. A small number of students were also careless with their working although they know the correct method to apply. Students should also remember to answer the question explicitly, like stating what the other 2 roots are.
	Alternative: Since $x = 1 + 3i$ is a root of the given equation,	This alternative was chosen by a small portion of students of which only about

[5]

$\begin{aligned} (1+3i)^3 + a(1+3i)^2 + 18x + b = 0 \\ (1+3i)(-8+6i) + a(-8+6i) + 18(1+3i) + b = 0 \\ -8-24i + 6i - 18 - 8a + 6ai + 18 + 24i + b = 0 \\ (-8-8a+b) + (6a+36)i = 0 \end{aligned}$ Equating real and imaginary parts: $6a + 36 = 0 \Rightarrow a = -6$ $\therefore b = 8a + 8 = -40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so $1-3i$ is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix} \\ = \begin{bmatrix} (x-1)^2 - (3i)^2 \\ = x^2 - 2x + 10 \end{bmatrix}$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.		
$ \begin{array}{l} (1+3i)(-8+6i)+a(-8+6i)+18(1+3i)+b=0\\ -8-24i+6i-18-8a+6ai+18+24i+b=0\\ (-8-8a+b)+(6a+36)i=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$(1+3i)^3 + a(1+3i)^2 + 18x + b = 0$	half of them were
-8-24i+6i-18-8a+6ai+18+24i+b=0 $(-8-8a+b)+(6a+36)i=0$ Equating real and imaginary parts: $6a+36=0 \Rightarrow a=-6$ $\therefore b=8a+8=-40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x-(1+3i) \end{bmatrix} \begin{bmatrix} x-(1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	(1+3i)(-8+6i) + a(-8+6i) + 18(1+3i) + b = 0	able to expand out
Correctly without the (-8-8a+b)+(6a+36)i = 0 Equating real and imaginary parts: $6a+36=0 \Rightarrow a=-6$ $\therefore b=8a+8=-40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that [x-(1+3i)][x-(1-3i)] $=[(x-1)^2-(3i)^2$ $=x^2-2x+10$ Therefore, we have $x^3-6x^2+18x-40 = (x^2-2x+10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	-8-24i+6i-18-8a+6ai+18+24i+b=0	the expression
(-8-8a+b)+(6a+36)i = 0 Equating real and imaginary parts: $6a+36=0 \Rightarrow a = -6$ $\therefore b = 8a+8 = -40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number <i>k</i> . Note that $\begin{bmatrix} x-(1+3i) \end{bmatrix} \begin{bmatrix} x-(1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1)-3i \end{bmatrix} \begin{bmatrix} (x-1)+3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	0 - 2 + i + 0i - 10 - 0i + 0ii + 10 + 2 + i + 0 = 0	correctly without the
Equating real and imaginary parts: $6a + 36 = 0 \Rightarrow a = -6$ $\therefore b = 8a + 8 = -40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that [x - (1+3i)][x - (1-3i)] = [(x-1) - 3i][(x-1) + 3i] $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x - k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	(-8 - 8a + b) + (6a + 36)i = 0	and of calculators.
$6a+36=0 \Rightarrow a = -6$ $\therefore b = 8a+8 = -40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x-(1+3i) \end{bmatrix} \begin{bmatrix} x-(1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1)-3i \end{bmatrix} \begin{bmatrix} (x-1)+3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	Equating real and imaginary parts:	Students will lose
$\therefore b = 8a + 8 = -40$ Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number <i>k</i> . Note that $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1) - 3i \end{bmatrix} \begin{bmatrix} (x-1) + 3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x - k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	$6a + 36 = 0 \Longrightarrow a = -6$	credit if they did not
Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1) - 3i \end{bmatrix} \begin{bmatrix} (x-1) + 3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	$\therefore b = 8a + 8 = -40$	show explicit
Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1) - 3i \end{bmatrix} \begin{bmatrix} (x-1) + 3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x - k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.		working for the
all real numbers, the complex roots occur in conjugate pairs and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x-(1+3i) \end{bmatrix} \begin{bmatrix} x-(1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1)-3i \end{bmatrix} \begin{bmatrix} (x-1)+3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	Since the coefficients of the equation $x^3 + ax^2 + 18x + b = 0$ are	expansion of the
and so 1-3i is also a root. Let the third root be a real number k. Note that $\begin{bmatrix} x-(1+3i) \end{bmatrix} \begin{bmatrix} x-(1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1)-3i \end{bmatrix} \begin{bmatrix} (x-1)+3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	all real numbers, the complex roots occur in conjugate pairs	term $(1+3i)^3$ as it
k. Note thatwas used. Some students wasted precious time when they also substituted $1-3i$ into the equation and $expanded$ it out too before equating real and imaginary parts. $k.$ Note that $[x-(1+3i)][x-(1-3i)]$ $= [(x-1)-3i][(x-1)+3i]$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$.was used. Some students wasted precious time when they also substituted $1-3i$ into the equation and expanded it out too before equating real and imaginary parts.So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4 .	and so $1-3i$ is also a root. Let the third root be a real number	meant a calculator
Note that Note that $\begin{bmatrix} x - (1+3i) \end{bmatrix} \begin{bmatrix} x - (1-3i) \end{bmatrix}$ $= \begin{bmatrix} (x-1) - 3i \end{bmatrix} \begin{bmatrix} (x-1) + 3i \end{bmatrix}$ $= (x-1)^2 - (3i)^2$ $= x^2 - 2x + 10$ Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x-k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4 .	k	was used. Some
Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x - k)$. So $a = -6$, $b = -40$ and the other roots are $1 - 3i$ and 4 .	Note that	students wasted
$\begin{bmatrix} x - (1 + 3i) \end{bmatrix} \begin{bmatrix} x - (1 - 3i) \end{bmatrix}$ $= \begin{bmatrix} (x - 1) - 3i \end{bmatrix} \begin{bmatrix} (x - 1) + 3i \end{bmatrix}$ $= (x - 1)^{2} - (3i)^{2}$ $= x^{2} - 2x + 10$ Therefore, we have $x^{3} - 6x^{2} + 18x - 40 = (x^{2} - 2x + 10)(x - k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1 - 3i$ and 4 .	$\begin{bmatrix} \mathbf{r} - (1 + 3\mathbf{i}) \end{bmatrix} \begin{bmatrix} \mathbf{r} - (1 - 3\mathbf{i}) \end{bmatrix}$	precious time when
$= [(x-1)-3i][(x-1)+3i]$ $= (x-1)^{2} - (3i)^{2}$ $= x^{2} - 2x + 10$ Therefore, we have $x^{3} - 6x^{2} + 18x - 40 = (x^{2} - 2x + 10)(x-k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	$\left[x - (1+51) \right] \left[x - (1-51) \right]$	they also substituted
$= (x-1)^{2} - (3i)^{2}$ $= x^{2} - 2x + 10$ Therefore, we have $x^{3} - 6x^{2} + 18x - 40 = (x^{2} - 2x + 10)(x - k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.	$= \left[(x-1) - 3i \right] \left[(x-1) + 3i \right]$	1-3i into the
$= (x-1)^{-} (51)$ $= x^{2} - 2x + 10$ Therefore, we have $x^{3} - 6x^{2} + 18x - 40 = (x^{2} - 2x + 10)(x - k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.	$(1)^2 (2!)^2$	equation and
$= x^{2} - 2x + 10$ Therefore, we have $x^{3} - 6x^{2} + 18x - 40 = (x^{2} - 2x + 10)(x - k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1 - 3i$ and 4 .	=(x-1) - (31)	expanded it out too
Therefore, we have $x^3 - 6x^2 + 18x - 40 = (x^2 - 2x + 10)(x - k)$. Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	$=x^{2}-2x+10$	before equating real
$x^{3}-6x^{2}+18x-40 = (x^{2}-2x+10)(x-k).$ Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are 1-3i and 4.	Therefore, we have	and imaginary parts.
Comparing constants, we have $k = 4$. So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.	$x^{3}-6x^{2}+18x-40 = (x^{2}-2x+10)(x-k).$	
So $a = -6$, $b = -40$ and the other roots are $1 - 3i$ and 4.	Comparing constants, we have $k = 4$.	
So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.		
	So $a = -6$, $b = -40$ and the other roots are $1-3i$ and 4.	

 $w^* + z = 4 - 6i$ ----- (1) **(b)** This question only required students to [5] w - 2z = 1 + 10i ----- (2) solve the set of simultaneous $2(1) + (2): 2w^* + w = 9 - 2i$ equations by Sub w = c + di: 3c - di = 9 - 2ieliminating one variable from the Comparing real part: $3c = 9 \implies c = 3$ equations, set the Comparing imaginary part: d = 2remaining complex $\therefore w = 3 + 2i$ number to the form c + di and then From (1): z = 4 - 6i - (3 - 2i) = 1 - 4iequate real and imaginary parts to solve for the values. $\therefore w = 3 + 2i, z = 1 - 4i$ It was generally well done except for the Alternative 1 few students who Substitute $z = 4 - 6i - w^*$ into (2): used the wrong $w - 2(4 - 6i - w^*) = 1 + 10i$ definition of w^* as $\Rightarrow 2w^* + w = 9 - 2i$ well as those who were careless with Sub w = c + di: 3c - di = 9 - 2itheir working. Comparing real part: $3c = 9 \implies c = 3$ Comparing imaginary part: d = 2 $\therefore w = 3 + 2i$ From (1): z = 4 - 6i - (3 - 2i) = 1 - 4i $\therefore w = 3 + 2i, z = 1 - 4i$ Alternative 2 This simple Let w = a + bi and z = g + hi. Then we have substitution and a-bi+g+hi=4-6icomparison method surprised many $\Rightarrow a + g = 4$ ----- (1) students with its h - b = -6 ----- (2) simple calculations as most students and a+bi-2(g+hi) = 1+10ionly attempted this $\Rightarrow a - 2g = 1$ ----- (3) method after they were unable to solve b - 2h = 10 ----- (4) by other methods. Students who From (1) and (3), $3g = 3 \Rightarrow g = 1$ and a = 3. declared their use of From (2) and (4), $-h = 4 \Rightarrow h = -4$ and b = 2. GC of course lose some marks. $\therefore w = 3 + 2i$ and z = 1 - 4i.

8 (a) The diagram shows the curve y = f(x) with a maximum point at C(4,3). The curve crosses the axes at the points A(0,2) and B(3,0). The lines x = 2 and y = 0 are the asymptotes of the curve.

Sketch the graph of y = f'(x), clearly stating the equations of the asymptotes and the coordinates of the points corresponding to *A*, *B* and *C* where appropriate. [3]

- (b) The curve C_1 has equation $y = \frac{ax^2 + bx 8}{x 2}$, where *a* and *b* are constants. It is given that C_1 has an asymptote y = 3 2x.
 - (i) State the value of a and show that b = 7. [3]
 - (ii) Sketch C_1 , clearly stating the equations of any asymptotes, the coordinates of any stationary points and of any points where C_1 crosses the axes. [3]
 - (iii) The curve C_1 is transformed by a translation of 2 units in the negative *x*-direction, followed by a stretch with scale factor $\frac{1}{2}$ parallel to the *y*-axis, to form the curve C_2 . Find the equation of C_2 . [2]

	Solution	Comments
(a) [3]	y = f'(x) $y = 0$ $y = f'(x)$ $C'(4, 0)$ $x = 2$	Students are reminded that the corresponding points of A and B are not (0,2) and (3,0) respectively as we do not know the gradient of the original graph at these points.
(b)(i) [3]	a = -2 By long division, $y = (b - 4) - 2x + \frac{2b - 16}{x - 2}$. $b - 4 = 3 \Rightarrow b = 7 \text{ (shown)}$ Alternative $y = \frac{ax^2 + bx - 8}{x - 2} = 3 - 2x + \frac{A}{x - 2}$ $= \frac{(3 - 2x)(x - 2) + A}{x - 2}$ $= \frac{(3 - 2x)(x - 2) + A}{x - 2}$ Comparing the numerators, Coefficient of x^2 : $a = -2$ Coefficient of x^2 : $b = 3 + 4 = 7$	Many students erroneously wrote (3-2x)(x-2) = $ax^2 + bx - 8$ Note that this is not true as the constant differs. However, students were awarded marks based on the correct method of comparing coefficients of the x^2 and x term. There were many careless mistakes in
	<u>Note</u> Coefficient of x^0 : $-8 = -6 + A \Longrightarrow A = -2$	dealing with long division too.

(b)(ii) [3]	y = $\frac{-2x^2 + 7x - 8}{x - 2}$ (0, 4) (1, 3) (1, 3	Students are reminded to read the question carefully and denote all axial intercepts and turning points clearly on the graph.
(b)(iii) [2]	$y = 3 - 2x - \frac{2}{x - 2}$ Replace x with x + 2 $y = 3 - 2(x + 2) - \frac{2}{(x + 2) - 2}$ $\Rightarrow y = -1 - 2x - \frac{2}{x}$ Replace y with 2y $2y = -1 - 2x - \frac{2}{x}$ $\Rightarrow y = -\frac{1}{2} - x - \frac{1}{x}$	Many careless mistakes were present in the working for this part, resulting in wrong final answers. Also, students should simplify their answers.

9 The planes p and q have equations

$$\mathbf{r} = (2 + \lambda - 2\mu)\mathbf{i} + (-3\lambda + \mu)\mathbf{j} + (3 - \lambda + 2\mu)\mathbf{k}$$
 and $\mathbf{r} \cdot \begin{pmatrix} a \\ -1 \\ b \end{pmatrix} = 1$ respectively,

where a and b are constants and λ and μ are parameters.

The line *l* passes through the point (5,4,0) and is parallel to the vector $-2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$. The planes *p* and *q* meet in the line *l*.

(a) Show that
$$a = 1$$
 and $b = \frac{1}{2}$. [2]

- (b) Find the exact acute angle between the planes p and q. [3]
- (c) Find the distance from the point A(2,0,3) to the plane q. Hence deduce the shortest distance from A to l. [4]

The plane q is reflected about the plane p to obtain the plane q'.

(d) Find a cartesian equation of the plane q'.

[3]

10 It is given that

$$f(x) = \begin{cases} \frac{1}{2}x^2, & \text{for } 1 \le x < 2, \\ \frac{1}{4}(-3x+14), & \text{for } 2 \le x < 4, \end{cases}$$

and that f(x) = f(x+3) for all real values of x.

(a) State the value of
$$f(0)$$
. [1]

- (b) Sketch the graph of y = f(x) for $0 \le x \le 5$. [3]
- (c) The function g is given by $g(x) = \frac{4}{3}|x-2|$ for $x \in \mathbb{R}$. By sketching the graph of y = g(x) on the same diagram as in **part (b)**, solve the inequality f(x) > g(x). [4]
- (d) The function h is given by $h(x) = \sqrt{3}\sin(\pi x) + \cos(\pi x) + 1$ for $0 \le x \le 2$. Explain why the composite function hf exists and find its range in exact form. [4]

	Solution	Comments
(a) [1]	By taking $x = 0$ in $f(x) = f(x+3)$,	Note that since 3 is in the interval [2,4], to find f(3), we
[1]	$f(0) = f(3) = \frac{1}{4} [-3(3) + 14] = \frac{3}{4}.$	should use
		$f(x) = \frac{1}{4} \left(-3x + 14 \right),$
		NOT $f(x) = \frac{1}{2}x^2$.
(b)		Note that the question asked
[3]	y = g(x)	$0 \le x \le 5$. Many however
		sketch the graph from
	$\frac{\delta}{3}$	$1 \le x \le 4$ only.
		Note that all extreme points and endpoints should be
	$\left[0,\frac{5}{4}\right]$	labelled as well.
	y = f(x)	
	$(1,\frac{1}{2})$	
	0 (2,0) x	
(c)	Finding the <i>x</i> -coordinates of the points of intersection A	Question was generally
[4]	and B,	well done even if the graphs from (b) were
	Point A:	not drawn correctly

	$\frac{4}{3}(2-x) = \frac{1}{2}x^{2}$ $3x^{2} + 8x - 16 = 0$ $(3x-4)(x+4) = 0$ $x = \frac{4}{3} \text{ or } x = -4 \text{ (reject since } 1 < x < 2 \text{ at } A\text{)}$ Point B: $\frac{4}{3}(x-2) = -\frac{3}{4}x + \frac{7}{2}$ $16(x-2) = -9x + 42$ $x = \frac{74}{25} \text{ or } 2.96$ Hence the solution to the inequality is $\left(\frac{4}{2}, \frac{74}{24}\right)$.	since the intersection points could be solved using GC. However, many did not label the <i>y</i> -intercept for the graph of $y=g(x)$.
(d)		Range of f must be
(d) [4]	From the graph above, $R_f = \left[\frac{1}{2}, 2\right]$ and $D_h = [0, 2]$. Since $R_f \subseteq D_h$, hf exists. $y \qquad \left(\frac{1}{2}, \sqrt{3} + 1\right) \qquad y = h(x)$ $Q \qquad (2, 2)$ R_f $Q \qquad 1$ $Q \qquad (2, 2)$ R_f $Q \qquad 1$ $Q \qquad (2, 2)$ R_f $Q \qquad (2, 2)$ R_f $Q \qquad (2, 2)$ $Q \qquad (2, 2)$	Range of f must be correctly stated when proving that hf exists. Another common mistake when finding the range of composite function hf is to claim that it is $\left[h(2),h\left(\frac{1}{2}\right)\right]$. It would be advisable to sketch the graph to determine the correct range. Note that question also asked for range in EXACT form, so there should not be any rounded off values or 3s.f.

11 A financial institution, Future Investments Inc., has introduced a new investment scheme. The scheme pays a compound interest of 5% per annum at the end of the year, based on the amount in the account at the beginning of each year.

John and Sarah are both interested in this scheme.

- (a) John invests x at the start of the first year and a further x on the first day of each subsequent year. He chooses to leave the money in his account for the interest to accumulate.
 - (i) Write down the amount in John's account, including the interest, at the end of the first year. [1]
 - (ii) Show that John will have a total of $21x(1.05^n 1)$ in his account at the end of *n* years. [3]
 - (iii) If John invests \$10 000 at the start of every year, find the number of years for the total in his account to first exceed \$500 000. Determine if this happens at the start or at the end of that year. [4]
- (b) Sarah invests \$6000 at the start of the first year. On the first day of each subsequent year, she invests \$400 more than the amount invested at the start of the previous year.
 - (i) Explain why the amount in Sarah's account at the end of *n* years can be given by $\sum_{r=1}^{n} [a+b(r-1)](1.05)^{n-(r-1)}$, and determine the values of the constants *a* and *b*. [2]
 - (ii) Hence determine the number of complete years for the total amount in her account to first exceed \$500 000. [2]

	Solution			Comments	
For this	question	, it is especially handy	to know the formula for computi	ng total amount	
obtaine	batimed after investing P for n units of time in an account which awards compound interest				
at <i>r</i> % p	at r% per unit time, given by $P\left(1+\frac{r}{100}\right)^n$ assumed knowledge				
(a)(i)	Amount	in John's account, inc	luding the interest, at the end of	Final answer should	
[1]	the first	year 1s $$1.05x$.		be simplified. For eq. $r \pm 0.05r$ is not	
				acceptable as it	
				should be simplified	
(**)				to 1.05x	
(ii)	Year	Amt at Beginning	Amt at the End	As this part is a "show" question	
[3]	2	$\frac{x}{1.05r+r}$	(1.05x) $(1.05x + x)(1.05)$	with the final form	
	2	1.034 + 4	(1.03x + x)(1.03)	$21x(1.05^n-1)$	
	2	1.05 ² 1.05	$=1.05x+1.05^{2}x$	provided derivation	
	5	$1.05^{2}x + 1.05x + x$	$(1.05^2x+1.05x+x)1.05$	of the series (*)	
			$= 1.05x + 1.05^2x + 1.05^3x$	needs to be included	
	_ 1			in the working to	
	Total amount in the account at the end of n years earn full credit.			eann nun creant.	
	$= 1.05x + 1.05^{2}x + 1.05^{3}x + \dots + 1.05^{n}x \dots (*)$				
	$=\frac{1.05x(1.05^n-1)}{1.05^n-1}$				
	1.	05-1			
	=21x(1	$.05^{n}-1$)			
(iii)	21(1000	$(1.05^n - 1) > 500000$		Students should	
[4]	1.05%	50		formulate the	
	$\Rightarrow 1.05^{n}$	$\geq \frac{1}{21} + 1$		it. Solving	
	1	(71)		$21(10000)(1.05^n - 1) = 500000$	
	$ \rightarrow n > $	$n\left(\frac{1}{21}\right) \sim 24.967$		and obtaining 24.967	
	$\rightarrow n \ge 1$	$n(1.05) \sim 24.967$		does not necessarily	
				elisure least <i>n</i> is 25.	
	Alterna	tive : Use GC table			
	n	$21(10000)(1.05^n - 1)$		Marks are awarded	
	24	467271 🏄 500000		for providing the	
	25	501135 > 500000		using the GC method	
	At the st	art of 25th year total =	= \$467271 + \$10000 <\$500000		
		501135	φτ07271 - φ10000 -φ300000.	You are expected to	
	Or total	$=$ $\frac{1.05}{1.05} \approx 477271 < 3$	500.000	of beginning or end	
			-	of the year	
	The tota	l in his account first ex	ceeds \$500 000 at the <u>end</u> of		
	the <u>25th</u>	year.			

ed due to			
at the end			
$(1.05)^{n-1}$			
$00)](1.05)^{n-2}$			
(-1)] $(1.05)^{n-(n-1)}$			
fter n n-(r-1)			
400(1.05)			
5800(1.05)			
The total amount at the end of <i>n</i> years will be			
00, b = 400.			
This is a GC exercise (refer to Method 1 and 2 for GC screenshots). Students are not expected to solve it			
algebraically.			
These values obtained from			
GC are essential in your			
working and should be included in your solution			
together with the right			
conclusion, to gain full credit.			

