



EUNOIA JUNIOR COLLEGE JC2 MID-YEAR EXAMINATIONS 2022 General Certificate of Education Advanced Level Higher 1

## **H1 PHYSICS**

PAPER 1 MARK SCHEME

Jul 2022

| Question | Key | Question | Key | Question | Key |
|----------|-----|----------|-----|----------|-----|
| 1        | D   | 6        | С   | 11       | С   |
| 2        | Α   | 7        | Α   | 12       | С   |
| 3        | С   | 8        | Α   | 13       | Α   |
| 4        | В   | 9        | С   | 14       | Α   |
| 5        | Α   | 10       | С   | 15       | Α   |
|          |     |          |     |          |     |
| 16       | D   | 21       | D   | 26       | В   |
| 17       | В   | 22       | В   | 27       | D   |
| 18       | В   | 23       | С   | 28       | D   |
| 19       | В   | 24       | Α   | 29       | D   |
| 20       | Α   | 25       | D   | 30       | D   |

| 1 | Ans: D                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | $\rho = \frac{m}{wlt} = \frac{51.6}{(100.0)(10.0)(0.02)} = 2.58 \text{ g cm}^{-3}$                                                                                                                                                                                                                                                                                                                                     |
|   | $\frac{\Delta\rho}{\rho} = \frac{\Delta m}{m} + \frac{\Delta w}{w} + \frac{\Delta l}{l} + \frac{\Delta t}{t}$ $\frac{\Delta\rho}{2.58} = \frac{0.1}{51.6} + \frac{0.1}{10.0} + \frac{0.1}{100.0} + \frac{0.01}{0.20}$ $\frac{\Delta\rho}{2.58} = 0.06293798$ $\Delta\rho = 0.16238 = 0.2 \text{ g cm}^{-3} \text{ (to 1 s.f.)}$ $\rho = 2.58 = 2.6 \text{ g cm}^{-3} \text{ (since } \Delta\rho \text{ is to 1 d.p.)}$ |
| 2 | Ans: A                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | $v = k \left(\frac{\Delta P}{\rho}\right)^n$                                                                                                                                                                                                                                                                                                                                                                           |
|   | LHS units: $[v] = m s^{-1}$                                                                                                                                                                                                                                                                                                                                                                                            |
|   | RHS units: $[k\left(\frac{\Delta P}{\rho}\right)^n] = \left(\frac{kg  m  s^{-2}  m^{-2}}{kg  m^{-3}}\right)^n = (s^{-2}  m^2)^n$                                                                                                                                                                                                                                                                                       |
|   | Therefore n = 1/2                                                                                                                                                                                                                                                                                                                                                                                                      |

| 3  | Ans: C                                                                                                                                                                                                             |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Accuracy refers to the degree of agreement between values of measurements and the actual or accepted value.                                                                                                        |
|    | Precision refers to the degree of agreement among values of measurements themselves.                                                                                                                               |
|    | The measurements of 891 mm and 892 mm differ by more than 1 mm from the true value of 895 mm. Hence the measurements are not accurate to within 1 mm.                                                              |
|    | As the measurements of 891 mm and 892 mm differ by 1 mm among themselves, they are precise to within 1 mm.                                                                                                         |
| 4  | Ans: B                                                                                                                                                                                                             |
| 5  | Ans: A                                                                                                                                                                                                             |
| 9  | Ans: C<br>He decelerated in one direction and accelerated in the opposite direction at the<br>same rate. Therefore the acceleration vector should be in the same direction before<br>and after he made the U-turn. |
| 7  | Ans: A<br>Horizontal component:<br>$s_x = v_x t$<br>$900 = 450 cos(31.6^{\circ}) t$<br>t = 2.35 s<br>Vertical component:                                                                                           |
|    | $s_{y} = u_{y}t + \frac{1}{2}a_{y}t^{2}$<br>$s_{y} = 450\sin(31.6^{\circ})(2.35) + \frac{1}{2}(-9.81)(2.35)^{2}$                                                                                                   |
| •  | $s_y = 527 \text{ m}$                                                                                                                                                                                              |
| 8  | Ans: A<br>Change in momentum<br>= Area under F-t graph<br>= $10 \times (4 + 6) / 2 = 50 \text{ N s}$                                                                                                               |
| 9  | Ans: C<br>Kinetic Energy = $p^2/2m$<br>Since both M and m have the same Kinetic Energy, $p^2 \alpha m$<br>$\therefore \frac{p_M^2}{p_m^2} = \frac{M}{m}$<br>$\frac{p_M}{p_m} = \sqrt{\frac{M}{m}}$                 |
| 10 | Ans: C<br>Since the ball is momentarily stopped, the resultant force cannot be zero. The<br>resultant force is upward since the ball is undergoing compression.                                                    |

| 11 | Ans: C                                                                                                                                                                                                                         |  |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|    | For elastic collision,                                                                                                                                                                                                         |  |  |  |
|    | Relative speed of approach = relative speed of separation                                                                                                                                                                      |  |  |  |
|    | $V_2 - V_1 = U_1 - U_2$                                                                                                                                                                                                        |  |  |  |
|    | (where the sign conventions of $U_1$ , $U_2$ , $V_1$ , $V_2$ are to the right)                                                                                                                                                 |  |  |  |
|    | Hence $W_{i} = (-W_{i}) \equiv V_{i} = (-W_{i})$                                                                                                                                                                               |  |  |  |
|    | Hence $\mathbf{u}_{\mathbf{x}} = (-\mathbf{u}_{\mathbf{y}}) = \mathbf{v}_{\mathbf{y}} = (-\mathbf{v}_{\mathbf{x}})$<br>$\mathbf{u}_{\mathbf{x}} = \mathbf{u}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} + \mathbf{v}_{\mathbf{x}}$ |  |  |  |
|    | $a_x \cdot a_y \cdot v_x \cdot v_y$                                                                                                                                                                                            |  |  |  |
| 12 | Ans: C                                                                                                                                                                                                                         |  |  |  |
| 13 | Ans: A                                                                                                                                                                                                                         |  |  |  |
|    | $\Sigma \tau = 0$                                                                                                                                                                                                              |  |  |  |
|    | Normal reaction from surface can be balanced by weight.                                                                                                                                                                        |  |  |  |
|    | Hence $\Sigma F = 0$                                                                                                                                                                                                           |  |  |  |
| 14 | Ans: A                                                                                                                                                                                                                         |  |  |  |
|    | Taking moments about A:                                                                                                                                                                                                        |  |  |  |
|    | $M \alpha \cos 30^{\circ} (1 0) = 4.0 \alpha (0.60)$                                                                                                                                                                           |  |  |  |
|    | M = 2.8  kg                                                                                                                                                                                                                    |  |  |  |
|    | <u></u>                                                                                                                                                                                                                        |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
| 15 | Ans: A                                                                                                                                                                                                                         |  |  |  |
|    | The 3 forces acting on the rod is weight, F and the hinge force                                                                                                                                                                |  |  |  |
|    | For aquilibrium, all 3 forces must pass through a common point (concurrent) and                                                                                                                                                |  |  |  |
|    | form a closed triangle                                                                                                                                                                                                         |  |  |  |
|    | ionn a closed thangle.                                                                                                                                                                                                         |  |  |  |
| 16 | Ans: D                                                                                                                                                                                                                         |  |  |  |
|    | Work Done = Increase in GPE = <i>mgh</i>                                                                                                                                                                                       |  |  |  |
|    | = 200 (9.81)(15)                                                                                                                                                                                                               |  |  |  |
|    | = 29 430 J                                                                                                                                                                                                                     |  |  |  |
|    | Power Output = $29430/60$ = $490.5$ W                                                                                                                                                                                          |  |  |  |
|    | Efficiency = Power output/ Power input                                                                                                                                                                                         |  |  |  |
|    | 0.03 - 490.37 Fowel input<br>Power Input = 490.5 / 0.65 = 750 W/                                                                                                                                                               |  |  |  |
|    | 1 ower input = 400.07 0.00 = 700 W                                                                                                                                                                                             |  |  |  |
| 17 | Ans: B                                                                                                                                                                                                                         |  |  |  |
|    | Lorry is accelerated from rest to a speed of 100 km h <sup>-1</sup> .                                                                                                                                                          |  |  |  |
|    | Work done by lorry's engine = increase in lorry's K.E.                                                                                                                                                                         |  |  |  |
|    | Friction has to be ignored as minimum time is to be considered                                                                                                                                                                 |  |  |  |
|    | $Dt = \frac{1}{2}mm^2$                                                                                                                                                                                                         |  |  |  |
|    | $Pt = \frac{1}{2}mv$                                                                                                                                                                                                           |  |  |  |
|    | $t = \frac{mv^2}{2P}$                                                                                                                                                                                                          |  |  |  |
|    | where $v = 100 \text{ km} \text{ h}^{-1} = 27.78 \text{ m} \text{ s}^{-1}$                                                                                                                                                     |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
|    | $\therefore t = \frac{(2000)27.78^2}{2\times 50000} = 15.4 \text{ s}$                                                                                                                                                          |  |  |  |
|    | 2×50000                                                                                                                                                                                                                        |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |
|    |                                                                                                                                                                                                                                |  |  |  |

| 18 | Ans: B                                                                                                                      |
|----|-----------------------------------------------------------------------------------------------------------------------------|
|    | Efficiency of LED = $\frac{(8 \times 3600) - (3.4 \times 1055)}{(8 \times 3600) - (3.4 \times 1055)} \times 100\% = 87.5\%$ |
|    | (8×3600)                                                                                                                    |
|    | Efficiency of CEL = $(15 \times 3600) - (30 \times 1055) + 1000/$ 41.40/                                                    |
|    | Efficiency of CFL = $(15 \times 3600)$ $\times 100\% = 41.4\%$                                                              |
|    | Difference = $87.5.\%$ $41.4.\% = 46\%$                                                                                     |
|    | Difference $= 07.5 / 0 = 41.4 / 0 = 40 / 0$                                                                                 |
|    |                                                                                                                             |
| 19 | Ans: B                                                                                                                      |
|    | $F_{\text{not}} = \frac{mv^2}{m} \rightarrow mq - R = \frac{mv^2}{m}$                                                       |
|    | $r \rightarrow mg r r$                                                                                                      |
|    | $R = mg - \frac{mv^2}{r}$                                                                                                   |
| 20 | Ans: A                                                                                                                      |
|    |                                                                                                                             |
|    | The net force is perpendicular to the velocity at all times, and therefore the                                              |
|    | instantaneous displacement.                                                                                                 |
| 24 | Ans: D                                                                                                                      |
| 21 | Alls. D                                                                                                                     |
|    | $mR\omega^2 = \frac{OWIII}{D^2}$                                                                                            |
|    | $\nabla$                                                                                                                    |
|    | $mR(\frac{2\pi}{T})^2 = \frac{GWIII}{D^2}$                                                                                  |
|    | $I = R^2$                                                                                                                   |
|    | I <sup>2</sup> ∝R <sup>3</sup>                                                                                              |
|    | The period of orbit of a satellite is independent of mass but dependent on                                                  |
|    | the radius of orbit. As both satellites have the same period of orbit, they                                                 |
|    | must have the same radius of orbit.                                                                                         |
|    | However, just because a satellite has a 24 hour period does not mean it                                                     |
|    | must be a geostationary satellite. The satellite need not be above the                                                      |
|    | Earth's direction of rotation                                                                                               |
|    |                                                                                                                             |
| 22 | Ans: B                                                                                                                      |
|    | The solution can be obtained by calculating the resistance between the various junctions                                    |
|    | given in options A, B, C and D.                                                                                             |
|    | For option B, the resistance between junctions Q and S is:                                                                  |
|    | $1/R_{Qs} = 1/(2+8) + 1/(4+6)$                                                                                              |
|    | $1/R_{Qs} = 1/10 + 1/10$                                                                                                    |
|    | 1/R <sub>Qs</sub> = 2/10                                                                                                    |
|    | $R_{Qs}$ = 5 $\Omega$                                                                                                       |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |
|    |                                                                                                                             |



| 26 | Ans: B                                                                                                                                                                                                                                                                                                   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Use Fleming's LHR.                                                                                                                                                                                                                                                                                       |
| 27 | Ans: D                                                                                                                                                                                                                                                                                                   |
|    | According to Fleming's left hand rule, the particle experiences a magnetic force that is perpendicular to its velocity and the magnetic field that it experiences. With magnetic field directed into the paper and current directed downwards, the magnetic force acting on the electrons is rightwards. |
| 28 | Ans: D                                                                                                                                                                                                                                                                                                   |
|    | Using Fleming's left hand rule for force to be upwards, current must flow from Q to P and magnetic field must be in z direction.                                                                                                                                                                         |
|    | Magnetic force = weight , if tensions are to be zero.                                                                                                                                                                                                                                                    |
|    | $BIL = \rho ALg$                                                                                                                                                                                                                                                                                         |
|    | $I = \rho Ag/B$                                                                                                                                                                                                                                                                                          |
|    |                                                                                                                                                                                                                                                                                                          |
| 29 | Ans: D                                                                                                                                                                                                                                                                                                   |
| 30 | Ans: D                                                                                                                                                                                                                                                                                                   |
|    | Majority of the $\alpha$ -particles managed to pass through the gold foil without being deflected since the atom consists of mostly empty space.                                                                                                                                                         |